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Preface

Since the publication of the first edition of this monograph, the following advances
on constructing combinatorial t-designs with linear codes have been made:

• A generalization of the Assmus-Mattson theorem for linear codes over
finite fields [Tang, Ding and Xiong (2019)].
• The discovery of an infinite family of near MDS codes over finite fields

supporting an infinite family of 2-designs [Ding and Tang (2020)].
• The discovery of an infinite family of BCH codes over GF(22m+1) of

length 22m+1 + 1 supporting an infinite family of 4-designs [Tang and
Ding (2021)].

These advances are the main motivation for the second edition of this monograph.
The Assmus-Mattson theorem was developed in 1969, and has been used to

construct many infinite families of 2-designs and 3-designs in the past 50 years.
However, some infinite families of linear codes do support t-designs, but the t-
design property of the incidence structures defined by the linear codes cannot be
proved with the Assmus-Mattson theorem and the automorphism group of the
codes. In the past 50 years, a strengthening of the Assmus-Mattson theorem for
special binary linear codes was documented in Calderbank, Delsarte and Sloane
(1991) and several analogues of the Assmus-Mattson theorem in other contexts
(for example, certain association schemes [Morales and Tanaka (2018)], codes
over Z4 [Tanabe (2000)], and rank-metric codes [Byrne and Ravagnani (2019)])
were developed. The Assmus-Mattson theorem for matroids developed in Britz,
Royle and Shiromoto (2009) does contain the original Assmus-Mattson theorem
as a special case, but it becomes the Assmus-Mattson theorem when it is applied
to codes. The generalized Assmus-Mattson theorem for linear codes over finite
fields developed in Tang, Ding and Xiong (2019) turns out to be useful, and will
be the topic of a new chapter in this second edition.

v
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vi Designs from Linear Codes

It is well-known that MDS codes support only trivial designs (i.e., complete
designs), which are not interesting. The Golay ternary code with parameters
[11,6,5] is near MDS and supports a 4-design. It had been a 70-year-old open
question whether there is an infinite family of near MDS codes over finite fields
supporting an infinite family of 2-designs. Similarly, it was open for 71 years
whether there is an infinite family of linear codes supporting an infinite family of
4-designs. The breakthroughs regarding these two open problems will be the main
topic of another new chapter in this second edition.

In addition to the breakthroughs mentioned above, other progresses on designs
from linear codes have been also made in the past three years. Based on these
progresses, some chapters in the first addition were revised and new references
were added.

In this second edition, a new appendix (named Appendix C) has been added.
Appendix C gives a quick introduction to elementary number theory, groups, rings
and finite fields, and provides a lot of exercises on these topics. Postgraduates and
advanced undergraduates are advised to read the materials carefully and solve the
problems in Appendix C before reading other parts of this book. Another new
appendix (named Appendix A) was also added for reporting some new sporadic
4-designs and 5-designs supported by some sporadic linear codes. In this second
edition, notes are added at the end of most of the chapters for providing further
information on the topics covered in the chapters.

We are very grateful to Dr. Yan Hong Ng, Dr. K. K. Phua and Ms. Kim Tan
of World Scientific for helping us with the publication of this second edition. We
acknowledge the financial support of the Hong Kong Research Grants Council,
under Proj. No. 16300418.

Cunsheng Ding
Chunming Tang

Fall 2021



November 17, 2021 14:14 ws-book9x6 Designs from Linear Codes designscodes page vii

Preface to the First Edition

Linear codes and t-designs are companions. On one hand, the incidence matrix
of a t-design generates a linear code over any finite field GF(q). On the other
hand, the supports of codewords of a fixed Hamming weight in a code may form a
t-design under certain conditions. Interplay between coding theory and the theory
of t-designs has been a very interesting topic for combinatorialists and coding
theorists, and has been treated to some extent in a few monographs and textbooks
on coding theory and combinatorics. The purpose of this monograph is to give
a comprehensive treatment of t-designs from linear codes. A special feature of
this monograph is the attention to the determination of the parameters of t-designs
held in linear codes.

The determination of the weight distributions of linear codes is an extremely
difficult problem in general, and is much more difficult than that of the minimum
weights of linear codes. The settlement of the parameters of t-designs held in a
linear code over GF(q) is even harder when q > 2. A strong motivation of this
monograph is the recent advance in the determination of the weight distributions
of many families of linear codes. This monograph is a strong demonstration of
the usefulness of the weight distributions of linear codes.

One may question the motivation of explicitly constructing designs with small
strength. Our interest in explicit designs with small strength comes from the fact
that they may yield linear codes with very good parameters, which could be very
attractive in both theory and practice, although this monograph deals little with
the linear codes of designs.

This monograph studies t-designs mainly from linear codes over finite fields.
A few families of nonlinear codes do yield 3-designs. They include Goethals
codes, Kerdock codes, and some extended perfect codes. The reader is referred
to Tonchev (2007) for further information on designs from these families of non-
linear codes. Several families of t-designs have been constructed from codes over

vii
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viii Designs from Linear Codes

Z4. Information about these designs could be found in Helleseth, Rong and Yang
(2001). These are the designs missing from this book.

In this monograph, we pay much more attention to infinite families of designs
than sporadic designs. Therefore, we will not treat Mathieu groups, which are the
automorphism groups of some linear codes and t-designs.

This book is intended to be a reference for postgraduates and researchers in
the areas of combinatorics, coding theory and communications engineering. The
reader is assumed to have the basic knowledge of linear algebra and finite fields.
Nevertheless, some mathematical foundations are recalled and summarized in
Chapter 1. In many places, proofs of some results are omitted. In this case, a
reference of such result is given, so that the reader could find a proof.

I am indebted to Professor Vladimir D. Tonchev for beneficial discussions
on interplay between t-designs and linear codes. I am grateful to my co-authors
for collaborations on coding theory, combinatorics and cryptography as well as
related topics. I thank Xiran Ai, Dr. Don Mak, Dr. K. K. Phua, and Ning Tu at the
Word Scientific for their assistance with the publication of this monograph.

Cunsheng Ding
Hong Kong

Spring 2018
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Chapter 1

Mathematical Foundations

It is impossible to introduce combinatorial designs and linear codes without basic
tools in certain mathematical areas. In this chapter, we give a brief introduction
to cyclotomy, finite geometry, group actions, group algebra, finite fields, special
functions, and sequences, which are the foundations of other chapters. Before
reading this chapter, one may study the materials and solve the problems covered
in Appendix C, for getting familiar with elementary number theory, group theory,
ring theory and finite fields.

1.1 The Rings Zn

We start with Euler’s totient function ϕ(n). For every positive integer n≥ 1, ϕ(n)
is defined to be the number of integers a such that gcd(a,n) = 1, where 1≤ a < n.
This function has the properties summarised in the following theorem.

Theorem 1.1.

(1) For any prime p and positive integer k, ϕ(pk) = pk−1(p−1).
(2) If m, n ≥ 1 and gcd(m,n) = 1, then ϕ(mn) = ϕ(m)ϕ(n), that is, ϕ is a multi-

plicative function.
(3) For any integer with the canonical factorization n = ∏t

i=1 pki
i , ϕ(n) =

∏t
i=1 pki−1

i (pi − 1), where t and ki are positive integers, and p1, p2, · · · , pt

are pairwise distinct primes.

An integer g is called a primitive root of (or modulo) n if ordn(g) = ϕ(n),
where ordn(g) denotes the multiplicative order of g modulo n. If g≡ g′ (mod n),
then g is a primitive root of n if and only if g′ is a primitive root of n.

Throughout this monograph, Zn = {0,1,2, . . . ,n−1}, which denotes the ring
of integers modulo n, and Z∗n consists of all the units of the ring Zn. Hence, Z∗n is
a multiplicative group of order ϕ(n).

1
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For any subset D of Zn, the Hall polynomial of D is defined by

D(x) = ∑
i∈D

xi,

which can be viewed as a polynomial over any ring or field, depending on the
specific application under consideration.

1.2 Finite Fields

In this section, we introduce necessary notation and basic results of finite fields
without providing proofs. The reader is referred to Lidl and Niederreiter (1997)
for a proof, and Appendix C for mastering the theory of finite fields quickly.

1.2.1 Introduction to Finite Fields

A field is a set F associated with two operations: +, called addition, and ·, called
multiplication, which satisfy the following axioms. The set F is an abelian group
under + with additive identity called zero and denoted 0; the set F∗ of all nonzero
elements of F is also an abelian group under multiplication with multiplicative
identity called one and denoted 1; and multiplication distributes over addition.
For convenience, we will usually omit the symbol for multiplication and write ab
for the product a · b. The field is finite if F has a finite number of elements; the
number of elements in F is called the order of F. We will denote a field with q
elements by GF(q). If p is a prime, the integers modulo p form a field, which is
then denoted GF(p). These are the simplest examples of finite fields.

Two fields F1 and F2 are isomorphic if there is a bijection ψ from F1 to F2

such that

(1) ψ(a+b) = ψ(a)+ψ(b) for all a,b ∈ F1;
(2) ψ(ab) = ψ(a)ψ(b) for all a,b ∈ F1; and
(3) ψ(0) = 0, ψ(1) = 1.

It is known that all finite fields with the same number of elements are isomorphic
[Lidl and Niederreiter (1997)][Theorem 2.5]. Let GF(q) be a finite field with q
elements. The following is a list of basic properties of the finite field GF(q) [Lidl
and Niederreiter (1997)][Chapters 1 and 2].

• q = pm for some prime p and some positive integer m, and p is called the
characteristic of GF(q).
• GF(q) contains GF(p) as a subfield.
• GF(q) is a vector space over GF(p) of dimension m.
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• Every subfield of GF(q) has order pt for some integer t dividing m.
• The multiplicative group GF(q)∗ of nonzero elements of GF(q) is cyclic. A

generator of the multiplicative group GF(q)∗ is called a primitive element of
GF(q).

Let GF(qm) be an extension of GF(q) and let a∈GF(qm). It is a basic property
that aqm

= a. The monic polynomial f (x) ∈ GF(q)[x] such that f (a) = 0 with the
least degree is called the minimal polynomial of a over GF(q) and is denoted by
Ma(x). Clearly, Ma(x) is a divisor of xqm − x. It is straightforward to prove that
the minimal polynomial of a over GF(q) is unique and irreducible over GF(q).

1.2.2 Traces, Norms, and Bases

Let GF(qm) be an extension of GF(q) and let a ∈ GF(qm). The elements
a,aq,aq2

, . . . ,aqm−1
are called the conjugates of a with respect to GF(q).

The trace function from GF(qm) to GF(q) is defined by

Trqm/q(x) = x+ xq + xq2
+ · · ·+ xqm−1

.

When q is prime, Trqm/q(x) is called the absolute trace of x.
The following theorem summarizes basic properties of the trace function

Trqm/q(x).

Theorem 1.2. The trace function Trqm/q(x) has the following properties:

(a) Trqm/q(x+ y) = Trqm/q(x)+Trqm/q(y) for all x,y ∈ GF(qm).
(b) Trqm/q(cx) = cTrqm/q(x) for all x ∈ GF(qm) and all c ∈ GF(q).
(c) Trqm/q is a linear transformation from GF(qm) to GF(q), when both GF(qm)

and GF(q) are viewed as vector spaces over GF(q).
(d) Every linear transformation from GF(qm) to GF(q) can be expressed as

Trqm/q(ax) for some a ∈ GF(qm).
(e) Trqm/q(a) = ma for all a ∈ GF(q).
(f) Trqm/q(xq) = Trqm/q(x) for all x ∈ GF(qm).

The norm Nqm/q(a) of an element a ∈ GF(qm) is defined by

Nqm/q(a) = a(q
m−1)/(q−1).

It follows that Nqm/q(a) is always an element of GF(q).
The following theorem summarizes basic properties of the norm function

Nqm/q(x).

Theorem 1.3. The norm function Nqm/q(x) has the following properties:
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(i) Nqm/q(xy) = Nqm/q(x)Nqm/q(y) for all x,y ∈ GF(qm).
(ii) Nqm/q maps GF(qm) onto GF(q) and GF(qm)∗ onto GF(q)∗.

(iii) Nqm/q(a) = am for all a ∈ GF(q).
(iv) Nqm/q(xq) = Nqm/q(x) for all x ∈ GF(qm).

Two bases {α1, . . . ,αm} and {β1, . . . ,βm} of GF(qm) over GF(q) are said to
be dual basis if for 1≤ i, j ≤ m we have

Trqm/q(αiβ j) =

{
0 if i 6= j,
1 if i = j.

For any basis {α1, . . . ,αm} of GF(qm) over GF(q), it can be easily proved that
there exists a dual basis {β1, . . . ,βm}.

Let α be a primitive element of GF(qm). Then {1,α,α2, . . . ,αm−1} is called a
polynomial basis of GF(qm) over GF(q).

A basis of GF(qm) over GF(q) of the form {β,βq,βq2
, . . . ,βqm−1} is called a

normal basis. It is known that there exists a normal basis of GF(qm) over GF(q)
[Lidl and Niederreiter (1997)][Theorem 2.35].

1.2.3 Field Automorphisms

In field theory, a field automorphism is an automorphism of the algebraic structure
of a field, that is, a bijective function from the field onto itself which respects the
field operations of addition and multiplication.

Let GF(qm) be an extension of GF(q). By an automorphism σ of GF(qm) over
GF(q), we mean an automorphism of GF(qm) that fixes the elements of GF(q).
Thus, in detail, we require that σ be a one-to-one mapping from GF(qm) to itself
with σ(x+y)=σ(x)+σ(y) and σ(xy)=σ(x)σ(y) for all x,y∈GF(qm) and σ(z)=
z for all z ∈ GF(q). The following theorem is well known [Lidl and Niederreiter
(1997)][p. 53].

Theorem 1.4. The distinct automorphisms of GF(qm) over GF(q) are the map-
pings σ j defined by σ j(x) = xq j

, where 0≤ j ≤ m−1.

1.2.4 Additive and Multiplicative Characters

Let A be a finite abelian group (written multiplicatively) of order |A| with identity
1A. A character χ of A is a homomorphism from A into the multiplicative group
U of complex numbers of absolute value 1, i.e.,

χ(a1a2) = χ(a1)χ(a2)

for all a1,a2 ∈ A.
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For any finite abelian group A, we have the trivial (also called principal) char-
acter χ0 defined by χ0(a) = 1 for all a ∈ A. All other characters of A are non-
trivial or nonprincipal. For each character χ of A, its conjugate χ is defined by
χ(a) = χ(a). Given any finitely many characters χ1, . . . ,χt of A, we define their
product character χ1 · · ·χt by

(χ1 · · ·χt)(a) = χ1(a) · · ·χt(a)

for all a ∈ A. If χ1 = · · · = χt = χ, we write χt for χ1 · · ·χt . It is easily seen that
the set A∧ of all characters of A form an abelian group under this multiplication
of characters. The order of a character χ is the least positive integer ℓ such that
χℓ = χ0.

Example 1.5. Let A be a finite cyclic group of order n. Let a be a generator of A.
For any fixed integer j with 0≤ j ≤ n−1, define

χ j(ak) = e2π
√
−1 jk/n, k = 0,1, . . . ,n−1.

Then χ j is a character of A. On the other hand, the set {χ0,χ1, . . . ,χn−1} contains
all characters of A.

Let p be the characteristic of GF(q). Then the prime field of GF(q) is GF(p),
which is identified with Zp. The function χ1 defined by

χ1(x) = e2π
√
−1Trq/p(x)/p for all x ∈ GF(q)

is a character of the additive group of GF(q), and is called the canonical character
of GF(q). For any b∈GF(q), the function defined by χb(x)= χ1(bx) is a character
of (GF(q),+). On the other hand, every character of (GF(q),+) can be expressed
as χb(x) for some b∈GF(q). These χb(x) are called additive characters of GF(q).

Since the multiplicative group GF(q)∗ is cyclic, by Example 1.5, all the char-
acters of the multiplicative group GF(q)∗ are given by

ψ j(ak) = e2π
√
−1 jk/(q−1), k = 0,1, . . . ,q−2,

where 0≤ j≤ q−2 and a is a generator of GF(q)∗. These ψ j are called multiplica-
tive character of GF(q), and form a group of order q−1 with identity element ψ0.
When q is odd, the character ψ(q−1)/2 is called the quadratic character of GF(q),
and is usually denoted by η. In other words, the quadratic character is defined by

η(x) =
(

x
q

)
,

the Legendre symbol from elementary number theory when q is a prime.
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1.2.5 Several Types of Character Sums

Let ψ be a multiplicative and χ an additive character of GF(q). Then the Gaussian
sum is defined by

G(ψ,χ) = ∑
x∈GF(q)∗

ψ(x)χ(x).

The following theorem will be useful in later chapters and its proof can be
found in Lidl and Niederreiter (1997)[Theorem 5.11].

Theorem 1.6. Let ψ be a multiplicative and χ an additive character of GF(q).
The Gaussian sum satisfies

G(ψ,χ) =


q−1 if ψ = ψ0, χ = χ0,

−1 if ψ = ψ0, χ 6= χ0,

0 if ψ 6= ψ0, χ = χ0,

where ψ0 and χ0 are the trivial multiplicative and additive character of GF(q),
respectively.

If ψ 6= ψ0 and χ 6= χ0, then

|G(ψ,χ)|=√q.

For certain special characters, the associated Gaussian sums can be evaluated
explicitly. The following theorem will be needed in subsequent chapters and its
proof can be found in Lidl and Niederreiter (1997)[Theorem 5.15].

Theorem 1.7. Let q = ps, where p is an odd prime and s is a positive integer.
Let η be the quadratic character of GF(q), and let χ1 be the canonical additive
character of GF(q). Then

G(η,χ1) =

{
(−1)s−1√q if p≡ 1 (mod 4),
(−1)s−1(

√
−1)s√q if p≡ 3 (mod 4).

Since G(ψ,χb) = ψ̄(b)G(ψ,χ1), we just consider G(ψ,χ1), briefly denoted as
G(ψ), in the sequel. If ψ 6= ψ0, then

|G(ψ)|= q1/2. (1.1)

Certain types of character sums can be evaluated exactly. The following two
theorems describe such cases [Lidl and Niederreiter (1997)][Theorems 5.33 and
5.35].

Theorem 1.8. Let χ be a nontrivial additive character of GF(q) with q odd, and
let f (x) = a2x2 +a1x+a0 ∈ GF(q)[x] with a2 6= 0. Then

∑
c∈GF(q)

χ( f (c)) = χ
(
a0−a2

1(4a2)
−1)η(a2)G(η,χ),

where η is the quadratic character of GF(q).



November 17, 2021 14:14 ws-book9x6 Designs from Linear Codes designscodes page 7

Mathematical Foundations 7

Theorem 1.9. Let χb(x) = χ1(bx), where χ1 is the canonical additive character of
GF(q) with q even and b ∈ GF(q)∗. Let f (x) = a2x2 +a1x+a0 ∈ GF(q)[x]. Then

∑
c∈GF(q)

χb( f (c)) =
{

χb(a0) if a2 = ba2
1,

0 otherwise.

In many cases it is difficult to evaluate character sums, and thus necessary
to develop tight bounds on the absolute value of the character sums. An exam-
ple of such bounds is the Weil bound given in the following theorem [Lidl and
Niederreiter (1997)][Theorem 5.37].

Theorem 1.10 (Weil bound). Let f ∈ GF(q)[x] be of degree e ≥ 1 with
gcd(e,q) = 1, and let χ be a nontrivial additive character of GF(q). Then∣∣∣∣∣ ∑

x∈GF(q)
χ( f (x))

∣∣∣∣∣≤ (e−1)
√

q.

With respect to multiplicative characters, we have the following bound [Lidl
and Niederreiter (1997)][Theorem 5.41].

Theorem 1.11. Let ψ be a multiplicative character of GF(q) with order t > 1,
and let f ∈GF(q)[x] be of positive degree that is not a t-th power of a polynomial.
Let e be the number of distinct roots of f in its splitting field over GF(q). Then for
each a ∈ GF(q) we have∣∣∣∣∣ ∑

x∈GF(q)
ψ(a f (x))

∣∣∣∣∣≤ (e−1)
√

q.

Another kind of useful character sums is the Kloosterman sums, which are
defined by

K(χ;a,b) = ∑
x∈GF(q)∗

χ(ax+bx−1), (1.2)

where χ is a nontrivial additive character of GF(q), and a,b ∈ GF(q).
Kloosterman sums are closely related to many mathematical and engineer-

ing problems, and have been extensively studied in the literature. Unfortunately,
it is very hard to evaluate Kloosterman sums. Nevertheless, we do have a tight
bound on the Kloosterman sums as follows [Lidl and Niederreiter (1997)][Theo-
rem 5.45].

Theorem 1.12. Let χ be a nontrivial additive character of GF(q), and let a,b ∈
GF(q) with (a,b) 6= (0,0). Then

|K(χ;a,b)| ≤ 2
√

q.
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At the end of this section, we introduce a type of character sums defined by
special quadratic functions. Denote by Sh(a,b) the Weil sum given by

Sh(a,b) = ∑
x∈GF(pm)

χ1(axph+1 +bx),

where h is a nonnegative integer and χ1 is the canonical additive character of
GF(pm). Below we consider the sum Sh(a,b) for a 6= 0.

Lemma 1.13 (Coulter (2002)). Let p be an odd prime and let m/d be odd with
d = gcd(m,h). Suppose that f (x) = aph

xp2h
+ax is a permutation of GF(pm). Let

x0 be the unique solution of the equation f (x) =−bph
, b 6= 0. Then

Sh(a,b) =

 (−1)m−1 pm/2η(−a)χ1(axph+1
0 ) if p≡ 1 (mod 4),

√
−13m

(−1)m−1 pm/2η(−a)χ1(axph+1
0 ) if p≡ 3 (mod 4),

where η denotes the quadratic character of GF(pm), and y denotes the complex
conjugate of the complex number y.

Lemma 1.14 (Coulter (2002)). Let p be a prime. Define d = gcd(m,h) and let
m/d be even with m = 2m̄. Define f (x) = aph

xp2h
+ax and

a0 =

{
1 if p = 2,
ζ(pm−1)/2(pd−1) if p odd,

where ζ is a primitive element of GF(pm). Then Sh(a,b) = 0 unless the equation
f (x) =−bph

is solvable. There are two possibilities.

(1) If a 6= a0ζs(pd+1) for any integer s, then for any choice of b ∈ GF(pm), the
equation f (x) =−bph

has a unique solution x0 and

Sh(a,b) = (−1)m̄/d pm̄χ1(axph+1
0 ).

(2) If a = a0ζs(pd+1) for some integer s, then the equation f (x) =−bph
is solvable

if and only if Trpm/p2d (bγ−s) = 0, where γ ∈ GF(pm)∗ is the unique element

satisfying γ(ph+1)/(pd+1) = ζ. In such cases,

Sh(a,b) = (−1)m̄/d pm̄+dχ1(axph+1
0 ),

where x0 is any solution to f (x) =−bph
.

The next two lemmas will be useful in subsequent chapters.
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Lemma 1.15 (Coulter (2002)). Let p be an odd prime and let d = gcd(m,h).
Then the equation aph

xp2h
+ax = 0 is solvable for x ∈GF(pm)∗ if and only if m/d

is even with m = 2m̄ and

a(pm−1)/(pd+1) = (−1)m̄/d .

In such cases there are p2d−1 nonzero solutions.

Lemma 1.16 (Draper and Hou (2008)). Let p be an odd prime, and let m be a
positive integer. Let νr(m) denote the r-adic order of m (that is, rνr(m) divides m,
but rνr(m)+1 does not divide m). Let a ∈ GF(pm)∗ and let h≥ 0 be an integer.

(1) If ν2(m)≤ ν2(h),

Sh(a,0) = η(a)(−1)m−1√−1
m(p−1)2/4

pm/2.

(2) If ν2(m) = ν2(h)+1,

Sh(a,0) =

 p(m+gcd(2h,m))/2 if a
(ph−1)(pm−1)

pgcd(2h,m)−1 =−1,
−pm/2 otherwise.

(3) If ν2(m)> ν2(h)+1,

Sh(a,0) =

−p(m+gcd(2h,m))/2 if a
(ph−1)(pm−1)

pgcd(2h,m)−1 = 1,
pm/2 otherwise.

1.2.6 Quadratic Forms over GF(q)

An n-ary quadratic form (or a quadratic form in n indeterminates) over a field
GF(q) is a homogeneous polynomial of degree 2 in n variables with coefficients
in GF(q):

f (x1,x2, . . . ,xn) =
n

∑
i=1

n

∑
j=1

ai jxix j, ai j ∈ GF(q).

Let x = (x1,x2, . . . ,xn)
T and A = [ai j] be the n× n matrix whose entries are the

coefficients of f . Then the quadratic form f can be expressed as

f (x1,x2, . . . ,xn) = xT Ax.

We say that f is nonsingular or nondegenerate if A is nonsingular, and degenerate
otherwise. The rank of f is defined to be the rank of the matrix A.

Two quadratic forms ϕ and ψ over GF(q) are called equivalent if there is a
nonsingular matrix C such that ϕ(x) = ψ(Cx). The following two theorems will
be useful [Lidl and Niederreiter (1997)][Section 6.2].
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Theorem 1.17. Let q be odd. Then every n-ary quadratic form f (x1,x2, . . . ,xn)

over GF(q) is equivalent to the following diagonal form

a1x2
1 +a2x2

2 + · · ·+asx2
s , ai ∈ GF(q)∗,

where s≤ n and s is called the rank of f . Define

N( f = 0) = |{(x1, . . . ,xn) ∈ GF(q)n : f (x1, . . . ,xn) = 0}|.

N( f = 0) =

{
qn−1, if s is odd,
qn−1 +η(a1 . . .as)η(−1)

s
2 (q−1)qn− s+2

2 , if s is even,
(1.3)

where η denotes the quadratic character of GF(q)∗.

Theorem 1.18. Let q be even, and f (x1,x2, . . . ,xn) be a nondegenerate quadratic
form over GF(q). If n is odd, then f is equivalent to

x1x2 + x3x4 + · · ·+ xn−2xn−1 + x2
n.

If n is even, then f is equivalent to either

x1x2 + x3x4 + · · ·+ xn−1xn

or a quadratic form of the type

x1x2 + x3x4 + · · ·+ xn−1xn + x2
n−1 +ax2

n,

where a ∈ GF(q) satisfies Trq/p(a) = 1.

1.3 Group Algebra

Let (G,+) be an additive group and F a field. The group algebra F[G] (or better
(F[G],+,∗)) is the vector space over F with elements of G as basis, with addition
+ and multiplication ∗ defined by

∑
g∈G

u(g)g+ ∑
g∈G

v(g)g = ∑
g∈G

(u(g)+ v(g))g

and (
∑

g∈G
u(g)g

)
∗

(
∑

h∈G
v(h)h

)
= ∑

k∈G

(
∑

g+h=k
u(g)v(h)

)
k,

where u(g) ∈ F and v(h) ∈ F. In this monograph, we will be mainly concerned
with the group algebra when (G,+) = (GF(q)m,+) and F = C is the field of
complex numbers.

Let FG denote the set of all functions from G to F . When G is a finite group,
the group algebra F[G] is the same as FG, as each element ∑g∈G u(g)g corresponds
to a function u(g) from G to F.
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1.4 Special Types of Polynomials

This section introduces a few types of polynomials over finite fields. The reader
is referred to Appendix C for basics of polynomials over fields.

1.4.1 Permutation Polynomials over Finite Fields

A polynomial f ∈ GF(r)[x] is called a permutation polynomial if the associated
polynomial function f : a 7→ f (a) from GF(r) to GF(r) is a permutation of GF(r).
Obviously, f is a permutation polynomial of GF(r) if and only if the equation
f (x) = a has exactly one solution x ∈ GF(r) for each a ∈ GF(r).

Example 1.19. Every linear polynomial ax is a permutation polynomial of GF(r),
where a ∈ GF(r)∗.

The following is a general criterion for the permutation property of polynomi-
als over GF(r), but not a very useful one [Lidl and Niederreiter (1997)][Theorem
7.4].

Theorem 1.20 (Hermite’s criteria). Let GF(r) be of characteristic p. Then f ∈
GF(r)[x] is a permutation polynomial of GF(r) if and only if the following two
conditions hold:

(i) f (x) = 0 has exactly one solution x ∈ GF(r);
(ii) for each integer t with 1 ≤ t ≤ r− 2 and t 6≡ 0 (mod p), the reduction of

f (x)t mod (xr− x) has degree at most r−2.

The Hermite criterion above can be modified into the following [Lidl and
Niederreiter (1997)][Theorem 7.6].

Theorem 1.21. Let GF(r) be of characteristic p. Then f ∈ GF(r)[x] is a permu-
tation polynomial of GF(r) if and only if the following two conditions hold:

(i) the reduction of f (x)r−1 mod (xr− x) has degree r−1;
(ii) for each integer t with 1 ≤ t ≤ r− 2 and t 6≡ 0 (mod p), the reduction of

f (x)t mod (xr− x) has degree at most r−2.

The two criteria above are not very useful as the two conditions in each theo-
rem are not easy to check. For special types of polynomials over GF(r) there are
simple conditions for checking the permutation property.

It is easily seen that the monomial xn is a permutation polynomial of GF(r) if
and only if gcd(n,r−1) = 1. For p-polynomials we have the following.
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Theorem 1.22. Let GF(r) be of characteristic p. Then the p-polynomial

L(x) =
m

∑
i=0

aixpi ∈ GF(r)[x]

is a permutation polynomial of GF(r) if and only if L(x) only has the root 0 in
GF(r).

For more information on permutation polynomials, the reader is referred to
Lidl and Niederreiter (1997)[Chapter 7].

1.4.2 Dickson Polynomials over Finite Fields

In 1896 Dickson introduced the following family of polynomials over the finite
field GF(r) [Dickson (1896)]:

Dh(x,a) =
b h

2 c

∑
i=0

h
h− i

(
h− i

i

)
(−a)ixh−2i, (1.4)

where a ∈ GF(r) and h ≥ 0 is called the order of the polynomial. This family is
referred to as the Dickson polynomials of the first kind.

It is known that Dickson polynomials of the first kind satisfy the following
recurrence relation:

Dh+2(x,a) = xDh+1(x,a)−aDh(x,a) (1.5)

with the initial state D0(x,a) = 2 and D1(x,a) = x.
A proof of the following theorem can be found in Lidl, Mullen and Turnwald

(1993)[Theorem 3.2].

Theorem 1.23. Dh(x,a) is a permutation polynomial over GF(r) if and only if
gcd(h,r2−1) = 1.

Dickson polynomials of the second kind over the finite field GF(r) are defined
by

Eh(x,a) =
b h

2 c

∑
i=0

(
h− i

i

)
(−a)ixh−2i, (1.6)

where a ∈ GF(r) and h ≥ 0 is called the order of the polynomial. This family is
referred to as the Dickson polynomials of the second kind.

It is known that Dickson polynomials of the second kind satisfy the following
recurrence:

Eh+2(x,a) = xEh+1(x,a)−aEh(x,a) (1.7)
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with the initial state E0(x,a) = 1 and E1(x,a) = x.
Dickson polynomials are an interesting topic of mathematics, and have many

applications. For example, the Dickson polynomials D5(x,u) = x5−ux−u2x over
GF(3m) were employed to construct a family of planar functions [Ding and Yuan
(2006)], and those planar functions give two families of commutative presemi-
fields, planes, several classes of linear codes [Carlet, Ding and Yuan (2005)], and
two families of skew Hadamard difference sets [Ding and Yuan (2006)]. The
reader is referred to Lidl, Mullen and Turnwald (1993) for detailed information
about Dickson polynomials.

1.4.3 Krawtchouk Polynomials

Let n ≥ 1 and k ≥ 0 be integers, and let q ≥ 2 be an integer. The Krawtchouk
polynomial Pk(q,n;x) is defined by

Pk(q,n;x) =
k

∑
i=0

(−1)i(q−1)k−i
(

x
i

)(
n− x
k− i

)
, (1.8)

which can be viewed as a polynomial over the ring of integers, the field of rational
numbers, the field of real numbers, and the field of complex numbers. In the
definition of the Krawtchouk polynomial,(

x
i

)
=

x(x−1) · · ·(x− i+1)
i!

.

If x is an integer between 0 and n, Pk(q,n;x) is the coefficient of uk in the expansion
of (1−u)x(1+(q−1)u)n−x.

For example, we have

P0(2,n;x) = 1,

P1(2,n;x) = −2x+n,

P2(2,n;x) = 2x2−2nx+
(

n
2

)
,

P3(2,n;x) = −4
3

x3 +2nx2−
(

n2−n+
2
3

)
x+
(

n
3

)
.

An equivalent expression of Pk(q,n;x) is given below.

Lemma 1.24. Let n≥ 1 and k ≥ 0 be integers, and let q≥ 2 be an integer. Then

Pk(q,n;x) =
k

∑
i=0

(−q)i(q−1)k−i
(

n− i
k− i

)(
x
i

)
. (1.9)
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Proof. Let x be an integer with 0≤ x≤ n. Then
n

∑
k=0

uk
k

∑
i=0

(−q)i(q−1)k−i
(

n− i
k− i

)(
x
i

)
=

n

∑
i=0

(−q)i
(

x
i

)
ui

n

∑
k=i

(
n− i
k− i

)
(q−1)k−iuk−i

=
n

∑
i=0

(−q)i
(

x
i

)
ui(1+(q−1)u)n−i

= (1+(q−1)u)n−x
n

∑
i=0

(
x
i

)
(−qu)i(1+(q−1)u)x−i

= (1+(q−1)u)n−x(−qu+1+(q−1)u)x

= (1+(q−1)u)n−x(1−u)x

=
n

∑
k=0

Pk(q,n;x)uk.

This means that the two polynomials in u with degree at most n are equal at n+1
points. Hence, their coefficients must be equal. This completes the proof.

One can similarly prove that

Pk(q,n;x) =
k

∑
i=0

(−1)iqk−i
(

n− k+ i
i

)(
n− x
k− i

)
. (1.10)

The following orthogonality relations will be useful in subsequent chapters.

Lemma 1.25. For integers 0≤ k ≤ n and 0≤ ℓ≤ n, we have
n

∑
i=0

(
n
i

)
(q−1)iPk(q,n; i)Pℓ(q,n; i) = qn(q−1)k

(
n
k

)
δk,ℓ, (1.11)

where δk,ℓ = 1 if k = ℓ, and δk,ℓ = 0 if k 6= ℓ.

Proof. We have
n

∑
k=0

n

∑
ℓ=0

n

∑
i=0

(
n
i

)
(q−1)iPk(q,n; i)Pℓ(q,n; i)xkyℓ

=
n

∑
i=0

(
n
i

)
(q−1)i(1− x)i(1+(q−1)x)n−i(1− y)i(1+(q−1)y)n−i

= ((q−1)(1− x)(1− y)+(1+(q−1)x)(1+(q−1)y))n

= qn(1+(q−1)xy)n

= qn
n

∑
k=0

(
n
k

)
(q−1)kxkyk.

The desired result follows immediately after comparing the coefficients of xkyℓ on
both sides.
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Lemma 1.24 shows that the degree of the polynomial Pk(q,n;x) is k. Then
Lemma 1.25 tells us that the polynomials Pk(q,n;x) for 0≤ k ≤ n form a basis in
the vector space of polynomials of degree at most n.

Lemma 1.26. For integers 0≤ k ≤ n and 0≤ ℓ≤ n, we have

(
n
ℓ

)
(q−1)ℓPk(q,n;ℓ) =

(
n
k

)
(q−1)kPℓ(q,n;k). (1.12)

Proof. We have

n

∑
k=0

n

∑
ℓ=0

(
n
ℓ

)
(q−1)ℓPk(q,n;ℓ)xkyℓ

= ((q−1)y(1− x)+(1+(q−1)x))n

= ((q−1)x(1− y)+(1+(q−1)y))n

=
n

∑
k=0

(
n
k

)
(q−1)kxk(1− y)k(1+(q−1)y)n−k

=
n

∑
k=0

n

∑
ℓ=0

(
n
k

)
(q−1)kPℓ(q,n;k)xkyℓ.

Comparing the coefficients yields the desired result.

The following is another set of interesting relations.

Lemma 1.27. For integers 0≤ k ≤ n and 0≤ ℓ≤ n, we have

n

∑
i=0

Pk(q,n; i)Pi(q,n;ℓ) = qnδk,ℓ. (1.13)

Proof. Substituting (1.12) into (1.11) proves the desired conclusion.

Lemma 1.28. For integers 0≤ k ≤ n, we have

k

∑
ℓ=0

Pℓ(q,n;x) = Pk(q,n−1;x−1). (1.14)
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Proof. By definition, we have

k

∑
ℓ=0

Pℓ(q,n;x) =
k

∑
ℓ=0

ℓ

∑
i=0

(−1)i(q−1)ℓ−i
(

x
i

)(
n− x
ℓ− i

)
=

k

∑
i=0

(−1)i
(

x
i

) k

∑
ℓ=i

(q−1)ℓ−i
(

n− x
ℓ− i

)
=

k

∑
i=0

(−1)i
((

x−1
i−1

)
+

(
x−1

i

)) k−i

∑
ℓ=0

(q−1)ℓ
(

n− x
ℓ

)

=
k

∑
i=0

(−1)i
(

x−1
i

)[(k−i

∑
ℓ=0
−

k−i−1

∑
ℓ=0

)
(q−1)ℓ

(
n− x
ℓ

)]

=
k

∑
i=0

(−1)i
(

x−1
i

)
(q−1)k−i

(
n− x
k− i

)
= Pk(q,n−1;x−1).

Lemma 1.29. The Krawtchouk polynomials satisfy the recurrence relation

(k+1)Pk+1(q,n;x) = [k+(q−1)(n− k)−qx]Pk(q,n;x)−
(q−1)(n− k+1)Pk−1(q,n;x). (1.15)

Proof. Differentiating the equality

∑
k

Pk(q,n;x)uk = (1−u)x[1+(q−1)u]n−x

to u and multiplying the obtained result by (1−u)(1+(q−1)u), we obtain that

(1−u)(1+(q−1)u)∑
k

kPk(q,n;x)uk−1

= (1−u)x(1+(q−1)u)n−x[−x(1+(q−1)u)+(n− x)(q−1)(1−u)]

= [n(q−1)− xq−n(q−1)u]∑
k

Pk(q,n;x)uk.

The desired recurrence relation follows after comparing the coefficients on both
sides.

The following lemma follows directly from (1.9).

Lemma 1.30.

Pk(q,n;0) = (q−1)k
(

n
k

)
, (1.16)
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Pk(q,n;n) = (−1)k
(

n
k

)
, (1.17)

Pk(q,n;1) = (q−1)k−1
[
(q−1)

(
n
k

)
−q
(

n−1
k−1

)]
. (1.18)

The properties of the Krawtchouk polynomials documented in this section will
be recalled in subsequent chapters.

1.5 Cyclotomy in GF(r)

1.5.1 Cyclotomy

Cyclotomy is to divide the circumference of a given unit circle with its center into
n equal parts using only a straightedge (i.e., idealized ruler) and a compass, where
the straightedge is only for drawing straight lines and the compass is only for
drawing circles. It is equivalent to the problem of constructing the regular n-gon
using only a straightedge and a compass.

Greek geometers played this puzzle 2000 years ago. About 300 BC, people in
Euclid’s School found that the regular n-gon is constructible for any n ≥ 3 of the
form

n = 2a3b5c, a≥ 0,b ∈ {0,1},c ∈ {0,1}.

For more than 2000 years mathematicians had been unanimous in their view
that for any prime p bigger than 5 the p-gon could not be constructed by ruler
and compass. The 18-year old Carl Friedrich Gauss proved that the regular 17-
gon is constructible [Gauss (1801)]. This achievement of Gauss is one of the
most surprising discoveries in mathematics. He asked to have his 17-gon carved
on his tombstone! This discovery led him to choose mathematics (rather than
philosophy) as his life-time research topic.

Gauss proved that the regular n-gon is constructible when n = p2s, where
p = 22k

+1 is a Fermat prime. In general, we have the following conclusion.

Theorem 1.31. A regular n-gon in the plane is constructible iff n = 2e p1 p2 · · · pk

for e≥ 0 and distinct Fermat primes p1, . . ., pk, k ≥ 0.

The necessity and sufficiency were proved by Gauss in 1796 and Wanzel in
1836, respectively. A detailed proof of Theorem 1.31 can be found in Pollack
(2009)[Chapter 2].

The algebraic criterion for the constructibility of regular n-gon is given in the
following theorem [Pollack (2009)][Section 2.2].
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Theorem 1.32. A regular n-gon in the plane is constructible iff all the complex
roots of zn = 1 can be found out by solving a chain of linear and quadratic equa-
tions.

To have a better understanding of the algebraic aspect of cyclotomy (a beauti-
ful problem in geometry), we look into the case that n = 5.

Let γi be the complex roots of x4 + x3 + x2 + x+1 = 0, where 1≤ i≤ 4. Note
that 2 is a primitive root modulo 5. Let

Ci = {22s+i mod 5 : s = 0,1}, i = 0,1,

which are the cyclotomic classes of order 2 modulo 5. It is obvious that C0∩C1 = /0
and C0∪C1 = Z5 \{0}.

Define ηi = ∑ j∈Ci x j, where i = 0,1. These ηi are called Gaussian periods of
order 2. Then we have

η0 +η1 +1 = x4 + x3 + x2 + x+1 = 0. (1.19)

It is easily verified that

η0η1 = η0 +η1. (1.20)

Combining (1.19) and (1.20) proves that η0 and η1 are solutions of η2+η−1= 0.
Hence

η0 =
−1±

√
5

2
and η1 =

−1∓
√

5
2

.

It is then easy to see that the four roots γi are found by solving in chain

η2 +η−1 = 0, γ2−ηiγ+1 = 0,

where η0 and η1 are solutions of η2 +η− 1 = 0. Hence, the case n = 5 is con-
structible by Theorem 1.32.

It follows from the discussions above that the algebraic aspect of cyclotomy is
related to cyclotomic classes and Gaussian periods, which will be the subjects of
the next subsection.

1.5.2 Cyclotomy in GF(r)

Let r be a power of a prime p. Let r−1 = nN for two positive integers n > 1 and
N > 1, and let α be a fixed primitive element of GF(r). Define C(N,r)

i = αi〈αN〉
for i = 0,1, ...,N− 1, where 〈αN〉 denotes the subgroup of GF(r)∗ generated by
αN . The cosets C(N,r)

i are called the cyclotomic classes of order N in GF(r). The
cyclotomic numbers of order N are defined by

(i, j)(N,r) =
∣∣∣(C(N,r)

i +1)∩C(N,r)
j

∣∣∣
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for all 0≤ i≤ N−1 and 0≤ j ≤ N−1.
The following theorem describes elementary facts about cyclotomic numbers,

which are not hard to prove [Storer (1967)][Lemma 3].

Theorem 1.33. Let notation be the same as before. Then the following equations
hold.

(A) (l,m)(N,r) = (l′,m′)(N,r) when l ≡ l′ (mod N) and m≡ m′ (mod N).

(B) (l,m)(N,r) = (N− l,m− l)(N,r) =

{
(m, l)(N,r) for even n,
(m+N/2, l +N/2)(N,r) for odd n.

(C) ∑N−1
m=0(l,m)(N,r) = n−nl , where

nl =


1 if l ≡ 0 (mod N), n even,
1 if l ≡ N/2 (mod N), n odd,
0 otherwise.

(D) ∑N−1
l=0 (l,m)(N,r) = n− km, where

km =

{
1 if m≡ 0 (mod N),

0 otherwise.

(E) ∑N−1
l=0 ∑N−1

m=0(l,m)(N,r) = Nn−1 = r−2.
(F) (l,m)(N

′,r) = (sl,sm)(N,r), where (l,m)(N
′,r) is based on the primitive element

α′ ≡ αs (mod N); necessarily then s is prime to r−1.

In the sequel we will need the following lemma which was developed in Tze,
Chanson, Ding, Helleseth and Parker (2003) and Ding and Yin (2008).

Lemma 1.34. Let r−1 = nN and let r be a prime power. Then
N−1

∑
u=0

(u,u+ k)(N,r) =

{
n−1 if k = 0,
n if k 6= 0.

In general, it is very hard to determine the cyclotomic numbers (i, j)(N,r). But
they are known when N is small or under certain conditions [Storer (1967)]. We
will introduce cyclotomic numbers of certain orders in the sequel when we really
need them.

The Gaussian periods are defined by

η(N,r)
i = ∑

x∈C(N,r)
i

χ(x), i = 0,1, ...,N−1,

where χ is the canonical additive character of GF(r).
The following lemma presents some basic properties of Gaussian periods, and

will be employed later.
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Lemma 1.35 (Storer (1967)). Let notation be the same as before. Then we have
the following:

(1) ∑N−1
i=0 ηi =−1.

(2) ∑N−1
i=0 ηiηi+k = rθk−n for all k ∈ {0,1, . . . ,N−1}, where

θk =


1 if n is even and k = 0
1 if n is odd and k = N/2
0 otherwise,

and equivalently θk = 1 if and only if −1 ∈C(N,r)
k .

Gaussian periods are closely related to Gaussian sums. From the finite Fourier
transform it follows that

η(N,r)
i =

1
N

N−1

∑
j=0

ε−i j
N G(ψ j,χ1) =

1
N

[
−1+

N−1

∑
j=1

ε−i j
N G(ψ j,χ1)

]
, (1.21)

where εN = e2π
√
−1/N and ψ is a primitive multiplicative character of order N over

GF(r)∗.
From (1.21), one can see that the values of the Gaussian periods in general are

also very hard to compute. However, they can be computed in a few cases.
The following lemma follows from Theorems 1.7 and 1.8.

Lemma 1.36. Let r = pm. When N = 2, the Gaussian periods are given by the
following:

η(2,r)
0 =

{
−1+(−1)m−1r1/2

2 if p≡ 1 (mod 4)
−1+(−1)m−1(

√
−1)mr1/2

2 if p≡ 3 (mod 4)

and

η(2,r)
1 =−1−η(2,r)

0 .

The following result is proved in Myerson (1981).

Lemma 1.37. If r ≡ 1 (mod 4), we have

(0,0)(2,r) =
r−5

4
, (0,1)(2,r) = (1,0)(2,r) = (1,1)(2,r) =

r−1
4

.

If r ≡ 3 (mod 4), we have

(0,1)(2,r) =
r+1

4
, (0,0)(2,r) = (1,0)(2,r) = (1,1)(2,r) =

r−3
4

.
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Cyclotomic numbers of small orders were given in Storer (1967)[p. 72, p. 79].
The period polynomials ψ(N,r)(X) are defined by

ψ(N,r)(X) =
N−1

∏
i=0

(
X−η(N,r)

i

)
.

It is known that ψ(N,r)(X) is a polynomial with integer coefficients [Myerson
(1981)]. The period polynomial ψ(N,r)(X) and its factorization were determined
for N ∈ {3,4,5,6,8,12} [Myerson (1981); Gurak (2004); Hoshi (2006)].

The Gaussian periods are also determined in the semiprimitive case and are
described in the next theorem.

Theorem 1.38 (Baumert, Mills and Ward (1982)). Assume that p is a prime,
N ≥ 2 is a positive integer, r = p2 jγ, where N|(p j +1) and j is the smallest such
positive integer. Then the Guassian periods of order N are given below:

(a) If γ, p, p j+1
N are all odd, then

η(N,r)
N/2 =

√
r−
√

r+1
N

, η(N,r)
i =−1+

√
r

N
for all i 6= N

2
.

(b) In all the other cases,

η(N,r)
0 =−(−1)γ√r+

(−1)γ√r−1
N

, η(N,r)
i =

(−1)γ√r−1
N

for all i 6= 0.

1.6 Finite Geometries

In this section, we present the basics of finite geometries, which will be employed
in subsequent chapters.

1.6.1 Projective Spaces PG(m,GF(q))

The points of the projective space (also called projective geometry) PG(m,GF(q))
are all the 1-dimensional subspaces of the vector space GF(q)m+1; the lines are
the 2-dimensional subspaces of GF(q)m+1, the planes are the 3-dimensional sub-
spaces of GF(q)m+1, and the hyperplanes are the m-dimensional subspaces of
GF(q)m+1; and incidence is the set-theoretic inclusion. The elements of the pro-
jective space PG(m,GF(q)) are the points, lines, planes, ..., and the hyperplanes.
But the space GF(q)m+1 is not an element of PG(m,GF(q)), as it contains every
other subspace and thus plays no role. The projective dimension of an element
in PG(m,GF(q)) is one less than that of the corresponding element in the vector
space GF(q)m+1.
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Theorem 1.39. The number of subspaces of GF(q)n of dimension k, where 0 ≤
k ≤ n, is equal to

(qn−1)(qn−q) · · ·(qn−qk−1)

(qk−1)(qk−q) · · ·(qk−qk−1)
.

These numbers are called Gaussian coefficients, and are denoted by
[ n

k

]
q.

Proof. The number of k-tuples (v1,v2, . . . ,vk) of k linearly independent vectors vi

in GF(q)n is
(qn−1)(qn−q) · · ·(qn−qk−1),

as vi+1 has qn−qi choices after v1,v2, . . . ,vi are chosen for all i. Note that many
such k-tuples (v1,v2, . . . ,vk) generate the same subspace. In a similar argument,
any k-dimensional subspace of GF(q)n has in total (qk−1)(qk−q) · · ·(qk−qk−1)

ordered bases. The number of subspaces of dimension k in GF(q)n is the number
of k-tuples (v1,v2, . . . ,vk) of k linearly independent vectors in GF(q)n divided by
the number of ordered bases in a k-dimensional subspace. The desired conclusion
then follows.

By definition, the (m+ 1)-tuples (ax0,ax1, . . . ,axm) with a ∈ GF(q)∗ define
the same point in PG(m,GF(q). A k-flat of the projective space PG(m,GF(q))
is the set of all those nonzero points whose coordinates satisfy m− k linearly
independent homogeneous linear equations

a1,0 x0 + · · · + a1,m xm = 0
a2,0 x0 + · · · + a2,m xm = 0
...

...
... · · ·

...
...

...
...

...
am−k,0 x0 + · · · + am−k,m xm = 0

whose coefficients ai, j ∈ GF(q). Hence the number of points in a k-flat in
PG(m,GF(q)) is [

k+1
1

]
q
=

qk+1−1
q−1

. (1.22)

An automorphism or collineation of PG(m,GF(q)) is a bijection φ from
PG(m,GF(q)) to itself such that, for U and V in PG(m,GF(q)), U ⊆ V if and
only if φ(U)⊆ φ(V ). Hence, an automorphism does not change the dimension of
an element in PG(m,GF(q)). The set of all automorphisms of PG(m,GF(q)) form
a group, called the automorphism group or collineation group of PG(m,GF(q)).
The following result is proved in Artin (1957)[Chapter II], and called the funda-
mental theorem of PG(m,GF(q)).

Theorem 1.40. Let m≥ 2. Then PΓLm+1(GF(q)) (see Section 1.8.9 for definition)
is the automorphism group of PG(m,GF(q)).
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Our objective of this subsection is to introduce the basic concepts and notation
of the projective spaces PG(m,GF(q)). We refer the reader to Lidl and Nieder-
reiter (1997)[Section 9.3] or Assmus and Key (1992a)[Section 3.2] for geometric
properties of PG(m,GF(q)).

1.6.2 Affine Spaces AG(m,GF(q))

The affine space AG(m,GF(q)) consists of all cosets x+U , of all subspaces U of
GF(q)m with incidence defined through the natural containment relation. In this
case, the dimension is the same as that of the vector space, and if the latter has
dimension k, we will call a coset of U a k-flat. Thus, the points of AG(m,GF(q))
are all the vectors in GF(q)m; the lines are all the 1-dimensional cosets (also called
1-flats); the planes are the 2-dimensional cosets (also called 2-flats); and the hyper-
planes are the (m−1)-dimensional cosets. Geometric properties of AG(m,GF(q))
could be found in Assmus and Key (1992a)[Section 3.2].

The next theorem will be useful later.

Theorem 1.41. The number of k-flats in AG(m,GF(q)) is given by qm−k
[m

k

]
q.

Proof. Let E1 and E2 be two k-dimensional subspaces of GF(q)m, and let v1 and
v2 be two vectors in GF(q)m. If E1 + v1 = E2 + v2, then E1 = E2 + v2− v1. This
means that both E2 and E2 + v2− v1 are k-dimensional subspaces. It then follows
that v2 = v1 and E1 = E2. Therefore, the number of k-flats in AG(m,GF(q))
is equal to the number of k-dimensional subspaces of GF(q)m multiplied by the
number of translates (i.e., cosets) of a given k-dimensional subspace. The desired
conclusion then follows from Theorem 1.39.

The automorphisms or collineations of AG(m,GF(q)) are the bijections φ
from AG(m,GF(q)) to itself such that, for U and V in AG(m,GF(q)), U ⊆V if and
only if φ(U)⊆ φ(V ). Hence, an automorphism does not change the dimension of
an element in AG(m,GF(q)). The set of all automorphisms of AG(m,GF(q)) form
a group, called the automorphism group or collineation group of AG(m,GF(q)).
Similarly, we have the following fundamental theorem.

Theorem 1.42. Let m≥ 2. Then ΓAm(GF(q)) (see Section 1.8.3 for its definition)
is the automorphism group of AG(m,GF(q)).

1.6.3 Projective Planes

A projective plane is a triple Π = (P ,L ,R ), where P is a set of points, L consists
of lines (e.g., sets of points), and R is a relation (also called incidence relation)
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between the points and the lines, subject to the following three conditions:

(a) Every pair of distinct lines is incident with a unique point (i.e., to every pair
of distinct lines there is one point contained in both lines, called their inter-
section, if R is the containment relation).

(b) Every pair of distinct points is incident with a unique line (i.e., to every pair
of distinct points there is exactly one line which contains both points, if R is
the containment relation).

(c) There exist four points such that no three of them are incident with a single
line (i.e., there exist four points such no three of them are on the same line, if
R is the containment relation).

By the definition of projective planes above, each line contains at least three
points and through each point there are at least three lines. When the set P of
points is finite, the projective plane is called finite. One can prove the following
result [Lidl and Niederreiter (1997)][Theorem 9.54].

Theorem 1.43. Let Π be a finite projective plane. Then

• there is an integer m≥ 2 such that every point (line) of Π is incident with exactly
m+1 lines (points) of Π; and
• Π contains exactly m2 +m+1 points (lines).

The integer m above is called the order of the finite projective plane.

Example 1.44. It follows from Theorem 1.43 that the smallest finite plane has
order m = 2, which has 7 points and 7 lines exactly. Let the set of points be
P = {1,2,3,4,5,6,7}, the 7 lines be

{1,2,3},{1,4,5},{1,6,7},{2,4,7},{2,5,6},{3,4,6},{3,7,5}
and let the incidence relation be the membership of sets. Then we have the Fano
plane depicted in Figure 1.1, where no three points in the set {1,3,5,6} are on the
same line.

For every prime power q, PG(2,GF(q)) is a projective plane, where the set
membership is the incidence relation. These projective planes will play a special
role in some subsequent chapters. We will treat them in the next section.

Given a projective plane Π=(P ,L ,R ), we define an incidence structure Π∗=
(L ,P ,R ∗), where L is the point set, P is the line set, and R ∗ is the inverse
relation. In the new incidence structure Π∗, a point ℓ is incident with a line P
with respect to R ∗ if and only if P is incident with ℓ with respect to R . It is easily
verified that Π∗ = (L ,P ,R ∗) is also a projective plane and is called the dual plane
of Π.
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Fig. 1.1 Fano plane

1.6.4 Desarguesian Projective Planes PG(2,GF(q))

Projective planes were briefly introduced in the previous section. In this section,
we treat the projective planes PG(2,GF(q)), where q is a prime power.

The projective plane PG(2,GF(q)) consists of v = q2 + q+ 1 points and the
same number of lines. Its point set P is given by

P = {(x,y,1) : x, y ∈ GF(q)}∪{(x,1,0) : x ∈ GF(q)}∪{(1,0,0)}. (1.23)

P is a largest set of points in GF(q)3 such that no two of its elements are linearly
dependent over GF(q).

The set L of lines in PG(2,GF(q)) is defined by

L = {ℓ(c,b,a) : c, b, a ∈ GF(q)}, (1.24)

where the line

ℓ(c,b,a) = {(x,y,z) ∈ P : ax+by+ cz = 0}. (1.25)

It is easily seen that L consists of the following three types of lines. The first type
is composed of the following q2 lines:

ℓ(c,b,1) = {(x,y,z) ∈ P : x+by+ cz = 0}
= {(−by− c,y,1) : y ∈ GF(q)}∪{(−b,1,0)}.

The second type has the following q lines:

ℓ(c,1,0) = {(x,y,z) ∈ P : y+ cz = 0}
= {(x,−c,1) : x ∈ GF(q)}∪{(1,0,0)}.

The third type has only one line, which is given by

ℓ(1,0,0) = {(x,y,z) ∈ P : z = 0}
= {(x,1,0) : x ∈ GF(q)}∪{(1,0,0)},

and called the line at infinity. Clearly, each line has q+1 points.
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Example 1.45. The point set P of PG(2,GF(2)) of order 2 is

{(100),(010),(110),(001),(011),(101),(111)}.
The line set L consist of the following lines:

{(001),(110),(111)},
{(010),(111),(101)},
{(110),(011),(101)},
{(111),(100),(011)},
{(001),(010),(011)},
{(001),(100),(101)},
{(110),(010),(100)}.

This is the Fano plane depicted in Example 1.44.

A_1 B_1

C_1

A_2

C_2

P R

Q

 O

B_2

Fig. 1.2 Two triangles are in perspective from a point O

Two triangles ∆A1B1C1 and ∆A2B2C2 are said to be in perspective from a point
O if the lines A1A2, B1B2 and C1C2 pass through O. Points on the same lines are
said to be collinear. For example, the triangles ∆A1B1C1 and ∆A2B2C2 in Figure
1.2 are in perspective from O.

The projective plane PG(2,GF(q)) is special due to the following property.

Theorem 1.46 (Desargues). If two triangles ∆A1B1C1 and ∆A2B2C2 in the plane
PG(2,GF(q)) are in perspective from a point O, then the intersections of the lines
A1B1 and A2B2, A1C1 and A2C2, and B1C1 and B2C2 are collinear.

Proof. The points and lines of PG(2,GF(q)) were specifically given before. It is
an easy task to verify that the desired property holds using the expressions of the
points and lines of PG(2,GF(q)). The details are left to the reader.
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The property of Theorem 1.46 is illustrated by Figure 1.2. A projective plane
is said to be Desarguesian if the property of Theorem 1.46 holds, and non-
Desarguesian otherwise. There are non-Desarguesian projective planes. Theorem
1.46 means that the projective planes PG(2,GF(q)) are Desarguesian.

1.6.5 Central Collineations and Homologies of Projective Planes

Let Π be a projective plane. A collineation or automorphism φ is a bijection from
the point set and line set to themselves that preserves incidence. Thus, it maps
point to point and line to line such that a point P is incident with a line ℓ if and
only if φ(P) is incident with φ(ℓ). All the collineations of Π form a group under
the function composition, which is denoted by Aut(Π), and called the collineation
group of Π.

Let g ∈ Aut(Π) for a projective plane Π. We say that g fixes a point P if
g(P) = P, and fixes a line if it fixes the line setwise. Denote by Fix(g) the fixed
configuration of g, i.e., the union of the set of fixed points and fixed lines. Clearly,
Fix(g) is a closed configuration, i.e., if any two points P and Q are in Fix(g), so is
the line, and dually.

The following result was proved in Hall (1959).

Theorem 1.47. In a projective plane a collineation fixes the same number of
points and lines.

It then follows from the theorem above that a group generated by a colleation
has the number of fixed points equal to the number of fixed lines.

If a collineation g fixes a line ℓ pointwise, i.e., g fixes every point on the line,
then we say that g has axis ℓ. If g fixes a point P linewise, i.e., g fixes every line
with which P is incident, we say that g has center P. If g 6= 1, then it is known that
it has at most one center and one axis, else it will fix the whole plane [Ionin and
Shrikhande (2006)][p. 75]. A collineation of a projective plane is called a central
collineation if it has both an axis and a center. The identity element is a central
collineation, with any point permissible as a center and any line permissible as an
axis. For any other central collineation, there is a unique center and unique axis.

Let g 6= 1 have axis ℓ and center P, i.e., g is a central collineation. Then g is
an elation if P is incident with ℓ, and a homology otherwise. Figure 1.3 gives a
pictorial illustration of an elation and homology.

Example 1.48. Consider the following collineation g of PG(2,GF(q)) defined by

g((x,y,z)) = (x,y,az),
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P

center

axis l 

homology

P

center

axis elation

Fig. 1.3 Elation and homology

where a∈GF(q)\{0,1}. Using the point set and line set defined in Section 1.6.4,
one can verify that g has the following set of fixed points

{(a,1,0) : a ∈ GF(q)}∪{(1,0,0)}.
The set of fixed lines is

{ℓ(0,b,1) : b ∈ GF(q)}∪{ℓ(1,0,0)}. (1.26)
Note that g fixes every point in the line ℓ(1,0,0). Hence, g has axis ℓ(1,0,0). Since all
the fixed lines in (1.26) do not meet in the same point, g does not have a center.

Example 1.49. Consider the following collineation g of PG(2,GF(q)) defined by
g((x,y,z)) = (x+az,y,z),

where a∈GF(q)\{0,1}. Using the point set and line set defined in Section 1.6.4,
one can verify that g has the following set of fixed points

ℓ(1,0,0) = {(a,1,0) : a ∈ GF(q)}∪{(1,0,0)}.
Hence, g has axis ℓ(1,0,0). The set of fixed lines is

{ℓ(c,1,0) : b ∈ GF(q)}∪{ℓ(1,0,0)}. (1.27)
Since (1,0,0) is on each of the fixed lines in (1.27), g has center (1,0,0). Clearly,
the center (1,0,0) is on the axis. Notice that g 6= 1. We deduce that g is an elation.

A line ℓ is called a translation line if for all P incident with ℓ and every pair
of distinct points Q and R, where Q,R,P are collinear and Q,R are not on ℓ, there
exists an elation g with center P and axis ℓ such that g(Q) = R.

If a projective plane Π has a translation line, then Π is called a translation
plane. The projective plane PG(2,GF(q)) is a translation plane, where every line
is a translation line.
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1.6.6 Affine Planes

An affine plane is a triple Π = (P ,L ,R ), where P is a set of points, L consists of
lines (e.g., sets of points), and R is an incidence relation between the points and
the lines such that

(a) every pair of distinct points is incident with a unique line;
(b) every point p ∈ P not on a line L ∈ L lies on a unique line M ∈ L which does

not intersect L; and
(c) there exist four points such that no three of them are incident with a single

line.

Example 1.50. Let P = GF(q)2 be the set of points. For each (a,b,c) ∈ GF(q)3

with (a,b) 6= (0,0), we define a line

L(a,b,c) = {(x,y) : ax+by+ c = 0}.

Note that two different triples (a,b,c) may define the same line. Let L = {L(a,b,c) :
(a,b,c) ∈ GF(q)3}, which does not contain repeated lines. A point p ∈ P is inci-
dent with a line L∈L if and only if p∈ L. Then it is easy to prove that (P ,L ,R ) is
an affine plane, denoted by AG(2,GF(q)), and each line of AG(2,GF(q)) contains
exactly q points.

Two lines ℓ and m in an affine plane Π = (P ,B,R ) are called parallel if ℓ= m
or no point is incident with both ℓ and m. This relation on the set of lines of Π
is called the parallelism, and is an equivalence relation. Hence, B is partitioned
into equivalence classes under this equivalence relation. Each equivalence class
is called a parallel class.

The following is a basic result about finite affine planes [Ionin and Shrikhande
(2006)][p. 63].

Theorem 1.51. For any finite affine plane Π, there is an integer n ≥ 2 such that
every line is incident with exactly n points, every point is incident with exactly
n+1 lines, and Π has exactly n2 points, n2 +n lines, and n+1 parallel classes.

The integer n in Theorem 1.51 is called the order of the affine plane Π.
One can construct a projective plane from an affine plane by adding a line to it.

Conversely, one can obtain an affine plane from any projective plane by deleting
one line and all the points on it. Points on a line are said to be collinear.

Theorem 1.52. Let Π = (P ,L ,R ) be a projective plane, where L = {ℓi : i ∈ I}
and I is an index set, each line is a set of points in P , and R is the set membership
relation. Take any h ∈ I. Define then P ′ = P \ ℓh and ℓ′i = ℓi \ ℓh for all i 6= h. Put
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L ′ = {ℓ′i : i ∈ I \ {h}}. Define an incidence relation R ′ for the points in P ′ and
the lines in L ′ as follows. A point P in P ′ is incidence with ℓ′i with respect to R ′ if
and only if it is incident with ℓi with respect to R in Π. Then Π′ = (P ′,L ′,R ′) is
an affine plane.

Proof. Let P and Q be two distinct points in P ′. If P and Q are incident with both
ℓ′i and ℓ′j with respect to R ′, by definition they are incident with both ℓi and ℓ j

with respect to R . It then follows from the second axiom of projective planes that
i = j. So the first axiom of affine planes holds.

We now consider the second axiom of affine planes. Let ℓ′i be a line in L ′ and
let P ∈ P ′ be a point not incident with ℓ′i with respect to R ′. Since P ∈ P ′, P is
not incident with ℓi with respect to R . By definition, ℓi = ℓ′i∪{Q} for some point
Q ∈ ℓh. By the axioms of projective planes, this point Q is unique. Therefore,
P and Q are distinct. It follows from the second axiom of projective planes that
{P,Q} is incident with a unique line ℓ j ∈ L , which is obviously different from ℓi.
By the first axiom of projective planes, ℓi and ℓ j are incident with the unique point
Q. Consequently,

ℓ′i∩ ℓ′j = /0,
where ℓ′j = ℓ j \ {Q} is a line in L ′. This means that ℓ′j is the unique line in L ′

which contains P and is parallel to ℓi. Thus, the second axiom of affine planes
holds.

Finally, we verify the third axiom of affine planes. By the third axiom of
projective planes, there are four points P,Q,R,S in P such that no three of them
are incident with any line in L . If all of them are not incident with ℓh, then they
are in P ′ such that no three of them are incident with a line in L ′. Otherwise, at
least one of P,Q,R,S is incident with ℓh and at least two of them are not incident
with ℓh. Without loss of generality, assume that P and Q are not incident with ℓh,
but R is incident with ℓh. Let ℓi be the unique line in L that is incident with both
P and R, and ℓ j the unique line in L that is incident with both Q and R. Then
ℓ′i = ℓi \{R} and ℓ′j = ℓ j \{R} are two distinct lines in L ′, which are parallel. Take
two points in ℓ′i and two points in ℓ′j. The four points are the desired ones that
fulfil the third axiom of affine planes.

The following example illustrates Theorem 1.52 and its proof.

Example 1.53. Consider the Fano plane in Example 1.44. After deleting the last
line {3,7,5} and the points on the line from the point set and all lines in the Fano
plane, we obtain an affine plane (P ′,L ′,R ′), where R ′ is the membership relation,
P ′ = {1,2,4,6} and

L ′ = {{1,2},{1,4},{1,6},{2,4},{2,6},{4,6}}.
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These six lines in L ′ are divided into the following three parallel classes

{{1,2},{4,6}},{{1,4},{2,6}},{{1,6},{2,4}},

where the lines in each parallel class are pairwise parallel (i.e., disjoint). Further,
each parallel class is a partition of the point set P ′.

The following theorem shows how to obtain a projective plane from an affine
plane by adding a line.

Theorem 1.54. Let Π = (P ,L ,R ) be an affine plane, where each line is a set of
points and R is the set membership relation. Partition the lines in L into parallel
classes as

L =
∪
i∈I

Li,

where I is an index set, and the lines in each Li are parallel (i.e., disjoint). Then
associate each parallel class Li with a new point Qi 6∈ P , where the elements in
{Qi : i ∈ I} are pairwise distinct. Put

P = P ∪{Qi : i ∈ I},

L =

(∪
i∈I

{ℓ∪{Qi} : ℓ ∈ Li}

)∪
{Qi : i ∈ I}.

Then Π = (P ,L ,R ) is a projective plane.

Proof. Note that the new line added to the original affine plane is q := {Qi : i∈ I},
and the added new points are Qi.

We first check the first axiom of projective planes. Any line ℓ∪{Qi} meets
the new line q at the unique point Qi. Consider now two distinct lines ℓ∪{Qi}
and ℓ′ ∪{Qi′} in L . If i = i′, then ℓ and ℓ′ must be in the same parallel class Li,
and are thus disjoint. In this case, ℓ∪{Qi} and ℓ′∪{Qi′} meet at the unique point
Qi. If i 6= i′, then ℓ and ℓ′ must be in two different parallel classes, and meet in
a unique point P ∈ P . Consequently, ℓ∪{Qi} and ℓ′ ∪{Qi′} meet at the unique
point P. Hence, the first axiom of projective planes holds.

We then verify the second axiom of projective planes. By definition, any pair
of distinct points Qi and Q j are only on the new line q. Consider now two old
points P and P′ in P . By the first axiom of affine planes, they are on a unique line
ℓ in L , and are hence on the unique line ℓ∪{Qi} in L , where ℓ ∈ Li. Consider
then a point P ∈ P and a point Qi. Both P and Qi can be only on some lines in the
set

{ℓ∪{Qi} : ℓ ∈ Li}.
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Note that each parallel class is a partition of the point set P . There is exactly one
line ℓ ∈ L containing P. Therefore, ℓ∪{Qi} is the unique line in L containing P.
Thus, the second axiom of projective planes holds.

Finally, we consider the third axiom of projective planes. By the third axiom
of affine planes, there are four points P1,P2,P3,P4 in P such that no three of them
are on the same line in L . If they are on two lines ℓ and ℓ′ in L , then each of the
two lines contains two of the four points. If ℓ and ℓ′ are parallel, then they are on
two distinct lines meeting at a point Qi. Hence, no three of P1,P2,P3,P4 are on the
same line in L . If ℓ and ℓ′ meet at a point P, then P 6∈ {P1,P2,P3,P4}. It is then
easy to see that no three of P1,P2,P3,P4 are on the same line in L . If P1,P2,P3,P4

are on at least three lines in L , then it is straightforward that no three of them are
the same line in L .

The projective plane Π obtained from an affine plane Π is called the projective
completion of the affine plane. The following example explains Theorem 1.54 and
its proof.

Example 1.55. Consider the affine plane (P ′,L ′,R ′) in Example 1.53, where R ′

is the set membership relation, P ′ = {1,2,4,6} and

L ′ = {{1,2},{1,4},{1,6},{2,4},{2,6},{4,6}}.

We now partition the lines in L ′ into the following parallel classes L ′ = ∪i∈IL ′i ,
where the index set I = {3,5,7} and

L ′3 = {{1,2},{4,6}},L ′5 = {{1,4},{2,6}},L ′7 = {{1,6},{2,4}}.

Finally, associate each parallel class L ′i with the new point i in Q := {3,5,7}.
Then the incidence structure (P ′,L ′,R ′) becomes the Fano projective plane in
Example 1.44.

1.7 Basics of Group Actions

In this monograph, basics of group actions are required. The purpose of this
section is to introduce concepts and fundamental results of group actions. Proofs
of the results presented in this section can be found in Aschbacher (2000) or Shult
and Surowski (2015)[Chapter 4].

In group theory, an elementary abelian group is a finite abelian group, where
every nonidentity element has order p, where p is a prime. By the classification of
finitely generated abelian groups, every elementary abelian group must be of the
form (Zn

p,+) for n being a nonnegative integer. Here and hereafter Zm denotes
the ring of integers modulo m.
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Example 1.56. The elementary abelian group (Z2
2,+) has four elements

{(0,0),(0,1),(1,0),(1,1)}. Addition is performed componentwise, taking the re-
sult modulo 2. For instance, (1,0)+(1,1) = (0,1).

The symmetric group on a finite set S, denoted Sym(S), is the group whose
elements are all permutations on S and whose group operation is that of function
composition. When S = {1,2, . . . ,n}, the symmetric group on S is denoted by
Symn or Sn.

An action of a group A on a set S is a permutation πa : S→ S, for each a ∈ A,
such that the following two conditions are met:

(a) (Identity) πe is the identity, i.e., πe(s) = s for all s ∈ S, where e is the identity
of A.

(b) (Compatibility) for every a1 and a2 in A, πa1 ◦πa2 = πa1a2 , where ◦ stands for
function composition.

Example 1.57. Let Symn act on S = {1,2, . . . ,n} in the natural way, i.e., πσ(i) =
σ(i) for all i ∈ S, where σ ∈ Symn.

Example 1.58. Any group A acts on itself by left multiplication functions.

A group A may act on a set S in many ways. For simplicity, we get rid of the
notation πa and write πa(s) as a · s or as. With this notation, the two conditions
above become the following:

(a) (Identity) For each s ∈ S, e · s = s, where e is the identity of A.
(b) (Compatibility) For every a1 and a2 in A and s ∈ S, a1 · (a2 · s) = (a1a2) · s.

Let a group A act on a set S. The kernel of the action is the set

ker(A,S) = {a ∈ A : a · s = s for all s ∈ S}.

It is easy to prove that ker(A,S) is a normal subgroup of A.
Group actions can be classified into different types. A group action of A on S

is called

• faithful if different elements of A act on S in different ways, i.e., when a1 6= a2,
there is an s ∈ S such that a1 · s 6= a2 · s, i.e., ker(A,S) = {e};
• transitive if for any s1,s2 in S there exists an a ∈ A such that a · s1 = s2;
• free (or semiregular) if, given a1,a2 in A, the existence of an s ∈ S with a1 · s =

a2 · s implies that a1 = a2, i.e., only the identity element of A has a fixed point;
• regular (or simply transitive or sharply transitive) if it is both transitive and

free, i.e., it is transitive and the only permutation in A having a fixed point is the
identity permutation.
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Example 1.59. The action of a group A on itself is faithful, as different elements
send the identity element e to different elements.

Example 1.60. Let R denote the set of all real numbers, and let GLn(R) be the set
of all n×n invertible matrices over R. Then GLn(R) is a group under the matrix
multiplication, and is called the general linear group of degree n.

This group acts on the n-dimensional vector space Rn as follows:

A ·x = Ax

where Ax means the multiplication of the matrix A with the n× 1 vector x ∈ Rn,
and A ∈ GLn(R). The axioms of a group action are properties of matrix-vector
multiplication. It is easily seen that this group action is not transitive, not free, not
regular, but faithful.

Let A act on S. The orbit of an element s ∈ S is defined by

Orbs = {a · s : a ∈ A} ⊆ S

and the stabilizer of s ∈ S is

Stabs = {a ∈ A : a · s = s} ⊆ A.

Example 1.61. Let A be a group, and let A act on itself as a · s = asa−1 for all a
and s in A. Then Orbs = {asa−1 : a ∈ A}, which is called the conjugate class of s.
The stabilizer Stabs = {a ∈ A : as = sa}, which is referred to as the centralizer of
s.

The following theorem is classical and can be easily proved.

Theorem 1.62. Let A act on S. Then the following statements hold:

(a) Different orbits are disjoint.
(b) For each s ∈ S, Stabs is a subgroup of A and Staba·s = aStabsa−1.
(c) a · s = a′ · s if and only if a and a′ lie in the same left coset of Stabs. In

particular, the length of the orbit of s is given by

|Orbs|= [A : Stabs] = |A|/|Stabs|.

As corollaries of Theorem 1.62, we have the following.

Corollary 1.63. Let A act on S. Then the length of every orbit divides the size
of A. In addition, points in a common orbit have conjugate stabilizers, and in
particular the size of the stabilizer is the same for all points in an orbit.
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Corollary 1.64. Let A act on S, where A and S are finite. Let the different orbits
of S be represented by s1,s2, . . . ,st . Then

|S|=
t

∑
i=1
|Orbsi |=

t

∑
i=1

[A : Stabsi ].

In a group action of A on S, the length of an orbit divides |A|, but the number
of orbits usually does not divide |A|. There is an interesting relation between the
number of orbits and the group action as follows.

Lemma 1.65 (Burnside’s lemma). Let a finite group A act on a finite set S with r
orbits. Then r is the average number of fixed points of the elements of the group:

r =
1
|A| ∑a∈A

|Fixa(S)|,

where Fixa(S) = {s ∈ S : a · s = s} is the set of elements of S fixed by a.

Let S be a set and let t be a positive integer. We use
(S

t

)
to denote the set

of t-subsets of S, and St to denote the set of ordered t-tuples of S. Let A act
on S. Then A acts on both

(S
t

)
and St in the natural way as follows. For any

{s1,s2, . . . ,st} ∈
(S

t

)
and a ∈ A, a acts on this subset by

a · {s1,s2, . . . ,st}= {a · s1,a · s2, . . . ,a · st}.

For any (s1,s2, . . . ,st) ∈ St and a ∈ A, a acts on this ordered t-tuple by

a · (s1,s2, . . . ,st) = (a · s1,a · s2, . . . ,a · st).

Let S(t) denote the set of all t-tuples of t distinct elements of S. Hence, S(t) is a
subset of St . Clearly, A acts on S(t) in the same natural way if A acts on S. We say
that A is t-transitive on S if A acts on S(t) transitively, and A is sharply t-transitive
on S if the action of A on S(t) is sharply transitive. We say that A is t-homogeneous
on S if A acts on

(S
t

)
transitively. If the action of A on S is t-transitive, it must

be t-homogeneous, but the converse may not be true. By definition, 1-transitivity
means the normal transitivity defined earlier. In the next section, we will deal with
specific types of group actions with various transitivity.

Let a finite group A act on a finite set S. It is easily seen that A is isomorphic to
a subgroup of Sym(S). Hence, every group action is a permutation group action.
The order of A is defined to be |A|, and its degree is defined to be |S|.

The following theorem documents basic properties of the multi-transitivity of
group actions.

Theorem 1.66. Let A be a group acting on S and let n = |S|, i.e., the degree of A.
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(a) If A is t-transitive and t > 1, then A is also (t−1)-transitive.
(b) If A is t-transitive, then |A| divides n(n−1) · · ·(n− t +1).

Proof. Left to the reader.

Theorem 1.67. The symmetric group Sym(S) is t-transitive on S for all positive
integer t ≤ |S|. If A ≤ Symn, i.e., A is a subgroup of the symmetric group Symn,
then A is (n−2)-transitive if and only if An ≤ A, where An is the alternating group.

Proof. Left to the reader.

1.8 Permutation Groups and Their Actions

The purpose of this section is to introduce several special permutation groups
and their actions. These groups together with their actions will play a vital role
in analysing linear codes and constructing certain combinatorial designs in later
chapters.

1.8.1 Semilinear Mappings of GF(q)m

Let q = ps, where p is a prime and s is a positive integer. Define σi(u) = upi
for all

u ∈ GF(q), where 0 ≤ i ≤ s−1. It is easily seen that σi is a one-to-one mapping
from GF(q) to GF(q), and satisfies the following:

(1) σi(u+ v) = σi(u)+σi(v) for all u and v in GF(q).
(2) σi(uv) = σi(u)σi(v) for all u and v in GF(q).
(3) σi(u) = u for all u ∈ GF(p).

These σi are all the automorphisms of GF(q). σ1 is referred to as the Frobenius
automorphism, and generates all others.

Let m be a positive integer. Each vector in GF(q)m is viewed as an m× 1
column vector. We now define a mapping from GF(q)m to GF(q)m by

τi((u1,u2, . . . ,um)
T ) =

(
upi

1 ,upi

2 , . . . ,upi

m

)T
, (1.28)

where u = (u1,u2, . . . ,um)
T ∈ GF(q)m, T denotes the transpose of a vector, and

0≤ i≤ s−1. It is straightforward to verify the following:

(a) τi(u+ v) = τi(u)+ τi(v) for all u and v in GF(q)m.
(b) τi(au) = apiτi(u) for all u ∈ GF(q)m and a ∈ GF(q).



November 17, 2021 14:14 ws-book9x6 Designs from Linear Codes designscodes page 37

Mathematical Foundations 37

These τi are called semilinear permutations of GF(q)m. For convenience, we
denote τi(u) by upi

, where u ∈GF(q)m. This notation will be used in some subse-
quent sections and chapters.

In general, a mapping τ from GF(q)m to itself is called semilinear if it satisfies
the following:

(a) τ(u+ v) = τ(u)+ τ(v) for all u and v in GF(q)m.
(b) τ(au)= apiτ(u) for all u∈GF(q)m and a∈GF(q) for some i with 0≤ i≤ s−1.

In addition to these τi, there are much more semilinear permutations of GF(q)m.
For each m×m invertible matrix A over GF(q), we define

τ(i,A)(u) = Aupi
, (1.29)

where u ∈ GF(q)m and 0 ≤ i ≤ s− 1. Each τ(i,A) is a semilinear permutation of
GF(q)m. All of them form a group under the function composition.

1.8.2 General Linear Groups GLm(GF(q))

As before, we view all elements in GF(q)m as m× 1 (column) vectors. Let
(GF(q)m)∗ denote the set GF(q)m \ {0}, where 0 is the zero vector in GF(q)m.
Let GLm(GF(q)) be the set of all permutations

σ(A,0) : x 7→ Ax (1.30)

of (GF(q)m)∗, where A is an m×m invertible matrix over GF(q), and x is a vector
in GF(q)m. Then GLm(GF(q)) is clearly a permutation group of (GF(q)m)∗ under
the function composition, and is called the general linear group. The identity of
this group is σ(Im,0), where Im is the m×m identity matrix over GF(q).

Theorem 1.68. Let m≥ 1 and q be any prime power. Then the order of the group
GLm(GF(q)) is

|GLm(GF(q))|=
m−1

∏
i=0

(qm−qi).

Proof. We would build an m×m invertible matrix A over GF(q). The first row
of A could be any of the qm− 1 nonzero vectors in GF(q)m. The second row of
A must be linearly independent of the first row, and has thus qm− q choices. In
general, the i-th row must be linear independent of the first i−1 rows, and thus has
qm− qi−1 choices. Then the desired conclusion follows from the multiplication
rule.
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The following conclusion is obvious.

Theorem 1.69. GL1(GF(q)) is isomorphic to the multiplicative group GF(q)∗ of
the finite field GF(q).

Theorem 1.70. The group GLm(GF(q)) is transitive on (GF(q)m)∗.

Proof. Let u and v be any two vectors in (GF(q)m)∗. By definition, both u and
v are nonzero. Then u and v can be extended into two invertible matrices U and
V , such that the first column of U and V is u and v, respectively. Let A = VU−1.
Then A is invertible and Au = v. Hence, the general linear group GLm(GF(q)) is
transitive on (GF(q)m)∗.

Theorem 1.71. Let m≥ 2. Then the general linear group GLm(GF(2)) is doubly
transitive on (GF(2)m)∗.

Proof. Since m≥ 2, (GF(2)m)∗ contains at least three elements. Let (u1,u2) and
(v1,v2) be two ordered pairs of distinct elements in (GF(2)m)∗. Since u1 and u2

are distinct, they are linearly independent over GF(2). So they can be extended
into a basis {u1,u2, . . . ,um} of GF(2)m over GF(2). Similarly, {v1,v2} can be
extended into a basis {v1,v2, . . . ,vm} of GF(2)m over GF(2). Set

U = [u1,u2, . . . ,um] and V = [v1,v2, . . . ,vm].

Then U and V are m×m invertible matrices over GF(2). Define A = VU−1. We
have then AU =V and hence

Au1 = v1 and Au2 = v2.

The desired conclusion then follows.

1.8.3 General Semilinear Groups ΓLm(GF(q))

Let q = ps, where p is a prime and s is a positive integer. As before, we view
all elements in GF(q)m as m×1 (column) vectors. Let (GF(q)m)∗ denote the set
GF(q)m \ {0}, where 0 is the zero vector in GF(q)m. Let ΓLm(GF(q)) be the set
of all permutations

σ(A,0,i) : x 7→ Axpi
(1.31)

of (GF(q)m)∗, where A is an m×m invertible matrix over GF(q), x is a vector in
GF(q)m, and 0≤ i≤ s−1. Then ΓLm(GF(q)) is obviously a permutation group of
(GF(q)m)∗ under the function composition, and is called the general semilinear
group of GF(q)m. The identity of this group is σ(Im,0,0), where Im is the m×m
identity matrix over GF(q).
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The following theorem describes basic properties of the group ΓLm(GF(q))
which are derived from those of the group GLm(GF(q)) directly.

Theorem 1.72. Let q = ps, where p is a prime and s is a positive integer.

(a) |ΓLm(GF(q))|= s|GLm(GF(q))|= s∏m−1
i=0 (qm−qi).

(b) The group ΓLm(GF(q)) is transitive on (GF(q)m)∗.
(c) Let m≥ 2. Then ΓLm(GF(2)) is doubly transitive on (GF(2)m)∗.

1.8.4 Special Linear Groups SLm(GF(q))

Let SLm(GF(q)) be the set of all permutations

σ(A,0) : x 7→ Ax (1.32)

of (GF(q)m)∗, where A is an m×m matrix over GF(q) with determinant det(A) =
1, and x is a vector in GF(q)m. Then SLm(GF(q)) is obviously a permutation
group of (GF(q)m)∗ under the function composition, and is called the special
linear group. The identity of this group is σ(Im,0), where Im is the m×m identity
matrix over GF(q). By definition, SLm(GF(q)) is a subgroup of GLm(GF(q)).

Theorem 1.73. The order of SLm(GF(q)) is
(
∏m−1

i=0 (qm−qi)
)
/(q−1).

Proof. Define a mapping from GLm(GF(q)) to GF(q)∗ by

det : σ(A,0) 7→ det(A).

This is a group homomorphism whose kernel is SLm(GF(q)). Hence, we have

GLm(GF(q))/SLm(GF(q))∼= GF(q)∗.

The desired conclusion then follows from Theorem 1.68.

Theorem 1.74. Let m≥ 2. Then SLm(GF(q)) is transitive on (GF(q)m)∗.

Proof. Let u and v be two vectors in (GF(q)m)∗. Then u and v can be extended
into two m×m invertible matrices U and V such that the first columns of U and
V are u and v, respectively. Assume that det(U) = s and det(V ) = t. Note that
m≥ 2. Multiplying the second column of U and V with s−1 and t−1, respectively,
we obtain two matrices U ′ and V ′ whose first columns are still u and v. However,
det(U ′) = det(V ′) = 1. Define A =V ′(U ′)−1. Then A is an invertible matrix with
det(A) = 1 and AU ′ =V ′. Therefore, Au = v. This completes the proof.

It is noted that the condition m ≥ 2 in Theorem 1.74 is necessary, as
SL1(GF(q)) consists of only the identity mapping.

Theorem 1.75. Let m≥ 2. Then SLm(GF(2)) is doubly transitive on (GF(2)m)∗.
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Proof. Notice that SLm(GF(2)) = GLm(GF(2)). The desired conclusion follows
from Theorem 1.71.

1.8.5 General Affine Groups GAm(GF(q))

Let GAm(GF(q)) be the set of all permutations

σ(A,b) : x 7→ Ax+b (1.33)

of GF(q)m, where A is an m×m invertible matrix over GF(q), and b is a vector in
GF(q)m. Then GAm(GF(q)) is a permutation group of GF(q)m under the function
composition, and is referred to as the general affine group. The identity of this
group is σ(Im,0), where Im is the m×m identity matrix over GF(q). By definition,
GLm(GF(q)) is a subgroup of GAm(GF(q)).

Theorem 1.76. Let m≥ 1 and q be any prime power. Then the order of the group
GAm(GF(q)) is

|GAm(GF(q))|= qm
m−1

∏
i=0

(qm−qi).

Proof. It follows from Theorem 1.68 that

|GAm(GF(q))|= qm|GLm(GF(q))|= qm
m−1

∏
i=0

(qm−qi).

Theorem 1.77. The group GAm(GF(q)) is doubly transitive on GF(q)m.

Proof. Let (u,v) and (s, t) be two ordered pairs of distinct elements in GF(q)m.
We wish to find an m×m invertible matrix A and a vector b ∈ GF(q)m such that

Au+b = s and Av+b = t,

which has a solution (A,b) if and only if

A(u− v) = s− t

has a solution A, which is invertible. Note that u−v 6= 0 and s−t 6= 0. The desired
conclusion then follows from Theorem 1.70.

Theorem 1.78. Let m ≥ 2. Then the group GAm(GF(2)) is triply transitive on
GF(2)m.
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Proof. Let (u1,v1,w1) and (u2,v2,w2) be two ordered sets of pairwise distinct
vectors in GF(2)m. We would like to find an invertible m×m matrix A and a
vector b ∈ GF(2)m such that

Au1 +b = u2, Av1 +b = v2, Aw1 +b = w2.

This is equivalent to
A(u1− v1) = u2− v2, A(u1−w1) = u2−w2, (1.34)

where u1− v1 6= 0, u2− v2 6= 0, u1−w1 6= 0, u2−w2 6= 0, u1− v1 6= u1−w1, and
u2− v2 6= u2−w2. The existence of an invertible A satisfying (1.34) is ensured
by the fact that GLm(GF(2)) is doubly transitive (see Theorem 1.71). Then the
desired b is given by b = Au1 +u2.

1.8.6 Special Affine Groups SAm(GF(q))

The special affine group SAm(GF(q)) consists of all permutations
σ(A,b) : x 7→ Ax+b (1.35)

of GF(q)m, where A is an m×m matrix over GF(q) with det(A) = 1, and b is a
vector in GF(q)m. It is a permutation group of GF(q)m under the function compo-
sition. The identity of this group is σ(Im,0), where Im is the m×m identity matrix
over GF(q).

Properties of SAm(GF(q)) are summarised in the following theorem.

Theorem 1.79.

(a) |SAm(GF(q))|= qm
(
∏m−1

i=0 (qm−qi)
)
/(q−1).

(b) Let m ≥ 2. Then SAm(GF(q)) is transitive if q > 2, and doubly transitive if
q = 2.

1.8.7 Semilinear Affine Groups ΓAm(GF(q))

Let q = ps, where p is a prime and s is a positive integer. The semilinear affine
group ΓAm(GF(q)) is composed of all permutations

σ(A,b,i) : x 7→ Axpi
+b (1.36)

of GF(q)m, where A is an m×m invertible matrix over GF(q), b is a vector in
GF(q)m, and 0≤ i≤ s−1. It is a permutation group of GF(q)m under the function
composition. The identity of this group is σ(Im,0,0), where Im is the m×m identity
matrix over GF(q). Obviously, GAm(GF(q)) is a subgroup of ΓAm(GF(q)).

The following theorem describes basic properties of the group ΓAm(GF(q))
which are derived from those of the group GAm(GF(q)) directly.

Theorem 1.80. Let q = ps, where p is a prime and s is a positive integer.
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(a) |ΓAm(GF(q))|= s|GAm(GF(q))|= sqm ∏m−1
i=0 (qm−qi).

(b) The group ΓAm(GF(q)) is 2-transitive when q > 2, and 3-transitive when
q = 2.

1.8.8 Projective General Linear Groups PGLm(GF(q))

Recall the projective space PG(m− 1,GF(q)) discussed in Section 1.6, which
consists of all r-dimensional subspaces of GF(q)m for 1 ≤ r ≤ m− 1. In this
section, we view PG(m− 1,GF(q)) as a set consisting of only its points. Since
an invertible linear transformation maps a subspace to another subspace of the
same dimension, the general linear group GLm(GF(q)) acts on PG(m−1,GF(q))
naturally.

Theorem 1.81. The kernel of the action of GLm(GF(q)) on the set of points of
PG(m−1,GF(q)) is the subgroup

Σ(m,q) = {σ(cIm,0) : c ∈ GF(q)∗} (1.37)

of GLm(GF(q)), where Im is the m×m identity matrix over GF(q).

Proof. Let σ(A,0) be an element in the kernel of this group action. By definition,
A fixes every rank 1 subspace of GF(q)m. This means that A maps every nonzero
vector x to a scalar multiple cx for some c ∈ GF(q)∗.

Let ei be the i-th basis vector, with 1 in position i and 0 elsewhere. So Aei =

ciei, so the i-th column of A is ciei. This shows that A is a diagonal matrix.
Now for i 6= j, we have

ciei + c je j = A(ei + e j) = c(ei + e j)

for some c ∈ GF(q)∗. So ci = c j = c. Thus, A is the diagonal matrix cIm.

The projective general linear group is defined to be the group induced on the
points of the projective space PG(m−1,GF(q)) by GLm(GF(q)). It then follows
from Theorem 1.81 that

PGLm(GF(q))∼= GLm(GF(q))/Σ(m,q),

where the normal subgroup Σ(m,q) was defined in (1.37) before. So one may use
this quotient group to define the projective general linear group directly. In other
words, all the permutations

σ(aA,0), a ∈ GF(q)∗

are viewed as identical and they define only one element in PGLm(GF(q)). As a
result, we arrive at the following.
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Theorem 1.82. The order of PGLm(GF(q)) is

|GLm(GF(q))|/(q−1) =

(
m−1

∏
i=0

(qm−qi)

)
/(q−1).

Notice that PGLm(GF(q)) and SLm(q) have the same order. The following
result will be very useful in many applications.

Theorem 1.83. The projective general linear group PGLm(GF(q)) is doubly tran-
sitive on PG(m−1,GF(q)) for m≥ 2.

Proof. Let (a,b) and (c,d) be two ordered pairs of points in PG(m− 1,GF(q)),
where a 6= b and c 6= d. Since a 6= b, a and b are linearly independent over GF(q).
Hence, a and b can be extended into an invertible m×m matrix U whose first and
second columns are a and b, respectively. For the same reason, c and d can be
extended into an invertible m×m matrix V whose first and second columns are c
and d, respectively. Now define A =VU−1, which is invertible. We have then

σ(A,0)(a) = Aa = c and σ(A,0)(b) = Ab = d.

Note that σ(uA,0) means the same element in PGLm(GF(q)) for all u ∈ GF(q)∗.
This proves the desired conclusion.

It is worthwhile to note that PG(m− 1,GF(2)) and (GF(2)m)∗ are identical,
and PGLm(GF(2)) = SLm(GF(2)) = GLm(GF(2)).

Theorem 1.84. The projective general linear group PGL2(GF(q)) is triply tran-
sitive on PG(1,GF(q)).

Proof. Note that PG(1,GF(q)) has q+1≥ 3 points. Let (u1,u2,u3) be a triple of
three pairwise distinct points in PG(1,GF(q)), where ui = (ai,bi)∈GF(q)2 for all
i. Then ui and u j are linearly independent over GF(q) for i 6= j. Since, the vector
space GF(q)2 has dimension 2, there must exist two elements s and t in GF(q)∗

such that u3 = su1+ tu2. Let (v1,v2,v3) be a triple of three pairwise distinct points
in PG(1,GF(q)). For the same reason, v3 = av1 +bv2 for two elements a and b in
GF(q)∗.

Let U = [u1,u2] and Vh = [hv1,v2], where h ∈ GF(q)∗. Then U and Vh are
invertible matrices over GF(q). Set Ah =VhU−1. Then Ahu1 = hv1 and Ahu2 = v2.

We have then

Ahu3 = sAhu1 + tAhu2 = hsv1 + tv2.

Note that

tb−1v3 = tab−1v1 + tv2.
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Take h = tab−1s−1. We obtain that

Ahu3 = tb−1v3.

Note that in PG(1,GF(q)), v1 and hv1 are the same point, and v3 and tb−1v3 are
the same point. This means that σ(A,0)(ui) = vi for all 1 ≤ i ≤ 3. The desired
conclusion then follows.

Now we work out a different representation of the action of PGL2(GF(q))
on PG(1,GF(q)). Note that the points of PG(1,GF(q)) can be identified by the
elements in the set {∞}∪GF(q), where

∞ =

(
1
0

)
, a =

(a
1

)
, a ∈ GF(q).

Let

A =

[
a c
b d

]
with ad−bc 6= 0. We have then

σ(A,0)

(( x
1

))
=

(
ax+ c
bx+d

)
=


( ax+c

bx+d
1

)
if bx+d 6= 0,(

1
0

)
otherwise.

Furthermore, we have

σ(A,0)

((
1
0

))
=
(a

b

)
=


(

1
0

)
if b = 0,(

ab−1

1

)
if b 6= 0.

Then the transformation induced by σ(A,0) can be written as

x 7→ ax+ c
bx+d

(1.38)

provided that we make the following conventions about ∞:

• a
0 = ∞ for all a ∈ GF(q)∗.

• ∞a+c
∞b+d = a

b .

Hence, we may redefine PGL2(GF(q)) as follows.

Theorem 1.85. The projective general linear group PGL2(GF(q)) consists of all
the following permutations of the set {∞}∪GF(q):

π(a,b,c,d)(x) =
ax+ c
bx+d

with ad− bc 6= 0, and the conventions above about ∞. The corresponding group
action is triply transitive.

Proof. The 3-transitivity of the group action follows from Theorem 1.84.
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1.8.9 Projective Semilinear Groups PΓLm(GF(q))

Let q = ps, where p is a prime and s is a positive integer. We view all elements
in PG(m−1,GF(q)) as m×1 (column) vectors. The projective semilinear group
PΓLm(GF(q)) be the set of all permutations

σ(A,0,i) : x 7→ Axpi
(1.39)

of PG(m− 1,GF(q)), where A is an m×m invertible matrix over GF(q), x is an
element in PG(m−1,GF(q)) and 0≤ i≤ s−1. It is obviously a permutation group
of PG(m−1,GF(q)) under the function composition. The identity of this group is
σ(Im,0,0), where Im is the m×m identity matrix over GF(q). Clearly, PGLm(GF(q))
is a subgroup of PΓLm(GF(q)).

The following theorem describes basic properties of the group PΓLm(GF(q))
which are derived from those of PGLm(GF(q)).

Theorem 1.86. Let q = ps, where p is a prime and s is a positive integer.

(a) |PΓLm(GF(q))|= s|PGLm(GF(q))|= s
(
∏m−1

i=0 (qm−qi)
)
/(q−1).

(b) The action of PΓLm(GF(q)) on PG(m− 1,GF(q)) is doubly transitive when
m > 2, and triply transitive when m = 2.

1.8.10 Projective Special Linear Groups PSLm(GF(q))

We now define the projective special linear group, denoted by PSLm(GF(q)),
to be the image of SLm(GF(q)) under the homomorphism from GLm(GF(q)) to
PGLm(GF(q)), i.e., the group induced on the set PG(m−1,GF(q)) consisting of
only all points in the projective space PG(m−1,GF(q)) by SLm(GF(q)). Thus,

PSLm(GF(q)) = SLm(GF(q))/(SLm(GF(q))∩Σ(m,q)), (1.40)

where the subgroup Σ(m,q) was defined in (1.37).
In other words, PSLm(GF(q)) consists of the maximum number of elements

in SLm(GF(q)) such that A 6= uB for all u ∈ GF(q)∗ for any two distinct elements
σ(A,0) and σ(B,0) in PSLm(GF(q)). To have a better understanding, we explain the
projective special linear group PSLm(GF(q)) further below.

Let det(A) = 1, then det(uA) = um and σ(A,0) ∈ SLm(GF(q)). All the elements
σ(uA,0) ∈ SLm(GF(q)) with um = 1 are clearly gcd(m,q− 1) distinct elements in
SLm(GF(q)), but they are identical and define the same element in PSLm(GF(q)).
Hence, the order of PSLm(GF(q)) is equal to |SLm(GF(q))|/gcd(m,q−1). This
explanation also proves the following.
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Theorem 1.87. |PSLm(GF(q))|= |SLm(GF(q))|/gcd(m,q−1). In particular, we
have

|PSL2(GF(q))|= q(q2−1)
2

when q is odd.

By definition, the projective special linear group PSL2(GF(q)) consists of all
the following permutations of the set {∞}∪GF(q):

π(a,b,c,d)(x) =
ax+ c
bx+d

with ad− bc = 1 and the conventions above about ∞. This group PSL2(GF(q))
will be very useful for us later.

It can be easily verified that

PSL2(GF(q)) =
{

x 7→ ax+ c
bx+d

: ac−bc is a nonzero square in GF(q)
}
.

Theorem 1.88. Let q≡±1 (mod 8) be an odd prime. Then PSL2(q) is generated
by the two permutations

S : y 7→ y+1,

T : y 7→ −1
y
.

Proof. It is left to the reader.

We will need the following theorem in subsequent chapters.

Theorem 1.89. Let m ≥ 2. Then the group PSLm(GF(q)) is doubly transitive on
PG(m−1,GF(q)).

Proof. Let (u1,u2) be an ordered set of two distinct points in PG(m−1,GF(q)).
Then they are linearly independent over GF(q). Hence, they can be extended into
an m×m invertible matrix U = [u1u2 · · ·um]. Since, au1 and u1 are the same point
in PG(m−1,GF(q)) for each a ∈ GF(q)∗ and

det([(au1)u2 · · ·um]) = udet(U),

we can always assume that det(U) = 1.
Let (v1,v2) be an ordered set of two distinct points in PG(m− 1,GF(q)).

For the same reason, they can be extended into an m× m invertible matrix
V = [v1v2 · · ·vm] with det(V ) = 1. We now put A = VU−1. Then det(A) = 1
and Aui = vi for all i. Clearly, σ(A,0) ∈ PSLm(GF(q)). This completes the proof.
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Theorem 1.90. The group PSL2(GF(q)) is triply transitive on PG(1,GF(q)) if q
is even.

Proof. Let q be even. It then follows from Theorem 1.87 that

|PSL2(GF(q))|= |SL2(GF(q))|
gcd(2,q−1)

= |SL2(GF(q))|= |PGLm(GF(q))|.

This means that PSL2(GF(q)) and PGL2(GF(q)) become the same group in this
case. The desired conclusion then follows from Theorem 1.84.

1.8.11 A Summary of the Group Actions on GF(q)m and (GF(q)m)∗

To have a whole picture of the permutation groups covered in previous sections
and their actions, we present a summary in Table 1.1, where PG(m− 1,GF(q))
denotes the set of all points in the projective space PG(m−1,GF(q)). As will be
seen later, these permutation groups and their actions will play a significant role in
analysing linear codes and combinatorial designs to be dealt with in later chapters.

Table 1.1 A summary of the permutation groups and their actions
Group Group order Object set Transitivity
ΓAm(GF(q)) sqm ∏m−1

i=0 (qm−qi) GF(q)m 2 (q = ps > 2)
3 (q = 2)

GAm(GF(q)) qm ∏m−1
i=0 (qm−qi) GF(q)m 2 (q > 2)

3 (q = 2)
SAm(GF(q)) qm(∏m−1

i=0 (qm−qi))/(q−1) GF(q)m 1 (q > 2, m≥ 2)
2 (q = 2 and m≥ 2)

ΓLm(GF(q)) s∏m−1
i=0 (qm−qi) GF(q)m \{0} 1 (q = ps > 2)

2 (m≥ 2, q = 2)
GLm(GF(q)) ∏m−1

i=0 (qm−qi) GF(q)m \{0} 1
2 (m≥ 2, q = 2)

SLm(GF(q)) ∏m−1
i=0 (qm−qi)

q−1 GF(q)m \{0} 1 (m > 1, q > 2)
2 (m > 1, q = 2)

PΓLm(GF(q)) s ∏m−1
i=0 (qm−qi)

q−1 PG(m−1,GF(q)) 2 (m≥ 3, q = ps)
3 (m = 2, q = ps)

PGLm(GF(q)) ∏m−1
i=0 (qm−qi)

q−1 PG(m−1,GF(q)) 2 (m≥ 3)
3 (m = 2)

PSLm(GF(q)) ∏m−1
i=0 (qm−qi)

(q−1)gcd(m,q−1) PG(m−1,GF(q)) 2 (m≥ 2)
3 (m = 2, q even)



November 17, 2021 14:14 ws-book9x6 Designs from Linear Codes designscodes page 48

48 Designs from Linear Codes

1.8.12 Permutation Group Actions on GF(qm) and GF(qm)∗

Note that GF(qm), as a vector space over GF(q), is isomorphic to the vector space
GF(q)m. Let {β1,β2, . . . ,βm} be a basis of GF(qm) over GF(q). Define

ϕ : u =
m

∑
i=1

uiβi 7→ (u1,u2, . . . ,um)
T ,

where T denotes the transpose of a vector and each ui belongs to GF(q). This ϕ
is the isomorphism mentioned before. Under this mapping, the preimage of each
point in PG(m−1,GF(q)) is subset of GF(qm)∗ of the form

GF(q)∗u,

where u ∈ GF(qm) \GF(q). Hence, the set PG(m− 1,GF(q)) of points can be
represented by the elements in the quotient group GF(qm)∗/GF(q)∗.

Let A be an m×m invertible matrix over GF(q), and let b be a vector in
GF(q)m. The permutation σ(A,b)(x) = Ax+ b of GF(q)m induces a permutation
of GF(qm) under a basis {γ1,γ2, . . . ,γm} of GF(qm) over GF(q) as follows:

σ(A,b)(u) = (β1,β2, . . . ,βm) ·σ(A,b)(ϕ(u)), u ∈ GF(qm),

which is the dot inner product of the two vectors. The two bases {β1,β2, . . . ,βm}
and {γ1,γ2, . . . ,γm}may be chosen to be identical or distinct. In this way, we have
the following:

(1) ΓAm(GF(q)) acts on GF(qm) as a permutation group.
(2) GAm(GF(q)) acts on GF(qm) as a permutation group.
(3) SAm(GF(q)) acts on GF(qm) as a permutation group.
(4) ΓLm(GF(q)) acts on GF(qm)∗ as a permutation group.
(5) GLm(GF(q)) acts on GF(qm)∗ as a permutation group.
(6) SLm(GF(q)) acts on GF(qm)∗ as a permutation group.
(7) PGLm(GF(q)) acts on GF(qm)∗/GF(q)∗ as a permutation group.
(8) PΓLm(GF(q)) acts on GF(qm)∗/GF(q)∗ as a permutation group.
(9) PSLm(GF(q)) acts on GF(qm)∗/GF(q)∗ as a permutation group.

The degrees of transitivity of these group actions are summarized in Table 1.2.

1.8.13 Highly Transitive Permutation Groups

The following result was stated in Dixon and Mortimer (1996)[p. 34, p. 218] and
Kantor (1972).

Theorem 1.91. Except for the Mathieu groups listed in Table 1.3 and the alternat-
ing group An and the symmetric group Sn, no finite permutation groups are more
than 3-transitive.
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Table 1.2 A summary of the permutation groups and their actions
Group Group order Object set Transitivity
ΓAm(GF(q)) sqm ∏m−1

i=0 (qm−qi) GF(qm) 2 (q = ps > 2)
3 (q = 2)

GAm(GF(q)) qm ∏m−1
i=0 (qm−qi) GF(qm) 2 (q > 2)

3 (q = 2)
SAm(GF(q)) qm(∏m−1

i=0 (qm−qi))/(q−1) GF(qm) 1 (q > 2, m≥ 2)
2 (q = 2 and m≥ 2)

ΓLm(GF(q)) s∏m−1
i=0 (qm−qi) GF(qm)∗ 1 (q = ps > 2)

2 (m≥ 2, q = 2)
GLm(GF(q)) ∏m−1

i=0 (qm−qi) GF(qm)∗ 1
2 (m≥ 2, q = 2)

SLm(GF(q)) ∏m−1
i=0 (qm−qi)

q−1 GF(qm)∗ 1 (m > 1, q > 2)
2 (m > 1, q = 2)

PΓLm(GF(q)) s ∏m−1
i=0 (qm−qi)

q−1 GF(qm)∗/GF(q)∗ 2 (m≥ 3, q = ps)
3 (m = 2, q = ps)

PGLm(GF(q)) ∏m−1
i=0 (qm−qi)

q−1 GF(qm)∗/GF(q)∗ 2 (m≥ 3)
3 (m = 2)

PSLm(GF(q)) ∏m−1
i=0 (qm−qi)

(q−1)gcd(m,q−1) GF(qm)∗/GF(q)∗ 2 (m≥ 2)
3 (m = 2, q even)

For the Mathieu groups in Table 1.3, the reader is referred to Dixon and Mor-
timer (1996)[Chapter 6] and MacWilliams and Sloane (1977)[Chapter 20] for de-
tails.

Table 1.3 The Mathieu groups
Group Degree Transitivity Order
M10 10 3 24 ·32 ·5
M11 11 4 24 ·32 ·5 ·11
M12 12 5 26 ·33 ·5 ·11
M22 22 3 27 ·32 ·5 ·7 ·11
M23 23 4 27 ·32 ·5 ·7 ·11 ·23
M24 24 5 210 ·33 ·5 ·7 ·11 ·23

1.8.14 Homogeneous Permutation Groups

A group A acting in a set S induces an action on the set
(S

t

)
of t element subsets

of S, for all t ≥ 1. The group A is t-homogeneous if its action on
(S

t

)
is transitive.

Also if A is t-homogeneous of finite degree n, then A is also (n− t)-homogeneous.
Clearly any t-transitive group is t-homogeneous. But the converse may not

be true. In the finite case, with a small number of well described exceptions, a
t-homogeneous group is actually t-transitive. We will summarize such results in
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the following theorem (see Dixon and Mortimer (1996)[p. 289]).

Theorem 1.92. Suppose that the group A is t-homogeneous on a finite set S where
2≤ t ≤ |S|/2. Then A is (t−1)-transitive and, with the following exceptions, A is
t-transitive:

(i) t = 2, SA1(GF(q))≤ A≤ ΓA1(GF(q)), q≡ 3 (mod 4);
(ii) t = 3, PSL2(GF(q))≤ A≤ PΓL2(GF(q)), |S|−1 = q≡ 3 (mod 4);

(iii) t = 3, A = GA1(GF(8)), ΓA1(GF(8)), ΓA1(GF(32));
(iv) t = 4, A = PGL2(GF(8)), PΓL2(GF(8)), PΓL2(GF(32)).

1.9 Planar Functions

1.9.1 Definitions and Properties

A function f from an abelian group (A,+) to an abelian group (B,+) is called
linear if f (x+ y) = f (x)+ f (y) for all x,y ∈ A. Hence, linear functions are group
homomorphisms. A function g : A→ B is affine if g = f +b for a linear function
f : A→ B and a constant b ∈ B.

The Hamming distance between two functions f and g from an abelian group
A to an abelian group B, denoted by dist( f ,g), is defined to be

dist( f ,g) = |{x ∈ A| f (x)−g(x) 6= 0}|.

There are different measures of nonlinearity of functions. The first measure of
nonlinearity of a function f from (A,+) to (B,+) is defined by

N f = min
l∈L

dist( f , l), (1.41)

where L denotes the set of all affine functions from (A,+) to (B,+).
The second measure of nonlinearity of a function f from (A,+) to (B,+) is

given by

Pf = max
06=a∈A

max
b∈B

|{x ∈ A : f (x+a)− f (x) = b}|
|A|

.

It is easily seen that Pf ≥ 1
|B| . If the equality is achieved, f is called a perfect

nonlinear function (PN function for short).

Example 1.93. The trace function Trqm/q(x2) from (GF(qm),+) to (GF(q),+) is
perfect nonlinear for any odd prime q.

The following result follows from the definition of perfect nonlinear functions.
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Theorem 1.94. Let f be a function from a finite abelian group (A,+) to a finite
abelian group (B,+). Then f is perfect if and only if

|{x ∈ A : f (x+a)− f (x) = b}|= |A|
|B|

(1.42)

for each nonzero element a of A and every b ∈ B.

A perfect nonlinear function from an abelian group (A,+) to an abelian group
(B,+) of the same order is called planar, i.e., ga(x) = f (x+a)− f (x) is a one-to-
one function from A to B for every nonzero a ∈ A.

Example 1.95. The function x2 from (GF(q),+) to itself is planar for any odd q.

Planar functions were introduced by Dembowski and Ostrom for constructing
affine and projective planes [Dembowski and Ostrom (1968)]. They have nice ap-
plications in cryptography, coding theory [Carlet, Ding and Yuan (2005)], combi-
natorics, and some engineering areas. We will look into some of their applications
in this monograph.

1.9.2 Some Known Planar Functions

Polynomials over GF(q) of the form ∑m−1
i, j=0 ai, jxpi+p j

are called Dembowski-
Ostrom polynomials, where ai, j ∈ GF(q) for all i and j.

The following theorem characterizes planar Dembowski-Ostrom polynomials
[Chen and Polhill (2011)].

Theorem 1.96. Let q be odd, and let f (x) be a Dembowski-Ostrom polynomial
over GF(q). Then the following are equivalent:

• f (x) is planar;
• f (x) is a two-to-one map, f (0) = 0 and f (x) 6= 0 for x 6= 0;
• there is a permutation polynomial g(x) over GF(q) such that f (x) = g(x2) for

all x ∈ GF(q). (When q≡ 3 (mod 4), g(−x) =−g(x).)

A list of planar monomials over finite fields is documented in the following
theorem.

Theorem 1.97. The function f (x) = xs from GF(pm) to GF(pm) is planar when

• s = 2; or
• s = pk +1, where m/gcd(m,k) is odd [Dembowski and Ostrom (1968)]; or
• s= (3k+1)/2, where p= 3,k is odd, and gcd(m,k) = 1 [Coulter and Matthews

(1997)].
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There are planar binomials over finite fields. Below is a class of such planar
binomials [Zha, Kyureghyan and Wang (2009)].

Theorem 1.98. Let f (x) = x1+pk+3ℓ −upk−1xpk+p3ℓ
, where

• m = 3k and k 6≡ 0 (mod 3),
• ℓ is a positive integer,
• k/gcd(k, ℓ) is odd, and
• u is a generator of GF(pm)∗.

Then f (x) is planar.

The following class of planar functions are based on Dickson polynomials of
the first kind.

Theorem 1.99. The polynomials fu(x) = x10−ux6−u2x2 over GF(3m) are planar
for all u ∈ GF(3m), where m is odd.

The planar function x10 + x6− x2 over GF(3m) was presented in Coulter and
Matthews (1997). It was extended into the whole class in Ding and Yuan (2006).
More planar monomials can be found in Bierbrauer (2010), Budaghyan and Helle-
seth (2008) and Zha and Wang (2009).

1.9.3 Planar Functions from Semifields

A semifield consists of a set K and two binary operations (+,×) : K×K→K such
that the following axioms hold.

• (K,+) is a group.
• There exists an element 1 of K distinct from zero with 1x = x1 = x for each

x ∈ K.
• For all 0 6= a,b ∈ K, there is x ∈ K such that xa = b.
• For all 0 6= a,b ∈ K, there is x ∈ K such that ax = b.
• For all a,b,c ∈ K, (a+b)c = ac+bc and c(a+b) = ca+ cb.

A semifield is a field except that associativity for multiplication may not hold. A
semifield is commutative if its multiplication is commutative. A presemifield is a
semifield except that the multiplative identity may not exist.

Example 1.100. Positive real numbers with the usual addition and multiplication
form a commutative semifield.

Example 1.101. Rational functions of the form f/g, where f and g are polyno-
mials in one variable with positive coefficients, form a commutative semifield.
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An isotopism between two semifields (F,+,∗) and (F ′,+,◦) is a triple (α,β,γ)
of additive bijections F → F ′ such that

(x∗ y)γ = xα◦ yβ, ∀x,y,z ∈ F.

If there is an isotopisim between two semifields, the two semifields are said iso-
topic. If α = β and the above equation holds, the two presemifields are called
strongly isotopic.

Commutative presemifields can be utilized to construct planar functions, as
demonstrated by the next theorem [Kantor (2003)].

Theorem 1.102. Let (K,+,×) be a finite presemifield with commutative multipli-
cation. Then the function f (x) = x× x is a planar function from (K,+) to itself.

To introduce planar monomials on GF(q2) from commutative semifields in the
sequel, we do the following preparations.

Let {1,β} be a basis of GF(q2) over GF(q). Let x = x1 + x2β, where xi ∈
GF(q). It is easily seen that

x1 =
βqx−βxq

βq−β
, x2 =

xq− x
βq−β

,

where q is a prime power.
Planar monomials on GF(q2) from the Dickson commutative semifields are

given in the following theorem, which follows from Theorem 1.102.

Theorem 1.103. Assume that q is odd. Let k be a nonsquare in K = GF(q), and
let 1 6= σ ∈ Aut(K). The Dickson semifield (K2,+,∗) has

(a,b)∗ (c,d) = (ac+ jbσdσ,ad +bc),

where j is a nonsquare in K. Different choices of j produce isotopic semifields.
The corresponding planar function from (K2,+) to (K2,+) is

f (a,b) = (a2 + j(σ(b))2,2ab),

where (a,b) ∈ K2.
They can be expressed as

x2 + j
(

σ
(

xq− x
βq−β

))2

−β2
(

xq− x
βq−β

)
,

where j is a nonsquare in GF(q), and 1 6= σ ∈ Aut(K) and Aut(K) denotes the
automorphism group of K.

Example 1.104. If we choose σ(x) = xq in Theorem 1.103, then we have the
planar functions

(βq−β)2x2 +( j−β2)(xq− x)2.
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Planar monomials from the Ganley commutative semifields are described in
the next theorem, which is deduced from Theorem 1.102.

Theorem 1.105. Assume that q = 3r, r ≥ 3 odd. Let K = GF(q). The Ganley
semifield (K2,+,∗) has

(a,b)∗ (c,d) = (ac−b9d−bd9,ad +bc+b3d3).

The planar functions on GF(q2) defined by the Ganley commutative semifields
are

(βq−β)10x2−β2(βq−β)8(xq− x)2 +β(βq−β)4(xq− x)6 +(xq− x)10.

Planar monomials from the Ganley-Cohen commutative semifields are pre-
sented in the following theorem, which follows from Theorem 1.102.

Theorem 1.106. Assume that q = 3r, r ≥ 2. Let K = GF(q), and let j ∈ K be a
nonsquare. The Ganley-Cohen semifield (K2,+,∗) has

(a,b)∗ (c,d) = (ac+ jbd + j3(bd)9,ad +bc+ j(bd)3).

The planar functions on GF(q2) defined by the Ganley-Cohen commutative
semifields are

(βq−β)18x2− ( j−β2)(βq−β)16(xq−x)2+β j(βq−β)12(xq−x)6+ j3(xq−x)18.

1.9.4 Affine Planes from Planar Functions

Planar functions were employed to construct affine planes in the seminal work
[Dembowski and Ostrom (1968)]. The following theorem documents the con-
struction.

Theorem 1.107. Let f : (A,+)→ (B,+) be a function. Define P = A×B. The
lines are the symbols L(a,b) with (a,b) ∈ A×B, together with the symbols L(c)
with c ∈ A. Incidence R is defined by

• (x,y) R L(a,b) if and only if y = f (x−a)+b; and
• (x,y) R L(c) if and only if x = c.

Then f is planar if and only if (P ,L ,R ) is an affine plane.

Each affine plane from a planar function can be extended into a projective
plane using Theorem 1.54. Consequently, planar functions can produce both affine
and projective planes.
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1.10 Almost Perfect Nonlinear and Almost Bent Functions

1.10.1 APN Functions

Recall that a function f from GF(q) to GF(q) is called perfect nonlinear (i.e.,
planar), if ga(x) = f (x+a)− f (x) is a one-to-one function from GF(q) to GF(q)
for every nonzero a ∈ GF(q). Hence, there is no perfect nonlinear function from
GF(2m) to GF(2m).

A function f from GF(q) to itself is called almost perfect nonlinear (APN),
if f (x+ a)− f (x) = b has at most 2 solutions x ∈ GF(q) for every pair (a,b) ∈
GF(q)∗×GF(q). APN functions exist on all GF(q), and have many applications
in mathematics and engineering.

The monomial xs on GF(2m) is APN for the following s:

• s = 2i +1, where gcd(i,m) = 1 (Gold function, 1968);
• s = 22i−2i +1, where gcd(i,m) = 1 (Kasami function, 1971);
• s = 2t +3, where m = 2t +1 (Welch function, 1972);
• s = 2t +2t/2−1, where m = 2t +1 and t even (Niho function 1972, Hollmann-

Xiang 2001);
• s = 2t + 2(3t+1)/2 − 1, where m = 2t + 1 and t odd (Niho function 1972,

Hollmann-Xiang 2001).

More APN functions on GF(2m) could be found in Pott (2016).
The following is a list of known APN power functions xd over GF(p)m where

p is an odd prime:

• d = 3, p > 3.
• d = pm−2, p > 2 and p≡ 2 (mod 3).
• d = (pm−3)/2, p≡ 3,7 (mod 20), pm > 7, pm 6= 27 and m is odd.
• d = (pm +1)/4+(pm−1)/2, pm ≡ 3 (mod 8).
• d = (pm +1)/4, pm ≡ 7 (mod 8).
• d = (2pm−1)/3, pm ≡ 2 (mod 3).
• d = 3m−3, p = 3 and m is odd.
• d = pℓ+2, pℓ ≡ 1 (mod 3) and m = 2ℓ.
• d = (5ℓ+1)/2, p = 5 and gcd(2m, ℓ) = 1.
•

d =

{
(3(m+1)/2−1)/2 if m≡ 3 (mod 4),
(3(m+1)/2−1)/2+(3m−1)/2 if m≡ 1 (mod 4),

where m≥ 5 and p = 3.
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•

d =

{
(3m+1−1)/8 if m≡ 3 (mod 4),
(3m+1−1)/8+(3m−1)/2 if m≡ 1 (mod 4),

where m≥ 5 and p = 3.
• d =

(
3(m+1)/4−1

)(
3(m+1)/2 +1

)
, m≡ 3 (mod 4) and p = 3.

• d = (5m−1)/4+(5(m+1)/2−1)/2, p = 5 and m is odd.

References about these APN functions could be found in Zha and Wang (2011).

1.10.2 AB Functions

For any function F from GF(2m) to GF(2m), we define

λF(a,b) = ∑
x∈GF(2m)

(−1)Tr(aF(x)+bx), a,b ∈ GF(2m).

A function F from GF(2m) to GF(2m) is called almost bent if λF(a,b) = 0, or ±
2(m+1)/2 for every pair (a,b) with a 6= 0.

Let m be odd. Known almost bent functions are the following:

• f1(x) = x2i+1, gcd(i,m) = 1 (Gold function).
• f2(x) = x22i−2i+1, gcd(i,m) = 1 (Kasami function).
• f3(x) = x2(m−1)/2+3 (Welch function).
• f4(x) = x2(m−1)/2+2(m−1)/4−1, m≡ 1 (mod 4) (Niho function).
• f5(x) = x2(m−1)/2+2(3m−1)/4−1, m≡ 3 (mod 4) (Niho function).

Hence almost bent functions over GF(2m) exist for every odd m. We will employ
almost bent functions to construct linear codes and then combinatorial designs
later.

1.11 Periodic Sequences

Both finite and periodic sequences play a very useful role in dealing with codes
derived from difference sets and other combinatorial designs. In this section, we
briefly introduce periodic sequences.

1.11.1 The Linear Span

Let λ∞ = (λi)
∞
i=0 be a sequence of period n over GF(q). The linear span (also

called linear complexity) of λ∞ is defined to be the smallest positive integer ℓ such
that there are constants c0 6= 0,c1, . . . ,cℓ ∈ GF(q) satisfying

−c0λi = c1λi−1 + c2λi−2 + · · ·+ clλi−ℓ for all i≥ ℓ.
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The polynomial c(x) = c0 + c1x+ · · ·+ cℓxℓ is called a characteristic polynomial
of λ∞. A characteristic polynomial with the smallest degree is called a minimal
polynomial of the periodic sequence λ∞. The degree of a minimal polynomial
of λ∞ is referred to as the linear span or linear complexity of this sequence. We
inform the reader that the minimal polynomial of λ∞ defined here may be the
reciprocal of the minimal polynomial defined in other references.

For periodic sequences, there are a few ways to determine their linear span
and minimal polynomials. One of them is given in the following lemma [Ding,
Xiao and Shan (1991)][Theorem 2.2].

Lemma 1.108. Let λ∞ be a sequence of period n over GF(q). The generating
polynomial of λ∞ is defined by Λn(x) = ∑n−1

i=0 λixi ∈ GF(q)[x]. Then a minimal
polynomial mλ(x) of λ∞ is given by

mλ(x) =
xn−1

gcd(xn−1,Λn(x))
; (1.43)

and the linear span Lλ of λ∞ is given by n−deg(gcd(xn−1,Λn(x))).

The other one is given in the following lemma [Antweiler and Bomer (1992)].

Lemma 1.109. Any sequence λ∞ over GF(q) of period qm− 1 has a unique ex-
pansion of the form

λt =
qm−2

∑
i=0

ciαit for all t ≥ 0,

where ci ∈GF(qm). Let the index set be I = {i : ci 6= 0}, then the minimal polyno-
mial Mλ(x) of λ∞ is

Mλ(x) = ∏
i∈I

(1−αix),

and the linear span of λ∞ is |I|.

It should be noticed that in most references the reciprocal of Mλ(x) is called
the minimal polynomial of the sequence λ∞. So Lemma 1.109 is a modified ver-
sion of the original one in Antweiler and Bomer (1992). We are interested in the
linear span of periodic sequences, as they are useful in coding theory.

1.11.2 Correlation Functions

Let χ be an additive character of GF(q), and λ∞ and γ∞ be two sequences of period
respectively N and M and P = LCM{M,N}. Then the periodic crosscorrelation
function of the two sequences is defined by

CCλ,γ(l) =
P−1

∑
i=0

χ(λi− γi+l) =
P−1

∑
i=0

χ(λi)χ(γi+l). (1.44)
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If the two sequences are identical, then P = M = N and the crosscorrelation
function is the so-called periodic autocorrelation function of λ∞ described by

ACλ(l) =
N−1

∑
i=0

χ(λi−λi+l) =
N−1

∑
i=0

χ(λi)χ(λi+l). (1.45)

If q = 2, then χ(a) = (−1)a is an additive character of GF(2), here we iden-
tify GF(2) with Z2. Then (1.44) and (1.45) are the usual crosscorrelation and
autocorrelation functions of binary sequences.

Let λ∞ be a binary sequence of period N. It is easy to prove the following.

(1) Let N ≡ 3 (mod 4). Then max1≤w≤N−1 |ACλ(w)| ≥ 1. On the other hand,
max1≤w≤N−1 |ACλ(w)| = 1 iff ACλ(w) = −1 for all w 6≡ 0 (mod N). In this
case, the sequence λ∞ is said to have ideal autocorrelation and optimal auto-
correlation.

(2) Let N ≡ 1 (mod 4). There is strong evidence that there is no binary se-
quence of period N > 13 with max1≤w≤N−1 |ACλ(w)|= 1 [Jungnickel and Pott
(1999b)]. It is then natural to consider the case max1≤w≤N−1 |ACλ(w)|= 3. In
this case ACλ(w) ∈ {1,−3} for all w 6≡ 0 (mod N).

(3) Let N ≡ 2 (mod 4). Then max1≤w≤N−1 |ACλ(w)| ≥ 2. On the other hand,
max1≤w≤N−1 |ACλ(w)| = 2 iff ACλ(w) ∈ {2,−2} for all w 6≡ 0 (mod N). In
this case, the sequence λ∞ is said to have optimal autocorrelation.

(4) Let N ≡ 0 (mod 4). If max1≤w≤N−1 |ACλ(w)| = 0, the sequence λ∞ is called
perfect. The only known perfect binary sequence up to equivalence is the
(0,0,0,1). It is conjectured that there is no perfect binary sequence of pe-
riod N ≡ 0 (mod 4) greater than 4 [Jungnickel and Pott (1999a)]. This con-
jecture is true for all N < 108900 [Jungnickel and Pott (1999a)]. Hence,
it is natural to construct binary sequences of period N ≡ 0 (mod 4) with
max1≤w≤N−1 |ACλ(w)|= 4.

Binary sequences with optimal autocorrelation have close connections with
certain combinatorial designs.

1.12 Difference Sets

Difference sets are a classical topic of combinatorics and have many applications
in both mathematics and engineering. In this section, we will present basics of
difference sets. Specific constructions of difference sets could be found in Ding
(2015a) and Beth, Jungnickel and Lenz (1999).
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1.12.1 Fundamentals of Difference Sets

In this monograph, we consider only difference sets in finite abelian groups A. We
use n to denote the order of abelian groups A that contain a difference set. We
also write the operation of an abelian group additively as +, and call the identity
element of A the zero element.

A subset D of size k in an abelian group (A,+) with order n is called an (n,k,λ)
difference set in (A,+) if the multiset {{a1−a2 : a1 ∈ A,a2 ∈ A}} contains every
nonzero element of A exactly λ times.

For convenience later, we define the difference function of a subset D of (A,+)

as

diffD(x) = |D∩ (D+ x)|, (1.46)

where D+ x = {y+ x : y ∈ D}.
In terms of the difference function, a subset D of size k in an abelian group

(A,+) with order n is called an (n,k,λ) difference set in (A,+) if the difference
function diffD(x) = λ for every nonzero x ∈ A. A difference set D in (A,+) is
called cyclic if the abelian group A is so. The order of an (n,k,λ) difference set is
defined to be k−λ.

By definition, if an (n,k,λ) difference set exists, then

k(k−1) = (n−1)λ. (1.47)

If D is an (n,k,λ) difference set in (A,+), its complement, Dc = A \D, is an
(n,n− k,n−2k+λ) difference set in (A,+).

Example 1.110. Let n = 7 and let D = {1,2,4}. Then D is a (7,3,1) difference
set in (Z7,+). Its complement, Dc = {0,3,5,6}, is a (7,4,2) difference set in
(Z7,+).

Let D be an (n,k,λ) difference set in an abelian group (A,+). We associate
D with an incidence structure D, called the development of D, by defining D =

(P ,B,R ), where P is the set of the elements in A,

B = {a+D : a ∈ A},

and the incidence R is the membership of sets. Each block a+D= {a+x : x∈D}
is called a translate of D. We say that an element a ∈ A is incident with a block
B ∈ B , denoted by aR B, if a ∈ B.

Let D be a difference set in an abelian group (A,+) and let σ ∈ Aut(A),
which denotes the automorphism group of A. Then σ(D) = {σ(d) : d ∈ D} is
also a difference set in (A,+). Furthermore, since σ(D+ a) = σ(D)+σ(a), the
automorphism σ will induce an automorphism of the development of D when
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σ(D) = D+a for some element a ∈ A. We are now ready to introduce the concept
of multipliers of difference sets.

If D is an (n,k,λ) difference set in (A,+) and µ∈Aut(A), then µ is a multiplier
of D if µ(D) = D+a for some a ∈ A. It is obvious that the set of multipliers of a
difference set D in a group A form a subgroup of Aut(A).

In some applications, we are much more interested in difference sets in
(Zn,+). The group (Z∗n,×), i.e., the group of invertible integers in Zn with the
integer multiplication, acts on the group (Zn,+) by multiplication. In this case,
ℓ ∈ Z∗n is a multiplier of a difference set D in (Zn,+) if ℓD = D+ a for some
a ∈ A, where ℓD = {ℓd mod n : d ∈ D}. Such a multiplier is called a numerical
multiplier. It is well known that Aut((Zn,+)) is isomorphic to (Z∗n,×).

Example 1.111. The set D= {1,3,4,5,9} is a (11,5,2) difference set in (Z11,+).
Its multiplier group is (Z∗11,×).

The following is a result about multipliers [Beth, Jungnickel and Lenz
(1999)][Theorem 4.4].

Theorem 1.112. Let D be an abelian (n,k,λ) difference set, and let p be a prime
dividing k−λ but not n. If p > λ, then p is a multiplier of D.

It is conjectured that Theorem 1.112 holds without the restriction p > λ, i.e.,
every prime divisor of k−λ is a multiplier.

The following result is due to Bruck-Ryser-Chowla Theorem.

Theorem 1.113. If ℓ ≡ 1,2 (mod 4), and the square part of ℓ is divisible by a
prime p≡ 3 (mod 4), then no difference set of order ℓ exists.

Studying the group of numerical multipliers is useful for proving the nonexis-
tence of abelian planar difference sets. McFarland and Rice proved the following
[McFarland and Rice (1978)].

Theorem 1.114. Let D be an abelian (n,k,λ) difference set in (A,+), and let M
be the group of numerical multipliers of D. Then there exists a translate of D that
is fixed by every element of M.

A lot of results about multipliers have been developed. The reader is referred
to Beth, Jungnickel and Lenz (1999)[Chapter VI] for further information.

Difference sets can also be characterized with group characters. For any char-
acter χ of an abelian finite group (A,+), recal that its conjugate χ̄ is defined
χ̄(a) = χ(a). For any subset D of A, we define

χ(D) = ∑
d∈D

χ(d).
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We have then the following result [Beth, Jungnickel and Lenz (1999)][Lemma
3.12].

Theorem 1.115. A subset D of a finite abelian group (A,+) of order n is an
(n,k,λ) difference set if and only if for every nontrival complex character χ of
(A,+),

|χ(D)|2 = χ(D)χ̄(D) = χ(D)χ(−D) = k−λ.

This theorem is important as it can be employed to prove the difference set
property in many cases, while other tools and methods may not work easily.

1.12.2 Divisible and Relative Difference Sets

Let (A,+) be a group of order mn and (N,+) a subgroup of A of order n. A k-
subset D of A is an (m,n,k,λ1,λ2) divisible difference set if the multiset {{d1−d2 :
d1,d2 ∈ D,d1 6= d2}} contains every nonidentity element of N exactly λ1 times
and every element of A\N exactly λ2 times. If λ1 = 0, D is called an (m,n,k,λ2)

relative difference set, and N is called the forbidden subgroup.

Example 1.116. The set D = {0,1,3} is a (4,2,3,0,1) divisible difference set
in (Z8,+), and also a relative difference set in (Z8,+) relative to the subgroup
{0,4}.

There are many references on divisible and relative difference sets. The reader
is referred to Beth, Jungnickel and Lenz (1999)[Chapter VI] for information. In
this monograph, we will not study divisible and relative difference sets, but will
need the concepts later.

1.12.3 Characteristic Sequence of Difference Sets in Zn

Let D be any subset of (Zn,+), where n ≥ 2 and n is a positive integer. The
characteristic sequence of D, denoted by s(D)∞, is a binary sequence of period n,
where

s(D)i =

{
1 if i mod n ∈ D,

0 otherwise.
(1.48)

Difference sets in (Zn,+) can be characterized with its characteristic sequence
s(D)∞ as follows.

Theorem 1.117. Let D be any subset of (Zn,+) with size k. Then D is an (n,k,λ)
difference set in (Zn,+) if and only if

ACs(D)(w) = n−4(k−λ) (1.49)
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for any nonzero w in Zn, where ACs(D)(w) is the autocorrelation function of the
periodic binary sequence s(D)∞ defined in Section 1.11.2.

It is straightforward to prove this theorem. Hence, cyclic difference sets can
be defined with the language of sequences.

The following result follows from Theorem 1.117.

Theorem 1.118. Let s(D)∞ denote the characteristic sequence of a subset D of
Zn. Let n ≡ 3 (mod 4). Then ACs(D)(w) =−1 for all w 6≡ 0 (mod n) if and only
if D is an (n,(n+1)/2,(n+1)/4) or (n,(n−1)/2,(n−3)/4) difference set in Zn.

Theorem 1.118 shows that the characteristic sequence of certain cyclic differ-
ence sets has optimal (ideal) autocorrelation.

1.12.4 Characteristic Functions of Difference Sets

Let D be any subset of an abelian group (A,+) of order n. The characteristic
function of D, denoted by ξD, is defined by

ξD(x) =
{

1 if x ∈ D,

0 otherwise.
(1.50)

Difference sets in (A,+) can be characterized with its characteristic function
ξD as follows.

Theorem 1.119. Let D be any k-subset of an abelian group (A,+) with order n.
Then D is an (n,k,λ) difference set in (A,+) if and only if

ACξD(w) := ∑
a∈A

(−1)ξD(a+w)−ξD(a) = n−4(k−λ) (1.51)

for any nonzero w in A.

It is also easy to prove this theorem. Thus, difference sets can be defined in
terms of the characteristic function ξD. In many cases, the characteristic function
of a difference set has optimum nonlinearity [Carlet and Ding (2004)].
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Linear Codes over Finite Fields

This chapter introduces the basics of linear codes over finite fields. Fundamental
results about linear codes will be summarized. Some of the results presented in
this chapter will not be proved. The reader may find out a proof of such theorems
and lemmas in Huffman and Pless (2003)[Chapters 1, 2] or work out a proof.

2.1 Linear Codes over GF(q)

As usual, let GF(q)n denote the vector space of all n-tuples over GF(q). The
vectors in GF(q)n are usually denoted by (a1,a2, . . . ,an) or (a1a2 · · ·an), where
ai ∈GF(q). The Hamming weight of a vector a∈GF(q)n is the number of nonzero
coordinates of a, and is denoted by wt(a). The Hamming distance of two vectors a
and b in GF(q)n, denoted by dist(a,b) is the Hamming weight of the difference
vector a−b. The inner product of two vectors a and b in GF(q)n, denoted by a ·b,
is defined by

a ·b = abT =
n

∑
i=1

aibi,

where bT denotes the transpose of the vector b. The two vectors a and b are
orthogonal if a ·b = 0.

An (n,M,d) code C over GF(q) is a subset of GF(q)n of cardinality M and
minimum Hamming distance d. The vectors in a code C are called codewords in
C . An [n,κ] code over GF(q) is a linear subspace of GF(q)n with dimension κ. If
the minimum Hamming distance of C is d, we say that C has parameters [n,κ,d].
It is easily seen that the minimum Hamming distance of a linear code C is equal
to the minimum nonzero Hamming weight of all codewords in C . By definition,
an [n,κ] code over GF(q) has qκ codewords. For convenience, by an (n,M,d)q

(respectively, [n,κ,d]q) code we mean an (n,M,d) (respectively, [n,κ,d]) code
over GF(q).

63
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An [n,κ,d] code over GF(q) is said to be dimension-optimal if there is no
[n,κ′,d] code over GF(q) with κ′ > κ, distance-optimal if there is no [n,κ,d′]
code over GF(q) with d′ > d, and length-optimal if there is no [n′,κ,d] code over
GF(q) with n′ < n. A linear code is optimal if it is dimension-optimal, or distance-
optimal, or length-optimal or meets a bound on linear codes. An [n,κ,d] code over
GF(q) is said to be almost optimal if an [n,κ+1,d] or [n,κ,d +1] or [n−1,κ,d]
code over GF(q) is optimal.

Let Ai denote the number of codewords of weight i in an [n,κ] code for all i
with 0 ≤ i ≤ n. The sequence (A0,A1, . . . ,An) is called the weight distribution of
C and the polynomial

A0 +A1z+A2z2 + · · ·+Anzn

is called the weight enumerator of C .
The dual code, denoted C⊥, of an [n,κ] code C over GF(q) is a linear subspace

of GF(q)n with dimension n−κ and is defined by

C⊥ = {u ∈ GF(q)n : u · c = ucT = 0 for all c ∈ C}.

The code C is said to be self-orthogonal if C ⊆ C⊥, and self-dual if C = C⊥. If C

is self-dual, then the dimension of C is n/2.
A generator matrix of an [n,κ] code over GF(q) is a κ× n matrix G whose

rows form a basis for C over GF(q). The generator matrix of the dual code C⊥

is called a parity-check matrix of C and is denoted by H. Hence, a linear code C

may be described by a generator matrix or a parity-check matrix as follows

C = {x ∈ GF(q)n : HxT = 0},

where 0 denotes the zero vector. Note that the generator matrix and the parity-
check matrix of a linear code are not unique.

Example 2.1. Take q = 2 and n = 4. Then the set

C = {(0000),(1100),(0011),(1111)} ⊂ GF(2)4

is a [4,2,2] binary code with weight enumerator 1+2z2 + z4 and weight distribu-
tion

A0 = 1,A1 = 0,A2 = 2,A3 = 0,A4 = 1.

A generator matrix of C is

G =

[
1 1 0 0
0 0 1 1

]
.

This matrix G is also a parity-check matrix of C . Hence, the code C is self-dual.
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A vector x = (x1,x2, . . . ,xn) in GF(q)n is even-like provided that ∑n
i=1 xi = 0,

and is odd-like otherwise. The weight of binary even-like vector must be even, and
that of binary odd-like vector must be odd. For an [n,κ,d] code C over GF(q),
we call the minimum weight of the even-like codewords, respectively the odd-
like codewords, the minimum even-like weight,, respectively the minimum odd-
like weight, of the code. Denote the minimum even-like weight by de and the
minimum odd-like weight by do. So d = min{de,do}.

The following theorem can be easily proved.

Theorem 2.2. Let C be an [n,κ] code over GF(q). Let C (e) be the set of all even-
like codewords in C . Then C (e) = C if C does not have odd-like codewords and
C (e) is an [n,κ−1] subcode of C otherwise.

The following theorem characterizes the minimum weight of linear codes and
its proof is trivial.

Theorem 2.3. A linear code has minimum weight d if and only if its parity-check
matrix has a set of d linearly independent columns but no set of d− 1 linearly
independent columns.

2.2 The MacWilliams Identity and Transform

Let C⊥ be the dual of an [n,κ,d] code C over GF(q). Denote by A(z) and A⊥(z)
the weight enumerators of C and C⊥, respectively. The following theorem, called
the MacWilliams Identity, shows that A(z) and A⊥(z) can be derived from each
other.

Theorem 2.4. Let C be an [n,κ,d] code over GF(q) with weight enumerator
A(z) = ∑n

i=0 Aizi and let A⊥(z) be the weight enumerator of C⊥. Then

A⊥(z) = q−κ
(

1+(q−1)z
)n

A
( 1− z

1+(q−1)z

)
.

Proof. Let χ be a nontrivial additive character of GF(q). Define a polynomial

F(u) = ∑
v∈GF(q)n

χ(u ·v)zwt(v),

where u ·v denotes the standard inner product. We have then

∑
u∈C

F(u) = ∑
u∈C

∑
v∈GF(q)n

χ(u ·v)zwt(v) = ∑
v∈GF(q)n

zwt(v) ∑
u∈C

χ(u ·v).
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Note that u ·v is always 0 if v ∈ C⊥, and takes every element in GF(q) the same
number of times when u ranges over all codewords in C if v 6∈ C⊥. As a result,

∑
u∈C

χ(u ·v) =
{
|C | if v ∈ C⊥,

0 if v 6∈ C⊥.

Therefore,

∑
u∈C

F(u) = |C |A⊥(z). (2.1)

We now extend the weight function to GF(q) by defining wt(v) = 0 if v = 0 and
wt(v) = 1 otherwise. Denote u = (u1,u2, . . . ,un) and v = (v1,v2, . . . ,vn). It then
follows from the definition of F(u) that

F(u) = ∑
(v1,v2,...,vn)∈GF(q)n

zwt(v1)+···+wt(vn)χ(u1v1 + · · ·+unvn))

= ∑
(v1,v2,...,vn)∈GF(q)n

zwt(v1)χ(u1v1)zwt(v2)χ(u2v2) · · ·zwt(vn)χ(unvn)

=
n

∏
i=1

∑
v∈GF(q)

zwt(v)χ(uiv).

Note that

1+ z ∑
b∈GF(q)∗

χ(b) = 1− z.

We have then

∑
v∈GF(q)

zwt(v)χ(uiv) =
{

1+(q−1)z if ui = 0,
1− z if ui 6= 0.

It then follows that

F(u) = (1− z)wt(u)(1+(q−1)z)n−wt(u). (2.2)

Combining (2.1) and (2.2) yields

|C |A⊥(z) = ∑
u∈C

(1− z)wt(u)(1− (q−1)z)n−wt(u)

=
n

∑
i=0

Ai(1− z)i(1− (q−1)z)n−i

=
(

1+(q−1)z
)n

A
( 1− z

1+(q−1)z

)
.

This completes the proof.



November 17, 2021 14:14 ws-book9x6 Designs from Linear Codes designscodes page 67

Linear Codes over Finite Fields 67

The weight enumerator of a code C is also given in the following homoge-
neous form

WC (x,y) = ∑
c∈C

xn−wt(c)ywt(c). (2.3)

Then the following theorem is a consequence of Theorem 2.4.

Theorem 2.5. Let C be a linear code. Then

WC⊥(x,y) =
1
|C |

WC (x+ y,x− y).

The MacWilliams Identity in Theorem 2.4 can be expressed by

A⊥j =
1
|C |

n

∑
i=0

AiPj(q,n; i), (2.4)

where Pj(q,n;x) is the Krawtchouck polynomial defined in Section 1.4.3. This
expression is rarely used.

2.3 The Pless Power Moments

The Stirling numbers S(r,v) are defined as follows. If r < v, then S(r,v) = 0.
Define S(r,r) = 1. If r > v, then define

S(r,v) =
1
v!

v

∑
i=0

(−1)v−i
(

v
i

)
ir. (2.5)

Let C be an [n,κ,d] code over GF(q). Denote by (A0,A1, . . . ,An) and
(A⊥0 ,A

⊥
1 , . . . ,A

⊥
n ) the weight distributions of C and its dual code C⊥, respectively.

The Pless power moments are given by

n

∑
j=0

jrA j =
min{n,r}

∑
j=0

(−1) jA⊥j

[
r

∑
v= j

v!S(r,v)qκ−v(q−1)v− j
(

n− j
n− v

)]
(2.6)

for r ≥ 0.
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The first four Pless power moments from (2.6) are the following:
n

∑
j=0

A j = qκ,

n

∑
j=0

jA j = qκ−1(qn−n−A⊥1 ),

n

∑
j=0

j2A j = qκ−2[(q−1)n(qn−n+1)− (2qn−q−2n+2)A⊥1 +2A⊥2 ],

n

∑
j=0

j3A j = qκ−3[(q−1)n(q2n2−2qn2 +3qn−q+n2−3n+2)

−(3q2n2−3q2n−6qn2 +12qn+q2−6q+3n2−9n+6)A⊥1
+6(qn−q−n+2)A⊥2 −6A⊥3 ].

In the binary case these power moments become the following:
n

∑
j=0

A j = 2κ,

n

∑
j=0

jA j = 2κ−1(n−A⊥1 ),

n

∑
j=0

j2A j = 2κ−2[n(n+1)−2nA⊥1 +2A⊥2 ],

n

∑
j=0

j3A j = 2κ−3[n2(n+3)− (3n2 +3n−2)A⊥1 +6nA⊥2 −6A⊥3 ].

These power moments will be very useful in subsequent chapters. Proofs of these
power moments could be found in Huffman and Pless (2003)[Section 7.3].

The Pless power moments in (2.6) can be used to prove the following result
[Huffman and Pless (2003)][p. 259].

Theorem 2.6. Let S ⊆ {1,2, . . . ,n} with |S| = s. Then the weight distributions
of C and C⊥ are uniquely determined by A⊥1 ,A

⊥
2 , . . . ,A

⊥
s−1 and the Ai with i 6∈ S.

These values can be found from the first s equations in (2.6).

2.4 Punctured Codes of a Linear Code

Given an [n,κ,d] code C over GF(q), we can puncture it by deleting the coordinate
at coordinate position i in each codeword. The resulting code is still linear and has
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length n−1. We denote the punctured code by C {i}. If G is a generator matrix for
C , then a generator matrix for C {i} is obtained from G by deleting the column at
position i (and omitting a zero or duplicate row that may occur). This fact can be
employed to prove the following theorem.

Theorem 2.7. Let C be an [n,κ,d] code over GF(q), and let C {i} denote the code
obtained by puncturing C at coordinate position i.

(i) When d > 1, C {i} is an [n− 1,κ,d{i}] code, where d{i} = d− 1 if C has a
minimum-weight codeword with a nonzero ith coordinate and d = d{i} other-
wise.

(ii) When d = 1, C {i} is an [n− 1,κ,1] code if C has no codeword of weight
1 whose nonzero entry is in coordinate i; otherwise, if κ > 1, C {i} is an
[n−1,κ−1,d{i}] code with d{i} ≥ 1.

This puncturing technique is useful in obtaining codes with new parameters
from old ones. Theorem 2.7 will be employed later.

Let T be a set of coordinate positions in C . We use C T to denote the code
obtained by puncturing C in all the coordinate positions in T . The punctured code
C T has length n−|T |, where n is the length of C .

2.5 Shortened Codes of a Linear Code

Let C be an [n,κ,d] code over GF(q) and let T be any set of t coordinate positions.
Let C (T ) be the set of codewords whose coordinates are 0 on T . Then C (T ) is a
subcode of C . We now puncture C (T ) on T , and obtain a linear code over GF(q)
with length n− t, which is called a shortened code of C , and is denoted by CT .

The following theorem documents properties of the shortened code CT of C .
Its proof could be found in Huffman and Pless (2003)[Theorem 1.5.7]. We will
need this theorem in later chapters.

Theorem 2.8. Let C be an [n,κ,d] code over GF(q) and let T be any set of t
coordinates. Let C T denote the punctured code of C in all coordinates in T . Then
the following holds.

(a) (C⊥)T = (C T )⊥ and (C⊥)T = (CT )
⊥.

(b) If t < d, then C T and (C⊥)T have dimensions κ and n− t−κ, respectively.
(c) If t = d and T is the set of coordinates where a minimum weight codeword

is nonzero, then C T and (C⊥)T have dimensions κ− 1 and n− t − κ + 1,
respectively.
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2.6 Extended Code of a Linear Code

Let C be an [n,κ,d] code over GF(q). The extended code C of C is defined by

C =

{
(x1,x2, . . . ,xn,xn+1) ∈ GF(q)n+1 : (x1,x2, . . . ,xn) ∈ C with

n+1

∑
i=1

xi = 0

}
.

Let H and H denote the parity-check matrix of C and C , respectively. Then
we have the following theorem whose proof is left to the reader.

Theorem 2.9. Let C be an [n,κ,d] code over GF(q). Then C is an [n+ 1,κ,d]
linear code, where d = d or d + 1. In the binary case, d = d if d is even, and
d = d +1 otherwise.

In addition, the parity-check matrix H of C can be deduced from that of C by

H =

[
1 1
H 0

]
, (2.7)

where 1 = (1,1, . . . ,1) and 0 = (0,0, . . . ,0)T .

In subsequent chapters, we will need the following theorem.

Theorem 2.10. Let C be an [n,κ,d] binary linear code, and let C⊥ denote the

dual of C . Denote by C⊥ the extended code of C⊥, and let C⊥
⊥

denote the dual
of C⊥. Then we have the following.

(1) C⊥ has parameters [n,n−κ,d⊥], where d⊥ denotes the minimum distance of
C⊥.

(2) C⊥ has parameters [n+1,n−κ,d⊥], where d⊥ denotes the minimum distance
of C⊥, and is given by

d⊥ =

{
d⊥ if d⊥ is even,
d⊥+1 if d⊥ is odd.

(3) C⊥
⊥

has parameters [n+ 1,κ+ 1,d⊥
⊥
], where d⊥

⊥
denotes the minimum

distance of C⊥
⊥

. Furthermore, C⊥
⊥

has only even-weight codewords, and

all the nonzero weights in C⊥
⊥

are the following:

w1, w2, . . . , wt ; n+1−w1, n+1−w2, . . . , n+1−wt ; n+1,

where w1, w2, . . . , wt denote all the nonzero weights of C .

Proof. The conclusions of the first two parts are straightforward. We prove only
the conclusions of the third part below.
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Since C⊥ has length n+ 1 and dimension n− κ, the dimension of C⊥
⊥

is
κ+1. By assumption, all codes under consideration are binary. By definition, C⊥

has only even-weight codewords. Recall that C⊥ is the extended code of C⊥. By

Theorem 2.9, the generator matrix of C⊥
⊥

is given by[
1 1
G 0

]
,

where 1 = (111 · · ·1) is the all-one vector of length n, 0 = (000 · · ·0)T , which is a
column vector of length κ, and G is the generator matrix of C . Notice again that

C⊥
⊥

is binary, the desired conclusions on the weights in C⊥
⊥

follow from the

relation between the two generator matrices of the two codes C⊥
⊥

and C .

The following result will be employed in subsequent chapters. Its proof is
straightforward and left to the reader.

Theorem 2.11. Let C be an [n,κ,d] code over GF(q) with generator matrix G.
Let H denote a generator matrix of its dual C⊥ with parameters [n,n− κ,d⊥].
Then we have the following:

• The code C⊥
⊥

has parameters [n+1,κ+1] and generator matrix[
1 1
G 0

]
,

where 1 = (111 · · ·1) is the all-one vector of length n, 0 = (000 · · ·0)T , which
is a column vector of length κ.
• The code C

⊥
has parameters [n+1,n+1−κ] and generator matrix[

1 1
H 0

]
,

where 1 = (111 · · ·1) is the all-one vector of length n, 0 = (000 · · ·0)T , which
is a column vector of length n−κ.
• If 1 ∈ C , then C⊥ has generator matrix [H0] and is a subcode of C

⊥
.

2.7 Augmented Code of a Linear Code

Let C be an [n,κ,d] code over GF(q) with generator matrix G. Suppose that the
all-1 vector is not a codeword of C . Then the augmented code, denoted by C̃ , of
C is the linear code over GF(q) with generator matrix[

G
1

]
,
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where 1 denotes the all-1 vector. The augmented code has length n and dimension
κ+ 1. In general, the determination of the minimum distance of the augmented
code C̃ may require information of the complete weight distribution of the original
code C , and may be a hard problem in general. However, in the binary case (i.e.,
q = 2), it is easily seen that the minimum distance d̃ of C̃ is given by

d̃ = min{d,n−wmax},

where wmax denotes the maximum weight in C .

2.8 Automorphism Groups and Equivalences of Linear Codes

Two linear codes C1 and C2 are permutation equivalent if there is a permutation of
coordinates which sends C1 to C2. This permutation could be described employing
a permutation matrix, which is a square matrix with exactly one 1 in each row and
column and 0s elsewhere. Hence, C1 and C2 are permutation equivalent provided
there is a permutation matrix P such that G1 is a generator matrix of C1 if and
only if G1P is a generator matrix of C2. Applying a permutation P to a generator
matrix is to rearrange the columns of the generator matrix. If P is a permutation
sending C1 to C2, we write C1P = C2, where

C1P := {y : y = xP ∀x ∈ C1}.

It is straightforward to prove the following theorem.

Theorem 2.12. If C1 and C2 are permutation equivalent, then

(1) C⊥1 and C⊥2 are also permutation equivalent, and
(2) C1 and C2 have the same dimension and weight distribution.

The set of coordinate permutations that map a code C to itself forms a group,
which is referred to as the permutation automorphism group of C and denoted by
PAut(C ). If C is a code of length n, then PAut(C ) is a subgroup of the symmetric
group Symn.

A subgroup L of the symmetric group Symn is transitive, provided that for
every ordered pair (i, j), where 1 ≤ i, j ≤ n, there is a permutation ℓ ∈ L such
that ℓ(i) = j. When the group PAut(C ) is transitive, we have information on the
minimum weight of C . A proof of the following theorem can be found in Huffman
and Pless (2003)[Theorem 1.6.6].

Theorem 2.13. Let C be an [n,k,d] code.

a) Suppose that the group PAut(C ) is transitive. Then the n codes obtained from
C by puncturing C on a coordinate are permutation equivalent.
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b) Suppose that the group PAut(C ) is transitive. Then the minimum weight d of
C is its minimum odd-like weight do. Furthermore, every minimum weight
codeword of C is odd-like.

The following theorem will be needed in some subsequent chapters [Huffman
and Pless (2003)][p. 22].

Theorem 2.14. Let C , C1 and C2 be linear codes over GF(q). Then we have the
following:

(1) PAut(C ) = PAut(C⊥).
(2) If C1P = C2 for a permutation matrix P, then P−1PAut(C1)P = PAut(C2).

A monomial matrix over GF(q) is a square matrix having exactly one nonzero
element of GF(q) in each row and column. A monomial matrix M can be written
either in the form DP or the form PD1, where D and D1 are diagonal matrices and
P is a permutation matrix.

Let C1 and C2 be two linear codes of the same length over GF(q). Then C1

and C2 are monomially equivalent if there is a nomomial matrix over GF(q) such
that C2 = C1M. Monomial equivalence and permutation equivalence are precisely
the same for binary codes. If C1 and C2 are monomially equivalent, then they have
the same weight distribution.

The set of monomial matrices that map C to itself forms the group MAut(C ),
which is called the monomial automorphism group of C . Clearly, we have
PAut(C )⊆MAut(C ).

Two codes C1 and C2 are said to be equivalent if there is a monomial matrix M
and an automorphism γ such that C1 = C2Mγ. This is the most general notion of
equivalence we consider in this monograph. All three are the same if the codes are
binary; monomial equivalence and equivalence are the same if the field considered
has a prime number of elements.

The automorphism group of C , denoted by Aut(C ), is the set of maps of the
form Mγ, where M is a monomial matrix and γ is a field automorphism, that map
C to itself. In the binary case, PAut(C ), MAut(C ) and Aut(C ) are the same. If q
is a prime, MAut(C ) and Aut(C ) are identical. In general, we have

PAut(C )⊆MAut(C )⊆ Aut(C ).

The transitivity of PAut(C ) was defined earlier in this section. To define the
transitivity of MAut(C ) and Aut(C ), we introduce the following two sets:{

MAutpr(C ) = {P : DP ∈MAut(C )},
Autpr(C ) = {P : DPγ ∈ Aut(C )}, (2.8)
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where D is a diagonal matrix and P is a permutation matrix.
One can easily prove the following statements.

Theorem 2.15. Let C be a linear code of length n over GF(q). Then

1) MAutpr(C ) and Autpr(C ) are subgroups of the symmetric group Symn, and
2) PAut(C )⊆MAutpr(C )⊆ Autpr(C ).

We say that MAut(C ) (Aut(C ), respectively) is transitive if MAutpr(C )

(Autpr(C ), respectively) is transitive. The following theorem will be useful [Huff-
man and Pless (2003)][Theorem 1.7.13].

Theorem 2.16. Suppose that the group MAut(C ) is transitive. Then the minimum
weight d of C is its minimum odd-like weight do. Furthermore, every minimum
weight codeword of C is odd-like.

Theorem 2.17. Let C be an [n,k,d] code.

(1) Suppose that MAut(C ) is transitive. Then the n codes obtained from C by
puncturing C on a coordinate are monomially equivalent.

(2) Suppose that Aut(C ) is transitive. Then the n codes obtained from C by punc-
turing C on a coordinate are equivalent.

(3) Suppose that either MAut(C ) or Aut(C ) is transitive. Then the minimum
weight d of C is its minimum odd-like weight d0. Furthermore, every minimum
weight codeword of C is odd-like.

The proof of Theorem 2.17 is left to the reader. It will be seen later that the au-
tomorphism groups of linear codes will play an important role in some subsequent
chapters.

By definition, every element in Aut(C ) is of the form DPγ, where D is a diag-
onal matrix, P is a permutation matrix, and γ is an automorphism of GF(q). The
automorphism group Aut(C ) is said to be t-transitive if for every pair of t-element
ordered sets of coordinates, there is an element DPγ of the automorphism group
Aut(C ) such that its permutation part P sends the first set to the second set, i.e.,
there is a permutation P in Autpr(C ) such that P sends the first set to the second
set.

2.9 Subfield Subcodes

Let C be an [n,κ] code over GF(qt). The subfield subcode C |GF(q) of C with
respect to GF(q) is the set of codewords in C each of whose components is in
GF(q). Since C is linear over GF(qt), C |GF(q) is a linear code over GF(q).
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The dimension, denoted κq, of the subfield subcode C |GF(q) may not have an
elementary relation with that of the code C . However, we have the following lower
and upper bounds on κq [Huffman and Pless (2003)][Theorems 3.8.3 and 3.8.4].

Theorem 2.18. Let C be an [n,κ] code over GF(qt). Then C |GF(q) is an [n,κq]

code over GF(q), where κ ≥ κq ≥ n− t(n−κ). If C has a basis of codewords in
GF(q)n, then this is also a basis of C |GF(q) and C |GF(q) has dimension κ.

Example 2.19. The Hamming code H22,3 over GF(22) has parameters [21,18,3].
The subfield subcode H23,3|GF(2) is a binary [21,16,3] code with parity-check ma-
trix

H =


1 0 0 1 1 0 0 1 1 0 0 1 1 1 1 0 0 1 1 0 1
0 1 0 0 1 0 1 1 0 0 1 1 0 1 0 0 1 1 0 0 1
0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0
0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1
0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0

 .
In this case, n = 21, κ = 18, and n− t(n−κ) = 15. Hence κq = 16, which is very
close to n− t(n−κ) = 15.

The trace of a vector c = (c1,c2, . . . ,cn) ∈ GF(qt)n is defined by

Trqt/q(c) =
(
Trqt/q(c1),Trqt/q(c2), . . . ,Trqt/q(cn)

)
.

The trace code of a linear code C of length n over GF(qt) is defined by

Trqt/q(C ) =
{

Trqt/q(c) : c ∈ C
}
, (2.9)

which is a linear code of length n over GF(q). We have

dimGF(q)(Trqt/q(C )) = logq |Trqt/q(C )|
≤ logq(|C |)

= logq[(q
t)dimqt (C )]

= t dimqt (C ).

This gives an upper bound on the dimension of the trace code in terms of the
dimension of the original code.

The following is called Delsarte’s theorem, which exhibits a dual relation be-
tween subfield subcodes and trace codes. This theorem is very useful in the design
and analysis of linear codes. We will frequently get back to it later.

Theorem 2.20 (Delsarte’s theorem). Let C be a linear code of length n over
GF(qt). Then

(C |GF(q))
⊥ = Trqt/q(C

⊥).
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Proof. We first prove that
(C |GF(q))

⊥ ⊇ Trqt/q(C
⊥). (2.10)

Let a = (a1, . . . ,an) ∈ C⊥ and c = (c1, . . . ,cn) ∈ C |GF(q). Then

c ·Trqt/q(a) =
n

∑
i=1

ciTrqt/q(ai) =
n

∑
i=1

Trqt/q(ciai) = Trqt/q(c ·a) = 0.

This proves (2.10). We then prove
(C |GF(q))

⊥ ⊆ Trqt/q(C
⊥),

which is equivalent to
C |GF(q) ⊇ (Trqt/q(C

⊥))⊥. (2.11)
Note that bC⊥ ⊆ C⊥ for all b ∈ GF(qt). Let u ∈ (Trqt/q(C

⊥))⊥. Then
u ·Trqt/q(v) = 0 ∀ v ∈ C⊥.

Consequently,
u ·Trqt/q(bv) = 0 ∀ v ∈ C⊥ and ∀ b ∈ GF(qt).

Write
u = (u1, . . . ,un) ∈ GF(q)n, v = (v1, . . . ,vn) ∈ GF(qt)n.

We have then

u ·Trqt/q(bv) =
n

∑
i=1

Trqt/q(buivi) = Trqt/q

(
b

n

∑
i=1

uivi

)
= Trqt/q(bu ·v) = 0

for all b ∈ GF(qt) and all v ∈ C⊥. It then follows that
u ·v = 0 ∀ v ∈ C⊥.

Therefore, u ∈C. Hence, u ∈C|GF(q). This proves (2.11), and thus completes the
proof of the theorem.

Delsarte’s theorem says that the trace code can be determined by the subfield
subcode of its dual code. It may be combined with Theorem 2.18 to get further
information on the trace code.

The following result will be useful in subsequent chapters.

Theorem 2.21. Let C be an [n,k,d] code over GF(q), and let C [e] denote the code
over GF(qe) generated by a generator matrix of C , where e is a positive integer.
Then C [e] has parameters [n,k,d].

Proof. Clearly, the code C [e] is independent of the choice of a generator matrix of
C . Note that a generator matrix of C is also a generator matrix of C [e] and the rank
of a matrix over GF(q) is the same as the rank of the matrix over GF(qe). Hence,

dimGF(q)(C ) = dimGF(qe)(C
[e]).

Observe that a parity-check matrix H of C is also a parity-check matrix of C [e].
Since d is the largest natural number r such that each (n− k)× (r−1) submatrix
of H has rank r−1, the minimum distance of C [e] equals d.
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2.10 Bounds on the Size of Linear Codes

The purpose of this section is to collect bounds on the size of both nonlinear and
linear codes together. We will not provide a proof for the bounds, but will refer
the reader to a reference where a proof can be found.

Recall that an (n,M,d) code C over GF(q) is a code of length n with M code-
words whose minimum distance is d. The code C could be either linear or non-
linear. If C is linear, it is an [n,κ,d] code over GF(q), where κ = logq M and d
is equal to the minimum weight of C . Let Bq(n,d) (resp. Aq(n,d)) denote the
largest number of codewords in a linear (resp. arbitrary (linear or nonlinear)) code
over GF(q) of length n and minimum distance at least d. A code C of length n
over GF(q) and minimum distance at least d said to be optimal if it has Aq(n,d)
codewords (or Bq(n,d) codewords in the case that C is linear).

The following is a list of targets in the construction of error correcting codes
over GF(q).

(1) Given q, n and d, we want to find a code C over GF(q) of length n and mini-
mum distance d with the maximum number of codewords.

(2) Given q, n and M, we wish to find a code C over GF(q) of length n and size
M with the largest minimum distance.

(3) Given q, d and M, we wish to find a code C over GF(q) of minimum distance
d and size M with the shortest length n.

However, there are constraints on the parameters n, d, q and M. Such constraints
define bounds on the parameters of codes.

By definition, we have obviously that Bq(n,d) ≤ Aq(n,d) and Bq(n,d) is a
nonnegative power of q. The following theorem summarizes basic properties of
Bq(n,d) and Aq(n,d) [Huffman and Pless (2003)][Section 2.1].

Theorem 2.22. Let d > 1. Then we have the following.

(a) Aq(n,d)≤ Aq(n−1,d−1) and Bq(n,d)≤ Bq(n−1,d−1).
(b) If d is even, A2(n,d) = A2(n−1,d−1) and B2(n,d) = B2(n−1,d−1).
(c) If d is even and M = A2(n,d), then there exists a binary (n,M,d) code such

that all codewords have even weight and the distance between all pairs of
codewords is also even.

(d) Aq(n,d)≤ qAq(n−1,d) and Bq(n,d)≤ qBq(n−1,d).
(e) If d is even, A2(2d,d)≤ 4d.
(f) If d is odd, A2(2d,d)≤ 2d +2.
(g) If d is odd, A2(2d +1,d)≤ 4d +4.
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We are now ready to introduce some bounds on the parameters of codes. The
following is the Plotkin bound [Plotkin (1960)], which is useful only when d is
close to n.

Theorem 2.23 (Plotkin bound). Suppose that rn < d, where r = 1−q−1. Then

Aq(n,d)≤
⌊

d
d− rn

⌋
.

In the binary case,

A2(n,d)≤ 2
⌊

d
2d−n

⌋
provided that n < 2d.

The following theorem describes the Singleton bound [Singleton (1964)],
which is simple in format.

Theorem 2.24 (Singleton bound). Let d ≤ n. Then

Aq(n,d)≤ qn−d+1.

In particular, for any [n,κ,d] code over GF(q), we have κ≤ n−d +1.

A code meeting the Singleton bound is called maximum distance separable
(MDS for short). If C is an MDS linear code, so is C⊥. The weight distribu-
tion of MDS codes is given by the following theorem [MacWilliams and Sloane
(1977)][p. 321].

Theorem 2.25. Let C be an [n,κ] code over GF(q) with d = n−κ+1, and let the
weight enumerator of C be 1+∑n

i=d Aizi. Then

Ai =

(
n
i

)
(q−1)

i−d

∑
j=0

(−1) j
(

i−1
j

)
qi− j−d for all d ≤ i≤ n.

For linear codes over finite fields, we have the following Griesmer bound
[Griesmer (1960)], which is a generalization of the Singleton bound.

Theorem 2.26 (Griesmer bound). Let C be an [n,κ,d] code over GF(q) with
κ≥ 1. Then

n≥
κ−1

∑
i=0

⌈
d
qi

⌉
.
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For certain parameters n,κ,d and q, there may not exist an [n,κ,d] code over
GF(q) meeting the Griesmer bound. However, for some other parameters, the
Griesmer bound may be achievable. It is quite interesting to construct linear codes
meeting the Griesmer bound. There are a lot of references on this problem. It is
clear that the Simplex codes meet the Griesmer bound.

Binary linear codes over finite fields meeting the Griesmer bound have the
following nice property [Van Tilborg (1980)].

Theorem 2.27. Let C be an [n,κ,d] binary code meeting the Griesmer bound.
Then C has a basis of minimum weight codewords.

The following is the sphere packing bound, also called the Hamming bound.

Theorem 2.28 (Sphere packing bound).

Bq(n,d)≤ Aq(n,d)≤
qn

b d−1
2 c
∑

i=0

(n
i

)
(q−1)i

. (2.12)

A code meeting the sphere packing bound is said to be perfect. It is straight-
forward to verify that the Hamming code Hq,m is perfect.

For a code C over GF(q) with minimum dsitance d, we define its covering
radius by

ρ(C ) = max
x∈GF(q)n

min
c∈C

dist(x,c).

It is easily seen that ⌊
d−1

2

⌋
≤ ρ(C )

where the equality holds if and only if C is perfect.
The Gilbert bound is given in the next theorem [Gilbert (1952)].

Theorem 2.29 (Gilbert bound).

Aq(n,d)≥ Bq(n,d)≥
qn

d−1
∑

i=0

(n
i

)
(q−1)i

.

The Varshamov bound below is similar to the Gilbert bound [Varshamov
(1957)].

Theorem 2.30 (Varshamov bound).

Aq(n,d)≥ Bq(n,d)≥ qn−dlogq(1+∑d−2
i=0 (

n−1
i )(q−1)i)e.
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The next bound is the Elias bound documented in the following theorem.

Theorem 2.31 (Elias bound). Let r = 1− q−1. Suppose that w ≤ rn and w2−
2rnw+ rnd > 0. Then

Aq(n,d)≤
rnd

w2−2rnw+ rnd
· qn

w
∑

i=0

(n
i

)
(q−1)i

.

In many cases, the linear programming bounds on codes are better than those
described before. There are also a number of asymptotic bounds. The reader is
referred to Huffman and Pless (2003)[Sections 2.6 and 2.10] for details.

The following Grey-Rankin bound applies only to special binary codes and
will be needed in future chapters. A geometric proof of this bound is given in
McQuire (1997).

Theorem 2.32 (Grey-Rankin bound). Let C be a binary (n,M,d) code with
n−
√

n≤ 2d ≤ n. Suppose that C is self-complementary, i.e., c+1 ∈ C for every
c ∈ C . Then

M ≤ 8d(n−d)
n− (n−2d)2 .

2.11 Restrictions on Parameters of Linear Codes

The following theorem was developed in Delsarte (1973a), which will be useful
in subsequent chapters.

Theorem 2.33. Let C be an [n,κ,d] code over GF(q). Assume that C and C⊥

have s and s⊥ nonzero weights, respectively. Then

qn−κ ≤
s⊥

∑
i=0

(
n
i

)
(q−1)i

and

qκ ≤
s

∑
i=0

(
n
i

)
(q−1)i.

The parameter s⊥ is called the external distance of C . The reader is referred
to Delsarte (1973a) for a proof. The two inequalities above could be viewed as
duals of each other.
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2.12 Bounds on the Size of Constant Weight Codes

A (nonlinear) (n,M,d) code C over GF(q) is a constant weight code if every
codeword has the same weight. For example, the codewords of a fixed weight w
in a linear code form a constant weight code. The following theorem is easily
proved.

Theorem 2.34. If C is a constant weight (n,M,d) code with codewords of weight
w > 1, then d ≤ 2w.

Let Aq(n,d,w) denote the maximum number of codewords in a constant
weight (n,M) code over GF(q) of length n and minimum distance at least d whose
codewords have weight w. Obviously Aq(n,d,w) ≤ Aq(n,d). The following is a
list of properties of Aq(n,d,w) collected from the literature:

(a) A3 (n,3,3) =
2n(n−1)

3 for n≡ 0,1 (mod 3), n≥ 4.

(b) A3 (n,3,3) =
2n(n−1)−4

3 for n≡ 2 (mod 3), n≥ 5.

(c) A3 (n,3,4)≥ b n3−5n2+6n
3 c, if n≥ 4.

(d) A3 (n,3,w)≥ 1
2n+1

(n
w

)
2w.

(e) A3 (n,3,w)≥ 1
2n

(n
w

)
2w, if n≡ 0,1 (mod 4).

(f) A3 (2r−1,3,2r−2) = (2r−1)22r−r−2 for r ≥ 2.
(g) A3 (2r−2,3,2r−3) = (2r−1−1)22r−r−2 for r ≥ 2.
(h) A3 (2r,3,2r−1) = 22r−1 for r ≥ 2.
(i) A3

(
q, q+3

2 ,q−1
)
= q, where q is a power of odd prime.

(j) A3

(
q qm−1

q−1 ,qm−1 q+3
2 ,qm−1

)
= qm, where q is a power of odd prime.

(k) A3

(
pm +1, pm+3

2 , pm
)
= 2pm +2, where p≥ 3 is a prime.

(l) Aq(n,2,w) =
(n

w

)
(q−1)w.

(m) Aq

(
qm−1
q−1 ,qm−1,qm−1

)
= qm−1, where q is a prime power.

(n) Aq

(
q+1, q+1

2 ,q
)
≥ 2q+2, where q = pm.

(o) Aq(n,d,w) = 1 if d > 2w and 0≤ w≤ n.
(p) Aq(n,2w,w) = b n

wc.
(q) Aq (n,d,n) = Aq−1(n,d).

The following is the restricted Johnson bound for Aq(n,d,w) [Huffman and
Pless (2003)][Theorem 2.3.4].

Theorem 2.35 (Restricted Johnson bound for Aq(n,d,w)).

Aq(n,d,w)≤
⌊

n(q−1)d
qw2−2(q−1)nw+n(q−1)d

⌋
,
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provided that qw2−2(q−1)nw+n(q−1)d > 0.

This bound is restricted because of the condition qw2− 2(q− 1)nw+ n(q−
1)d > 0. The following is another bound without such a condition [Huffman and
Pless (2003)][Theorem 2.3.6].

Theorem 2.36 (Unrestricted Johnson bound for Aq(n,d,w)). If 2w ≥ d and
d ∈ {2e−1,2e}, then

Aq(n,d,w)≤
⌊

nq̂
w

⌊
(n−1)q̂

w−1

⌊
· · ·
⌊
(n−w+ e)q̂

e

⌋
· · ·
⌋⌋⌋

,

where q̂ = q−1.

2.13 Hamming and Simplex Codes, and One-Weight Codes

A parity-check matrix H(q,m) of the Hamming code H(q,m) over GF(q) is defined
by choosing for its columns a nonzero vector from each one-dimensional sub-
space of GF(q)m. In terms of finite geometry, the columns of H(q,m) are the
points of the projective geometry PG(m− 1,GF(q)). Hence H(q,m) has length
n = (qm− 1)/(q− 1) and dimension n−m. Note that no two columns of H(q,m)

are linearly dependent over GF(q). The minimum weight of H(q,m) is at least 3.
Adding two nonzero vectors from two different one-dimensional subspaces gives
a nonzero vector from a third one-dimensional space. Therefore, H(q,m) has mini-
mum weight 3.

Example 2.37. The Hamming code H(3,3) has parameters [13,10,3] and generator
matrix

G =



1 0 0 0 0 0 0 0 0 0 2 1 1
0 1 0 0 0 0 0 0 0 0 1 1 0
0 0 1 0 0 0 0 0 0 0 0 1 1
0 0 0 1 0 0 0 0 0 0 1 2 0
0 0 0 0 1 0 0 0 0 0 0 1 2
0 0 0 0 0 1 0 0 0 0 2 1 2
0 0 0 0 0 0 1 0 0 0 2 0 2
0 0 0 0 0 0 0 1 0 0 2 0 1
0 0 0 0 0 0 0 0 1 0 1 1 2
0 0 0 0 0 0 0 0 0 1 2 2 2


. (2.13)

The following theorem is interesting, as it implies that all [(qm − 1)/(q−
1),(qm− 1)/(q− 1)−m,3] codes over GF(q) have the same weight distribution
[Huffman and Pless (2003)][Theorem 1.8.2].



November 17, 2021 14:14 ws-book9x6 Designs from Linear Codes designscodes page 83

Linear Codes over Finite Fields 83

Theorem 2.38. Any [(qm−1)/(q−1),(qm−1)/(q−1)−m,3] code over GF(q)
is monomially equivalent to the Hamming code H(q,m).

The duals of the Hamming codes H(q,m) are called Simplex codes, which have
parameters [(qm−1)/(q−1),m,qm−1]. In fact, we have the following conclusion
[Huffman and Pless (2003)][Theorem 1.8.3].

Theorem 2.39. The nonzero codewords of the [(qm−1)/(q−1),m,qm−1] Simplex
codes all have weight qm−1.

Example 2.40. Let q = 3 and m = 3. Then the Simplex code has parameters
[13,3,9] and generator matrix

G =

1 0 0 1 2 0 2 0 1 1 1 2 1
0 1 0 2 2 2 1 2 2 0 0 2 1
0 0 1 2 0 2 0 1 1 1 2 1 1

 . (2.14)

Let (A0,A1, · · · ,An) be the weight distribution of an [n,k] code over GF(q).
Denote by s the Hamming weight of (A1, · · · ,An). Then C is called an s-weight
code. A one-weight code C is also called an equidistant code, as the Hamming
weight between any pair of distinct codewords in C is a constant. All one-weight
codes are known because of the following result due to Bonisoli (1984).

Theorem 2.41. Let C be a one-weight code over GF(q). Then C is monomially-
equivalent to a replication of some Simplex code over GF(q), possibly with added
0-coordinates.

In this theorem, a replication of a Simplex code means the concatenation of a
Simplex code a number of times. A short proof of Theorem 2.41 can be found in
Ward (1999).

2.14 A Trace Construction of Linear Codes

Throughout this section, let q be a prime power and let r = qm, where m is a
positive integer. Let Tr denote the trace function from GF(r) to GF(q) unless
otherwise stated.

Let D = {d1, d2, . . . , dn} ⊆ GF(r). We define a code of length n over GF(q)
by

CD = {(Tr(xd1),Tr(xd2), . . . ,Tr(xdn)) : x ∈ GF(r)}, (2.15)

and call D the defining set of this code CD. Since the trace function is linear, the
code CD is linear. By definition, the dimension of the code CD is at most m.
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Different orderings of the elements of D give different linear codes, which
are however permutation equivalent. Hence, we do not distinguish these codes
obtained by different orderings, and do not consider the ordering of the elements
in D. It should be noticed that the defining set D could be a multiset, i.e., some
elements in D may be the same.

Define for each x ∈ GF(r),

cx = (Tr(xd1), Tr(xd2), . . . , Tr(xdn)).

The Hamming weight wt(cx) of cx is n−Nx(0), where

Nx(0) = |{1≤ i≤ n : Tr(xdi) = 0}|

for each x ∈ GF(r).
It is easily seen that for any D = {d1, d2, . . . , dn} ⊆ GF(r) we have

qNx(0) =
n

∑
i=1

∑
y∈GF(q)

χ̃1(yTr(xdi))

=
n

∑
i=1

∑
y∈GF(q)

χ1(yxdi)

= n+
n

∑
i=1

∑
y∈GF(q)∗

χ1(yxdi)

= n+ ∑
y∈GF(q)∗

χ1(yxD),

where χ1 and χ̃1 are the canonical additive characters of GF(r) and GF(q), respec-
tively, aD denotes the set {ad : d ∈ D}, and χ1(S) := ∑x∈S χ1(x) for any subset S
of GF(r). Hence,

wt(cx) = n−Nx(0) =
(q−1)n−∑y∈GF(q)∗ χ1(yxD)

q
. (2.16)

Thus, the computation of the weight distribution of the code CD reduces to the
determination of the value distribution of the character sum

∑
y∈GF(q)∗

n

∑
i=1

χ1(yxdi).

This construction technique was employed many years ago for obtaining linear
codes with a few weights (see, for example, Wolfmann (1975), Ding and Nieder-
reiter (2007), Ding, Luo and Niederreiter (2008) and Ding (2009)), and is called
the defining-set construction. Recently, this trace construction of linear codes has
attracted a lot of attention, and a huge amount of linear codes with good parame-
ters have been obtained. The following theorem shows that the trace construction
is fundamental.
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Theorem 2.42. Every [n,k] code over GF(q) can be expressed as CD for some
defining set D⊆ GF(qk).

Proof. Let (g1 j,g2 j, . . . ,gk j)
T denote the jth column of a generator matrix of the

code for 1≤ j ≤ n. Define

f j(x) = (x1,x2, . . . ,xk)(g1 j,g2 j, . . . ,gk j)
T ,

where x = (x1,x2, . . . ,xk) ∈ GF(q)k. By definition, the code is the set

{( f1(x), f2(x), . . . , fn(x)) : x ∈ GF(q)k}.

Let {α1,α2, . . . ,αk} be a basis of GF(qk) over GF(q), and let {β1,β2, . . . ,βk}
denote its dual basis. For each j with 1≤ j ≤ n, define

d j =
k

∑
i=1

gi jβi

and D = {d1,d2, . . . ,dn} ⊆ GF(qk). For x = (x1,x2, . . . ,xk) ∈ GF(q)k, define

x′ =
k

∑
i=1

xiαi ∈ GF(qk).

Clearly, we have

Trqk/q(d jx′) =
k

∑
i=1

xigi j = f j(x).

Consequently,

{( f1(x), . . . , fn(x)) : x ∈ GF(q)k}
= {Trqk/q(d1x′), . . . ,Trqk/q(dnx′) : x′ ∈ GF(qk)}
= CD.

This completes the proof.

Theorem 2.42 was implied in Wolfmann (1975) and was presented and proved
in a slightly different way in Xiang (2016). Theorem 2.42 and its proof above
are refined ones in Heng, Wang and Wang (2021), and show that the defining-
set construction is equivalent to the generator-matrix construction. However, the
weight formula in (2.16) tells us that an advantage of the former over the latter is
that the former can make full use of results about character sums for determining
the parameters and weight distributions of linear codes. This advantage has been
demonstrated in a lot of recent references on the defining-set construction of linear
codes.
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2.15 Projective Linear Codes and Projective Geometry

The projective spaces PG(k−1,GF(q)) were introduced briefly in Section 1.6.1.
The objective of this section is to describe a connection between projective linear
codes over GF(q) and projective geometries over GF(q).

Let C be an [n,k,d] code over GF(q) with dual distance d⊥ ≥ 3, which is
usually called a projective code. Let G = [g1,g2, . . . ,gn] be a generator matrix of
C . Let

g j = (g1, j,g2, j, . . . ,gk, j)
T ,

where T stands for the transpose of a vector. Then SC := {g1,g2, . . . ,gn} is a
subset of the point set in PG(k−1,GF(q)).

Consider the ternary Simplex code with parameters [13,3,9] in Example 2.40.
The column vectors of the generator matrix G in (2.14) gives the following subset
of the point set in PG(2,GF(3)):
 1

0
0

 ,
 0

1
0

 ,
 0

0
1

 ,
 2

1
1

 ,
 1

1
0

 ,
 0

1
1

 ,
 2

1
0

 ,
 0

2
1

 ,
 1

2
1

 ,
 1

0
1

 ,
 2

0
1

 ,
 2

2
1

 ,
 1

1
1


Conversely, given any subset S := {g1,g2, . . . ,gn} of the point set in the pro-

jective space PG(k− 1,GF(q)), where each gi is written as a column vector in
GF(q)k, we define a matrix

G = [g1g2 · · ·gn]. (2.17)

Let CS be the linear code over GF(q) with generator matrix G. Then we have the
following.

Theorem 2.43. Let the row vectors of the generator matrix G of (2.17) be
v1,v2, . . . ,vk, respectively. Let

c = a1v1 +a2v2 + · · ·+akvk

be a codeword of CS, where ai ∈ GF(q). Let Ha denote the hyperplane

Ha =

{
(y1,y2, . . . ,yk)

T ∈ GF(q)k :
k

∑
i=1

yiai = 0

}
.

Then the Hamming weight wt(c) of c is given by

wt(c) = n−|H(n)
a ∩{g1,g2, . . . ,gn}|. (2.18)
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Proof. By definition,

c =

(
k

∑
i=1

aigi,1,
k

∑
i=1

aigi,2, . . .
k

∑
i=1

aigi,n

)
,

where g j = (g1, j,g2, j, . . . ,gk, j)
T for each j. The desired conclusion then follows.

Although Theorem 2.43 is simple, it is very useful and says that the minimum
distance of the code CS is the least number of points in the set {g1,g2, . . . ,gn}
which are outside every hyperplane Ha for a 6= 0. It will be used to determine the
weight distributions of several families of projective codes in some subsequent
chapters. In addition, it gives a geometric interpretation of the weight distributions
of projective linear codes over finite fields.

Note that the code CS with the generator matrix in (2.17) is projective (i.e.,
its dual code has minimum distance at least 3). We are usually interested in only
projective codes.

Let q= ps with s≥ 1. Recall that the automorphism (collineation) group of the
projective space PG(k−1,GF(q)) is the projective semilinear group PΓLk(GF(q))
(see Theorem 1.40). A permutation τ of GF(q)k is called semilinear if it satisfies
the following:

• τ(u+ v) = τ(u)+ τ(v) for all u and v in GF(q)k.
• τ(au) = apiτ(u) for all u ∈ GF(q)k and a ∈ GF(q) for some i with 0 ≤ i ≤

s−1.

Projective semilinear permutations of GF(q)k are of the form

τ(i,A)(x) = Axpi
,

where A is a k× k invertible matrix over GF(q), x is a column vector in GF(q)k,
and 0 ≤ i ≤ s− 1. Two subsets S and S′ of the point set in PG(k− 1,GF(q)) are
said to be equivalent if there is an automorphism of PG(k− 1,GF(q)) that sends
S to S′.

Let q = ps with s≥ 1. Recall that the automorphisms of GF(q) are defined by

σi(x) = xpi
, 0≤ i≤ s−1.

Let c = (c1,c2, . . . ,cn)∈GF(q)n. Let M be an n×n monomial matrix over GF(q).
Define

(M ◦σi)(c) = (σi(c1),σi(c2), . . . ,σi(cn))M ∈ GF(q)n.

Two linear codes C and C ′ of length n over GF(q) are equivalent if there exist an
automorphism σ of GF(q) and an n×n monomial matrix M over GF(q) such that
(A◦σ)(C ) = C ′.



November 17, 2021 14:14 ws-book9x6 Designs from Linear Codes designscodes page 88

88 Designs from Linear Codes

We are now ready to prove the following result.

Theorem 2.44. Let {g1, . . . ,gn} and {g′1, . . . ,g′n} be two equivalent n-sets in
PG(k− 1,GF(q)), where all gi and g′i are k× 1 vectors. Let C and C ′ denote
the two linear codes over GF(q) with the generator matrices [g1, . . . ,gn] and
[g′1, . . . ,g

′
n], respectively. Then C and C ′ are equivalent.

Proof. Assume that the semilinear permutation f (x) = Axpi
sends the first set to

the second. Then there is a permutation π of {1,2, . . . ,n} such that g′j = Agpi

π( j) for
all 1≤ j ≤ n. Consequently,

[g′1, . . . ,g
′
n] = A[gpi

π(1), . . . ,g
pi

π(n)].

Note that A[gpi

π(1), . . . ,g
pi

π(n)] and [gpi

π(1), . . . ,g
pi

π(n)] generate the same code, as A is
invertible. Thus, the two codes are equivalent.

The next two theorems are straightforward by the equivalence definition of
linear codes.

Theorem 2.45. Let G = [gi j] and G′ = [g′i j] be two generator matrices of two
projective [n,k] codes C and C ′ over GF(q), respectively. Then C and C ′ are
equivalent if and only if there exist an automorphism σ of GF(q) and an n× n
monomial matrix M over GF(q) such that

[σ(g1), . . . ,σ(gn)]M = [g′1, . . . ,g
′
n].

Theorem 2.46. Let G = [gi j] and G′ = [g′i j] be two generator matrices of two
projective [n,k] codes C and C ′ over GF(q), respectively. Then C and C ′ are
equivalent if and only if there exist an integer j with 0≤ j ≤ s−1, a permutation
π of {1,2, . . . ,n} and b1, . . . ,bn ∈ GF(q)∗ such that g′i = bπ(i)g

p j

π(i) for all i with
1≤ i≤ n.

We now prove the converse of Theorem 2.44, which is stated as follows.

Theorem 2.47. Let G = [gi j] and G′ = [g′i j] be two generator matrices of two pro-
jective [n,k] codes C and C ′ over GF(q), respectively. If C and C ′ are equivalent,
then the two sets {g1, . . . ,gn} and {g′1, . . . ,g′n} are equivalent.

Proof. Note that bπ(i)g
p j

π(i) and gp j

π(i) are the same point in PG(k− 1,GF(q)). By

Theorem 2.46, the semilinear permutation xp j
sends the first set to the second.

The desired conclusion then follows.
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Combining Theorems 2.44 and 2.47, we arrive at the following.

Theorem 2.48. Let S and S′ be two n-subsets of the point set in PG(k−1,GF(q)).
Let CS and CS′ be their corresponding linear codes of length n over GF(q). Then
CS and CS′ are equivalent if and only if S and S′ are equivalent.

Theorem 2.48 shows a kind of equivalence between projective geometries over
finite fields and projective linear codes over finite fields. In some later chapters,
we will see specific cases of the equivalence between specific objects in projective
geometries and specific projective linear codes.

2.16 Generalised Hamming Weights of Linear Codes

Let C be an [n,k,d] code over GF(q). Denote by Suppt(C ) the set of coordinate
positions, where not all codewords of C are zero, and call it the support of C . So
|Suppt(C )| is the number of nonzero columns in a generator matrix for C . The r-th
generalised Hamming weight, denoted by dr(C ), is defined to be the cardinality
of the minimal support of an [n,r] subcode of C , where 1≤ r ≤ k, i.e.,

dr(C ) = min{|Suppt(C ′)| : C ′ is an [n,r] subcode of C}. (2.19)

Clearly, d1(C ) = d(C ), which is the minimum Hamming distance of C . The
set {d1(C ), . . . ,dk(C )} is called the weight hierarchy. The generalised Hamming
weights of linear codes were first defined in Wei (1991).

Below is a list of results regarding the generalised Hamming weights whose
proofs can be found in Wei (1991).

Theorem 2.49. For every [n,k,d] code C over GF(q), we have

0 < d1(C )< d2(C )< · · ·< dk(C )≤ n.

Theorem 2.50. Let H be a parity-check matrix of a linear code C . Then dr(C )= δ
if and only if

(a) any δ−1 columns of H have rank greater than or equal to δ− r; and
(b) there exist δ columns in H with rank δ− r.

Theorem 2.51. Let C be an [n,k,d] code over GF(q) and let C⊥ denote its dual.
Then

{dr(C ) : r = 1,2, . . . ,k}∪{n+1−dr(C
⊥) : r = 1,2, . . . ,n− k}= {1,2, . . . ,n}.

Theorem 2.52 (Generalised Singleton Bound). Let C be an [n,k,d] code over
GF(q). Then

dr(C )≤ n− k+ r, r = 1,2, . . . ,k.
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2.17 Notes

Linear codes over finite fields are of theoretical interest as they are very closely
related to several areas of mathematics such as algebra, algebraic function fields,
algebraic geometry, association schemes, combinatorics, finite fields, finite geom-
etry, graph theory, and number theory.

Many connections between linear algebra, finite fields, finite geometry and
number theory were already shown in this chapter, and further relations will be
revealed in Chapter 3, where cyclic codes are treated. Connections between linear
codes and algebraic function fields can be found in Stichtenoth (1993). Certain
applications of algebraic geometry in coding theory are treated in Niederreiter and
Xing (2009). Connections between groups and codes are given in Humphreys and
Prest (2004). Interplay between graph theory and coding theory is documented
in Cameron and van Lint (1991). Links between codes and association schemes
are introduced in MacWilliams and Sloane (1977). Of course this monograph will
treat interplay between combinatorics and codes.

Linear codes are of practical importance as some of them are implemented in
communication and data storage devices, including mobile phones, laptops and
many other consumer devices. Linear codes over finite fields were also used in
cryptography. For example, some linear codes were used to construct public-key
ciphers [McEliece (1978)], authentication codes ([Ding and Wang (2005)], [Ding,
Helleseth, Kløve and Wang (2007)]), and secret sharing schemes ([Carlet, Ding
and Yuan (2005)], [Yuan and Ding (2006)]). In addition, some MDS code was
employed to construct the Advanced Encryption Standard.
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Chapter 3

Cyclic Codes over Finite Fields

A linear code C is called a cyclic code if c = (c0,c1, . . . ,cn−1) ∈ C implies
(cn−1,c0,c1, . . . ,cn−2) ∈ C . As a subclass of linear codes, cyclic codes have
wide applications in consumer electronics, data storage systems, and communi-
cation systems as they have some efficient encoding and decoding algorithms. In
this chapter, we introduce the basic theory of cyclic codes over finite fields with-
out providing a proof in many cases. We refer the reader to Huffman and Pless
(2003)[Chapter 4] for a proof of such result.

3.1 Factorization of xn−1 over GF(q)

To deal with cyclic codes of length n over GF(q), we have to study the canonical
factorization of xn−1 over GF(q). To this end, we need to introduce q-cyclotomic
cosets modulo n. Note that xn−1 has no repeated factors over GF(q) if and only
if gcd(n,q) = 1. Throughout this chapter, we assume that gcd(n,q) = 1.

Recall that Zn denotes the set {0,1,2, . . . ,n− 1}. Let s be an integer with
0≤ s < n. The q-cyclotomic coset of s modulo n is defined by

Cs = {s,sq,sq2, . . . ,sqℓs−1} mod n⊆ Zn,

where ℓs is the smallest positive integer such that s≡ sqℓs (mod n), and is the size
of the q-cyclotomic coset. The smallest integer in Cs is called the coset leader of
Cs. Let Γ(n,q) be the set of all the coset leaders. We have then Cs∩Ct = /0 for any
two distinct elements s and t in Γ(n,q), and∪

s∈Γ(n,q)

Cs = Zn. (3.1)

Hence, the distinct q-cyclotomic cosets modulo n partition Zn.
Let m = ordn(q), and let α be a generator of GF(qm)∗. Put β = α(qm−1)/n.

Then β is a primitive n-th root of unity in GF(qm). In Section 1.2.1, we defined

91
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the minimal polynomial Mβs(x) of βs over GF(q). It is now straightforward to
prove that this polynomial is given by

Mβs(x) = ∏
i∈Cs

(x−βi) ∈ GF(q)[x], (3.2)

which is irreducible over GF(q). It then follows from (3.1) that

xn−1 = ∏
s∈Γ(n,q)

Mβs(x), (3.3)

which is the factorization of xn − 1 into irreducible factors over GF(q). This
canonical factorization of xn−1 over GF(q) is crucial for the study of cyclic codes.

Example 3.1. Let q = 3 and n = 11. Then ord11(3) = 5. It is easily checked that
Γ(11,3) = {0,1,2} and

C0 = {0}, C1 = {1,3,4,5,9}, C2 = {2,6,7,8,10}.

Let α be a generator of GF(311)∗ with α5 +2α+1 = 0. Then β = α22 and

Mβ0(x) = x+2,
Mβ1(x) = x5 + x4 +2x3 + x2 +2,
Mβ2(x) = x5 +2x3 + x2 +2x+2.

The following result will be useful and is not hard to prove [Huffman and Pless
(2003)][Theorem 4.1.4].

Theorem 3.2. The size ℓs of each q-cyclotomic coset Cs is a divisor of ordn(q),
which is the size ℓ1 of C1.

3.2 Generator and Check Polynomials

Recall that a linear code C over GF(q) is cyclic if c=(c0,c1, . . . ,cn−1)∈C implies
(cn−1,c0,c1, . . . ,cn−2) ∈ C . Put

R(n,q) = GF(q)[x]/(xn−1),

which is the residue class ring. By identifying any vector (c0,c1, . . . ,cn−1) ∈
GF(q)n with

c0 + c1x+ c2x2 + · · ·+ cn−1xn−1 ∈ R(n,q),

any code C of length n over GF(q) corresponds to a subset of the residue class
ring R(n,q). One can easily prove that the linear code C is cyclic if and only if the
corresponding subset in R(n,q) is an ideal of the ring R(n,q). We identify the cyclic
code C with the corresponding subset in R(n,q).
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It is well known that R(n,q) is a principal ideal ring. Hence, for every
cyclic code C of length n over GF(q), there is a unique monic polynomial
g(x)∈GF(q)[x] of the smallest degree such that C = 〈g(x)〉. This polynomial g(x)
must be a divisor of xn− 1, and is called the generator polynomial of C . There-
fore, there is a one-to-one correspondence between the set of all cyclic codes of
length n over GF(q) and the set of all monic divisors of xn−1 with degree at least
one over GF(q). Hence, the total number of cyclic codes of length n over GF(q) is
2t −1, where t is the total number of distinct q-cyclotomic cosets modulo n, i.e.,
t = |Γ(n,q)|. We usually do not consider the zero code {0} of length n over GF(q).

Let C be an [n,κ] cyclic code over GF(q) with generator polynomial g(x). By
definition, κ = n−deg(g(x)) and {g(x),xg(x), . . . ,xκ−1g(x)} is a basis for C . Let
g(x) = ∑n−κ

i=0 gixi, where gn−κ = 1. Then the following is a generator matrix of C :

G =


g0 g1 g2 · · · gn−κ 0 · · · 0 0
0 g0 g1 g2 · · · gn−κ · · · 0 0
...

...
...

...
...

...
...

...
...

0 0 · · · 0 g0 g1 g2 · · · gn−κ

 . (3.4)

Let C be an [n,κ] cyclic code over GF(q) with generator polynomial g(x).
Let h(x) = (xn− 1)/g(x) = ∑κ

i=0 hixi. The polynomial h(x) is called the check
polynomial of C . It is straightforward to verify that the dual C⊥ of C is also
cyclic, and has the generator polynomial g⊥(x) = xκh(x−1)/h(0). Furthermore, a
generator matrix for C⊥, and hence a check matrix for C is

hκ hκ−1 hκ−2 · · · h0 0 · · · 0 0
0 hκ hκ−1 hκ−2 · · · h0 · · · 0 0
...

...
...

...
...

...
...

...
...

0 0 · · · 0 hκ hκ−1 hκ−2 · · · h0

 . (3.5)

It should be noticed that the cyclic code generated by h(x) is in general different
from C⊥, but has the same parameters and weight distribution as C⊥.

Example 3.3. Let q = 3 and n = 11. The cyclic code of length n over GF(q) with
generator polynomial g(x) = x5 + x4 + 2x3 + x2 + 2 has parameters [11,6,5] and
check polynomial h(x) = x6+2x5+2x4+2x3+x2+1. Its dual code has generator
polynomial x6 + x4 +2x3 +2x2 +2x+1.

The conclusions in the following two theorems are straightforward.

Theorem 3.4. If C is a cyclic code over GF(qt), then the subfield subcode C |GF(q)
is also cyclic.

Theorem 3.5. Let C1 and C2 be two cyclic codes with generator polynomials g1(x)
and g2(x), respectively. Then C1 ⊆ C2 if and only if g2 divides g1(x).
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3.3 Idempotents of Cyclic Codes

An element e in a ring R is called an idempotent if e2 = e. The ring R(n,q) has in
general quite a number of idempotents. Every cyclic code C over GF(q) can be
produced with its generator polynomial. In fact, many polynomials can generate
C . Let C be a cyclic code over GF(q) with generator polynomial g(x). It can be
proved that a polynomial f (x)∈GF(q)[x] generates C if and only if gcd( f (x),xn−
1) = g(x).

If an idempotent e(x) ∈ R(n,q) generates a cyclic code C , it is then unique
in R(n,q) and called the generating idempotent. Given the generator polynomial
of a cyclic code, one can compute its generating idempotent with the following
theorem [Huffman and Pless (2003)][Theorem 4.3.3].

Theorem 3.6. Let C be a cyclic code of length n over GF(q) with generator poly-
nomial g(x). Let h(x) = (xn − 1)/g(x). Then gcd(g(x),h(x)) = 1 due to the
assumption gcd(n,q) = 1. Employing the Extended Euclidean Algorithm, one
can compute two polynomials a(x) ∈ GF(q)[x] and b(x) ∈ GF(q)[x] such that
1 = a(x)g(x) + b(x)h(x). Then e(x) = a(x)g(x) mod (xn−1) is the generating
idempotent of C .

Given the generating idempotent of a cyclic code, one can obtain the generator
polynomial of this code as follows [Huffman and Pless (2003)][Theorem 4.3.3].

Theorem 3.7. Let C be a cyclic code over GF(q) with generating idempotent e(x).
Then the generator polynomial of C is given by g(x) = gcd(e(x),xn−1) computed
in GF(q)[x].

Example 3.8. Let q = 3 and n = 11. The cyclic code C of length n over GF(q)
with generator polynomial g(x) = x5 + x4 +2x3 + x2 +2 has parameters [11,6,5]
and check polynomial h(x) = x6 +2x5 +2x4 +2x3 + x2 +1.

Let a(x) = 2x5 + x4 + x2 and b(x) = x4 + x3 +1. It is then easily verified that
1 = a(x)g(x)+b(x)h(x). Hence

e(x) = a(x)g(x) mod (xn−1) = 2x10 +2x8 +2x7 +2x6 +2x2

is the generating idempotent of C . On the other hand, we have g(x) =

gcd(e(x),xn−1).

A generator matrix of a cyclic code can be derived from its generating idem-
potent as follows [Huffman and Pless (2003)][Theorem 4.3.6].
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Theorem 3.9. Let C be an [n,κ] cyclic code with generating idempotent e(x) =
∑n−1

i=0 eixi. The the following κ×n matrix
e0 e1 e2 · · · en−2 en−1

en−1 e0 e1 · · · en−3 en−2
...

...
...

. . .
...

...
en−κ+1 en−κ+2 en−κ+3 · · · en−κ−1 en−κ


is a generator matrix of C .

The sum of two cyclic codes C1 and C2 of length n over GF(q) is denoted by
C1 +C2, and defined by

C1 +C2 = {c1 + c2 : c1 ∈ C1, c2 ∈ C2}.

Both the sum and intersection of two cyclic codes over GF(q) are also cyclic
codes. Their generator polynomial and generating idempotent are given in the
following theorem [Huffman and Pless (2003)][Theorem 4.3.7].

Theorem 3.10. Let C1 and C2 be two cyclic codes of length n over GF(q) with
generator polynomials g1(x) and g2(x), and generating idempotents e1(x) and
e2(x), respectively. Then

(i) the intersection code C1 ∩ C2 has generator polynomial LCM(g1(x),g2(x))
and generating idempotent e1(x)e2(x), and

(ii) the sum code C1 +C2 has generator polynomial gcd(g1(x),g2(x)) and gener-
ating idempotent e1(x)+ e2(x)− e1(x)e2(x).

The ring R(n,q) has a special set of idempotents, called primitive idempotents,
which can be used to produce all idempotents in R(n,q) and therefore all cyclic
codes of length n over GF(q). We now introduce them. Before doing this, we
recall that an ideal I in a ring R is a minimal ideal if there is no proper ideal
between {0} and R .

Let xn−1 = f1(x) f2(x) · · · ft(x), where fi(x) is irreducible over GF(q) for 1≤
i≤ t. Since we always assume that gcd(n,q) = 1, all fi(x)’s are distinct. Define

f̃i(x) =
xn−1
fi(x)

for all i with 1≤ i≤ t. It is known that all the ideals 〈 f̃i(x)〉 of R(n,q) are minimal,
and called minimal cyclic codes and irreducible cyclic codes of length n over
GF(q). Let ẽi(x) denote the generating idempotent of 〈 f̃i(x)〉 for all i. These ẽi(x)
are the primitive idempotent of R(n,q).
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The following theorem lists basic properties of the primitive idempotents
[Huffman and Pless (2003)][Theorem 4.3.8].

Theorem 3.11. Let notation be the same as before. The following statements hold
in R(n,q).

(a) R(n,q) is the vector space direct sum of 〈 f̃i(x)〉 for 1≤ i≤ t.
(b) For every pair of distinct i and j, we have ẽi(x)ẽ j(x) = 0 in R(n,q).
(c) ∑t

i=1 ẽi(x) = 1 in R(n,q).
(d) If e(x) is a nonzero idempotent in R(n,q), then there is a subset T of {1,2, . . . , t}

such that

e(x) = ∑
i∈T

ẽi(x) and 〈e(x)〉= ∑
i∈T
〈 f̃i(x)〉.

Part (d) of this theorem says that every nonzero idempotent in R(n,q) is the
sum of some primitive idempotents, and every nonzero cyclic code of length n
over GF(q) is the sum of some minimal cyclic codes of length n over GF(q).
It is also known that any minimal ideal of R(n,q) is an extension field of GF(q)
[Huffman and Pless (2003)][Theorem 4.3.9].

We will need the following result later [Huffman and Pless (2003)][Corollary
4.3.15].

Theorem 3.12. Let C be a cyclic code of length n over GF(q) with generating
idempotent e(x) = ∑n−1

i=0 eixi. Then

(i) ei = e j if i and j are in the same q-cyclotomic coset modulo n; and
(ii) there is a subset T of Zn such that

e(x) = ∑
j∈T

a j ∑
i∈C j

xi,

where each ai ∈ GF(q)∗.
If q = 2, the set T is a set of coset leaders and a j = 1 for all j ∈ T .

3.4 Zeros of Cyclic Codes

Let C be a cyclic code of length n over GF(q) with generator polynomial g(x),
and let β be a primitive n-th root of unity over GF(qm), where m = ordn(q). It
then follows from (3.3) that

g(x) = ∏
t∈T

Mβt (x) = ∏
t∈T

∏
i∈Ct

(x−βi),
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where T is a set of coset leaders, i.e., T ⊂ Γ(n,q). The set ∪t∈T{βi : i ∈ Ct} is
called the zeros of C , and the set ∪t∈TCt is referred to as the defining set of C . By
definition, c(x) is a codeword of C if and only if c(βi) = 0 for all i ∈ ∪t∈TCt .

If C is a code of length n over GF(q), then a complement of C , is a code C c

such that C +C c = GF(q)n and C ∩C c = {0}. If C is cyclic, then C c is unique
and cyclic. We have the following information on the code C c.

Theorem 3.13. Let C be a cyclic code of length n over GF(q) with generator
polynomial g(x), generating idempotent e(x), and defining set S. We have then the
following conclusions about the complement C c of C :

(1) h(x) = (xn−1)/g(x) is the generator polynomial and 1−e(x) is its generating
idempotent of C c.

(2) C c is the sum of the minimal ideals of R(n,q) not contained in C .
(3) Zn \S is the defining set of C c.

Let f (x) =∑ℓ
i=0 fixi be a polynomial of degree ℓ. Then its reciprocal is defined

by

f ∗(x) = xℓ f (x−1) =
ℓ

∑
i=0

fℓ−ixℓ.

The following result is fundamental and follows from Huffman and Pless
(2003)[Theorem 4.4.9].

Theorem 3.14. Let C be a cyclic code of length n over GF(q) with generator
polynomial g(x). Let h(x) = (xn−1)/g(x) be the check polynomial of C . Then the
following statements are true:

(1) h∗(x)/h(0) is the generator polynomial of C⊥.
(2) C⊥ and C c are permutation equivalent. Hence they have the same dimension

and weight distribution.

Self-orthogonal codes are an interesting class of codes. The next theo-
rem gives a characterization of self-orthogonal cyclic codes [Huffman and Pless
(2003)][Corollary 4.4.10].

Theorem 3.15. Let C be a cyclic code of length n over GF(q) with generator
polynomial g(x). Let h(x) = (xn−1)/g(x) be the check polynomial of C . Then C

is self-orthogonal if and only if h∗(x)|g(x).

Minimal cyclic codes (also called irreducible cyclic codes) have the following
trace representation [Huffman and Pless (2003)][Theorem 4.4.19]. It is a direct
consequence of Delsarte’s Theorem.
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Theorem 3.16 (Trace representation of irreducible cyclic codes). Let h(x) be
an irreducible factor of xn− 1 over GF(q). Suppose that h(x) has degree m. Let
γ ∈ GF(qm) be a root of h(x). Then

C (γ) =

{
n−1

∑
i=0

Trqm/q(aγ−i)xi : a ∈ GF(qm)

}
is the [n,m] irreducible cyclic code with check polynomial

h(x) =
m−1

∏
i=0

(
x− γqi

)
∈ GF(q)[x].

Put r = qm. Let N > 1 be an integer dividing r−1, and put n = (r−1)/N. Let
α be a primitive element of GF(r) and let θ = αN . Then the set

C (r,N) = {(Trr/q(β),Trr/q(βθ), ...,Trr/q(βθn−1)) : β ∈ GF(r)} (3.6)

is an irreducible cyclic [n,m0] code over GF(q), where m0 is the multiplicative
order of q modulo n and m0 divides m.

Irreducible cyclic codes have been an interesting subject of study for many
years. The celebrated Golay code is an irreducible cyclic code and was used on
the Mariner Jupiter-Saturn Mission. They form a special class of cyclic codes and
are interesting in theory as they are minimal cyclic codes. The reader is referred
to Ding and Yang (2013) for information on irreducible cyclic codes.

3.5 A Trace Construction of Cyclic Codes over Finite Fields

Any cyclic code over any finite field can be generated by a generator matrix, or
a generator polynomial, or a generating idempotent. Under certain conditions,
cyclic codes over finite fields have a simple trace representation described in
the following theorem whose proof is based on Delsarte’s Theorem [Wolfmann
(1989)].

Theorem 3.17. Let C be a cyclic code of length n over GF(q) with gcd(n,q) = 1
and check polynomial h(x). Let β be a primitive n-th root of unity over GF(qm),
where m := ordn(q) is the order of q modulo n. Let J be a subset of Zn =

{0,1,2, · · · ,n−1} such that

h∗(x) = ∏
j∈J

Mβ j(x),

where Mβ j(x) denotes the minimal polynomial of β j over GF(q), and h∗(x) is the
reciprocal of h(x). Then C consists of all the following codewords

ca(x) =
n−1

∑
i=0

Tr( fa(βi))xi,
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where Tr denotes the trace function from GF(qm) to GF(q), and

fa(x) = ∑
i∈J

a jx j, a j ∈ GF(qm).

This trace representation of certain subclasses of cyclic codes was known for a
long time. For example, the trace representation of irreducible dates back at least
to Baumert and McEliece (1972). The trace representation of cyclic codes over
finite fields in Theorem 3.17 was presented and proved by Wolfmann in [Wolf-
mann (1989)] under the restriction that gcd(q,n) = 1. It demonstrates another
way of generating many cyclic codes over finite fields. The importance of this
trace representation is mostly demonstrated by its application in determining the
weight distribution (also called the weight enumerator) of cyclic codes over finite
fields. The trace representation allows one to determine the weight distribution
of a cyclic code by evaluating certain types of character sums over finite fields,
and has led to a lot of recent progress on the weight distribution problem of cyclic
codes.

3.6 Lower Bounds on the Minimum Distance

It is usually very difficult to determine the minimum distance of cyclic codes over
finite fields. However, due to the cyclicity of cyclic codes, we have some lower
bounds on their minimum distance. The first one is described in the following
theorem ([Bose and Ray-Chaudhuri (1960)] and [Hocquenghem (1959)]).

Theorem 3.18 (BCH bound). Let C be a cyclic code of length n over GF(q)
with defining set S and minimum distance d. Assume S contains δ−1 consecutive
integers for some integer δ. Then d ≥ δ.

Note that the BCH bound depends on the primitive n-th root of unity β. It
may yield a very bad lower bound on the minimum distance sometimes. In this
case, the lower bound given in the folllowing theorem may be much better. It was
discovered in Hartmann and Tzeng (1972). To introduce this bound, we define

A+B = {a+b : a ∈ A, b ∈ B},

where A and B are two subsets of the ring Zn, n is a positive integer, and + denotes
the integer addition modulo n.

Theorem 3.19 (Hartmann-Tzeng bound). Let C be a cyclic code of length n
over GF(q) with defining set S and minimum distance d. Let A be a set of δ− 1
consecutive elements of S and B(b,s) = { jb mod n : 0≤ j≤ s}, where gcd(b,n)<
δ. If A+B(b,s)⊆ S for some b and s, then d ≥ δ+ s.
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The following theorem is also a generalization of the BCH bound [Huffman
and Pless (2003)][Corollary 4.5.11].

Theorem 3.20. Let C be a cyclic code of length n over GF(q). Suppose that f (x)
is a codeword such that f (βb) = f (βb+1) = · · ·= f (βb+w−1) = 0 but f (βb+w) 6= 0,
where β is a primitive n-th root of unity in an extension field of GF(q). Then
wt( f (x))≥ w+1.

When s = 0, The Hartmann-Tzeng bound becomes the BCH bound. There
are also other bounds. The Roos bounds, which are generalizations of the the
Hartmann-Tzeng bound, can be found in Roos (1982a) and Roos (1982b). A
number of techniques for finding a lower bound on the minimum distance of cyclic
codes are given in Van Lint and Wilson (1986).

3.7 BCH Codes

BCH codes are a subclass of cyclic codes with special properties, and are very
important in both theory and practice. The objective of this section is to introduce
them and summarize their fundamental results.

3.7.1 Definition and Basic Properties

Let δ be an integer with 2 ≤ δ ≤ n and let b be an integer. A BCH code over
GF(q) of length n and designed distance δ, denoted by C(q,n,δ,b), is a cyclic code
with defining set

S(b,δ) =Cb∪Cb+1∪·· ·∪Cb+δ−2, (3.7)

where Ci is the q-cyclotomic coset modulo n containing i. It then follows from
Theorem 3.18 that a cyclic code with designed distance δ has minimum weight at
least δ. It is possible that the actual minimum distance is equal to the designed
distance. Sometimes the actual minimum weight is much larger than the designed
distance.

It may happen that S(b1,δ1) = S(b2,δ2) for two distinct pairs (b1,δ1) and
(b2,δ2). The maximum designed distance of a BCH code is defined to be the
largest δ such that the set S(b,δ) in (3.7) defines the code for some b ≥ 0. The
maximum designed distance of a BCH code is also called the Bose distance.

When b = 1, the code C(q,n,δ,b) with defining set in (3.7) is called a narrow-
sense BCH code. If n = qm− 1, then C(q,n,δ,b) is referred to as a primitive BCH
code.

The dimension of the BCH code C(q,n,δ,b) with defining set S(b,δ) in (3.7)
depends on the size of the defining set. However, it may not have a clear relation
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with n, q, b and δ, and thus cannot be given exactly in terms of these parameters.
The best we can do in general is to develop tight lower bounds on the dimension
of BCH codes. The next theorem introduces such bounds [Huffman and Pless
(2003)][Theorem 5.1.7].

Theorem 3.21. Let C be an [n,κ] BCH code over GF(q) of designed distance δ.
Then the following statements hold:

(i) κ≥ n−ordn(q)(δ−1).
(ii) If q = 2 and C is a narrow-sense BCH code, then δ can be assumed odd;

furthermore if δ = 2w+1, then κ≥ n−ordn(q)w.

The bounds in Theorem 3.21 may not be improved for the general case, as
demonstrated by the following example. However, in some special cases, they
could be improved.

Example 3.22. Let q = 2 and n = 15. Then m = ord15(2) = 4 and the 2-
cyclotomic cosets modulo 15 are the following:

C0 = {0}, C1 = {1,2,4,8}, C3 = {3,6,9,12},
C5 = {5,10}, C7 = {7,11,13,14}.

Let α be a generator of GF(24)∗ with α4 +α+ 1 = 0 and let β = α(qm−1)/n = α
be the primitive n-th root of unity.

When (b,δ) = (0,3), the defining set S(b,δ) = {0,1,2,4,8}, and the binary
cyclic code has parameters [15,10,4] and generator polynomial x5 + x4 + x2 + 1.
In this case, the actual minimum weight is more than the designed distance, and
the dimension is larger than the first bound in Theorem 3.21.

When (b,δ) = (1,3), the defining set S(b,δ) = {1,2,4,8}, and the binary
cyclic code has parameters [15,11,3] and generator polynomial x4 + x+1. It is a
narrow-sense BCH code. In this case, the actual minimum weight is equal to the
designed distance, and the dimension reaches the second bound in Theorem 3.21.

When (b,δ) = (2,3), the defining set S(b,δ) = {1,2,3,4,6,8,9,12}, and the
binary cyclic code has parameters [15,7,5] and generator polynomial x8 + x7 +

x6 + x4 + 1. In this case, the actual minimum weight is more than the designed
distance, and the dimension achieves the first bound in Theorem 3.21.

When (b,δ) = (1,5), the defining set S(b,δ) = {1,2,3,4,6,8,9,12}, and the
binary cyclic code has parameters [15,7,5] and generator polynomial x8 + x7 +

x6 + x4 + 1. In this case, the actual minimum weight is equal to the designed
distance, and the dimension is larger than the first bound in Theorem 3.21. Note
that the three pairs (b1,δ1)= (2,3),(b2,δ2)= (2,4) and (b3,δ3)= (1,5) define the
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same binary cyclic code with generator polynomial x8 + x7 + x6 + x4 + 1. Hence
the maximum designed distance of this [15,7,5] cyclic code is 5.

When (b,δ) = (3,4), the defining set S(b,δ) = {1,2,3,4,5,6,8,9,10,12}, and
the binary cyclic code has parameters [15,5,7] and generator polynomial x10 +

x8 +x5 +x4 +x2 +x+1. In this case, the actual minimum weight is more than the
designed distance, and dimension is larger than the first bound in Theorem 3.21.

Let C be a primitive narrow-sense BCH code of length n = qm−1 over GF(q)
with designed distance δ. The defining set is then S(1,δ) = C1 ∪C2 ∪ ·· · ∪Cδ−1.
The following theorem provides useful information on the minimum weight of
primitive narrow-sense BCH codes.

Theorem 3.23. Let C be a primitive narrow-sense BCH code of length n = qm−
1 over GF(q) with designed distance δ. Then the minimum weight of C is its
minimum odd-like weight.

Proof. By Corollary 6.12, the permutation automorphism group of the extended
code C is 2-transitive. The desired conclusion then follows from Theorem 2.13.

We dealt with Hamming codes in Section 2.13, which may not be equivalent
to a cyclic code. Now we are ready to tell when they are cyclic codes [Huffman
and Pless (2003)][Theorem 5.1.4].

Theorem 3.24. Let n = (qm− 1)/(q− 1) with gcd(m,q− 1) = 1. Let C be the
narrow-sense BCH code with defining set C1. Then C is the Hamming code Hq,m.

After introducing BCH codes in general, we are now ready to describe an
important subclass of BCH codes, which are referred to as Reed-Solomon codes
[Reed and Solomon (1960)].

Let n = q−1. Then ordn(q) = 1, and all the q-cyclotomic cosets modulo n are
of size 1. Therefore, the canonical factorization of xn−1 over GF(q) is given by

xn−1 =
n−1

∏
i=0

(x−αi),

where α is a generator of GF(q)∗.
A Reed-Solomon code over GF(q), denoted RS(q,κ), is of length n= q−1 with

designed distance n−κ+1. It is straightforward to prove the following theorem
[Huffman and Pless (2003)][Theorem 5.2.1].

Theorem 3.25. Let n = q− 1. Then RS(q,κ) has defining set S(b,n− κ+ 1) for
some integer b≥ 0 and parameters [n,κ,n−κ+1]. Furthermore, it is MDS.
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The following theorem gives another way to define the narrow-sense Reed-
Solomon code RS(q,κ).

Theorem 3.26. Let α be a generator of GF(q)∗ and let κ be an integer with 0 ≤
κ≤ n = q−1. Then

C = {( f (1), f (α), f (α2), . . . , f (αn−1)) : f ∈ P(q,κ)}

is equivalent to the narrow-sense [n,κ,n− κ + 1] Reed-Solomon code RS(q,κ),
where P(q,κ) denotes all the polynomials of degree less than κ over GF(q).

3.7.2 Recent Advances in BCH Codes

Determining the parameters of BCH codes is an extremely difficult problem. By
now most types of BCH codes have never been touched. For example, there is no
reference on BCH codes over GF(q) of length (qℓ+1)/(q+1) for odd ℓ.

Recall that BCH codes C(q,n,δ,b) with length n = qm − 1 are called primi-
tive. Primitive BCH codes behave better in many senses and have better error-
correcting capability. Experimental data shows that they are always the best
among all cyclic codes with only a few exceptions (see the experimental data
documented in Ding (2015a)[Appendix A]). Recently, a considerable amount of
progress on primitive BCH codes has been made in Ding, Du and Zhou (2015),
Ding (2015b), Ding, Fan and Zhou (2017), Li, Ding and Li (2017), Liu, Ding and
Li (2017), and Li (2017).

BCH codes C(q,n,δ,b) with length n = (qm−1)/(q−1) are much less studied,
compared with primitive BCH codes. Some progress on such BCH codes have
been documented in Li, Ding and Li (2017), Li, Ding, Xiong and Ge (2017), and
Liu, Ding and Li (2017).

Little about BCH codes C(q,n,δ,b) with length n = qℓ+ 1 has been done. This
is because the q-cyclotomic cosets modulo n = qℓ + 1 behave quite irregularly.
Some recent progress on this type of BCH codes has been reported in Li, Ding
and Li (2017) and Liu, Ding and Li (2017).

3.8 Quadratic Residue Codes

Quadratic residue (QR) codes are a very important class of cyclic codes, which
have important applications in engineering and combinatorics. In this section, we
introduce these codes and their extended codes, and summarise their properties.
Throughout this section, let n be an odd prime, and let q be a different prime. We
also require that q is a quadratic residue modulo n.
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3.8.1 Quadratic Residue Codes

Let γ be a primitive element of GF(n). Recall that the cyclotomic classes of order
two with respect to GF(n) are defined by

C(2,n)
i = γi〈γ2〉,

where i ∈ {0,1}. The elements in C(2,n)
0 and C(2,n)

1 are quadratic residues and
quadratic nonresidues modulo n, respectively.

Put m = ordn(q). Let α be a generator of GF(qm)∗ and let β = α(qm−1)/n. Then
β is a primitive n-th root of unity in GF(qm). Define

g0(x) = ∏
i∈C(2,n)

0

(x−βi) and g1(x) = ∏
i∈C(2,n)

1

(x−βi).

When q ∈ C(2,n)
0 , it is straightforward to verify that gi(x) ∈ GF(q)[x] for all

i ∈ {0,1}. In the remainder of this subsection, we always assume that q ∈C(2,n)
0 .

Let QRC(n,q)
i and QRC(n,q)

i denote the cyclic code over GF(q) of length n with
generator polynomial gi(x) and (x− 1)gi(x), respectively, for each i ∈ {0,1}. It
then follows that QRC(n,q)

i and QRC(n,q)
i have dimension (n+1)/2 and (n−1)/2,

respectively, for each i.
Since q ∈C(2,n)

0 , each C(2,n)
i is the union of some q-cyclotomic cosets modulo

n. Therefore, QRC(n,q)
i and QRC(n,q)

i are cyclic codes with defining set C(2,n)
i

and {0}∪C(2,n)
i , respectively. The four codes QRC(n,q)

i and QRC(n,q)
i are called

quadratic residue codes. The two codes QRC(n,q)
i are called odd-like QR codes,

and the two codes QRC(n,q)
i are even-like QR codes.

Note that the two codes QRC(n,q)
0 andQRC(n,q)

1 depend on the choice of the
primitive n-th root of unity. They have the same parameters and weight distri-
bution. The following theorem provides information on the minimum weight of
quadratic residue codes [Huffman and Pless (2003)][Theorem 6.6.22].

Theorem 3.27. Let di and di denote the minimum weight of QRC(n,q)
i and

QRC(n,q)
i , respectively. Then d0 = d1 and d0 = d1. Furthermore, di = di − 1

and d2
i ≥ n. If n≡ 3 (mod 4), then d2

i −di +1≥ n. Additionally, every minimum
weight codeword of QRC(n,q)

i is odd-like. If QRC(n,q)
i is binary, di is odd; and if in

addition, n≡−1 (mod 8), then di ≡ 3 (mod 4).

Example 3.28. Let n = 23 and q = 2. Then m = ordn(q) = 11. Let α be a gen-
erator of GF(211)∗ with α11 +α2 + 1 = 0, and let β = α(qm−1)/n. Then QRC(n,q)

0

and QRC(n,q)
1 have parameters [23,12,7] and generator polynomials

g0(x) = x11+x9+x7+x6+x5+x+1 and g1(x) = x11+x10+x6+x5+x4+x2+1.
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The two codes QRC(n,q)
0 and QRC(n,q)

1 have parameters [23,11,8] and generator
polynomials (x−1)g0(x) and (x−1)g1(x).

Example 3.29. Let n = 13 and q = 3. Then m = ordn(q) = 3. Let α be a generator
of GF(33)∗ with α3 + 2α + 1 = 0, and let β = α(qm−1)/n. Then QRC(n,q)

0 and

QRC(n,q)
1 have parameters [13,7,5] and generator polynomials

g0(x) = x6 +2x4 +2x3 +2x2 +1 and g1(x) = x6 + x5 +2x4 +2x2 + x+1.

The two codes QRC(n,q)
0 and QRC(n,q)

1 have parameters [13,6,6] and generator
polynomials (x−1)g0(x) and (x−1)g1(x).

The following theorem demonstrates further relations among the four
quadratic residue codes [Assmus and Key (1992a)][Theorem 2.10.1].

Theorem 3.30. If n ≡ −1 (mod 4), then (QRC(n,q)
i )⊥ = QRC(n,q)

i . If n ≡ 1

(mod 4), then (QRC(n,q)
0 )⊥ = QRC(n,q)

1 and (QRC(n,q)
1 )⊥ = QRC(n,q)

0 .

The format of the generating idempotent of QR codes is known and described
in the following theorem [Huffman and Pless (2003)][Theorem 6.6.3].

Theorem 3.31. If C is a quadratic residue code over GF(q) with generating idem-
potent e(x). Then

e(x) = a0 +a1 ∑
i∈C(2,n)

0

xi +a2 ∑
i∈C(2,n)

1

xi,

for some a1, a1, and a2 in GF(q).

The following theorem provides more detailed information on the generating
idempotents of binary quadratic residue codes [Huffman and Pless (2003)][Theo-
rem 6.6.5].

Theorem 3.32. Let n≡±1 (mod 8) be a prime. Then the following hold.

(a) The binary codes QRC(n,2)
i have generating idempotents

δ+ ∑
i∈C(2,n)

0

xi and δ+ ∑
i∈C(2,n)

1

xi,

where δ = 1 if n≡−1 (mod 8) and δ = 0 if n≡ 1 (mod 8).
(b) The binary codes QRC(n,2)

i have generating idempotents

ε+ ∑
i∈C(2,n)

0

xi and ε+ ∑
i∈C(2,n)

1

xi,

where ε = 0 if n≡−1 (mod 8) and ε = 1 if n≡ 1 (mod 8).
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For further information about the generating idempotents of quadratic residue
codes over other finite fields, the reader is referred to Huffman and Pless
(2003)[Section 6.6]. More information on the minimum weight of quadratic
residue codes can be found in Newhart (1988).

3.8.2 Extended Quadratic Residue Codes

The extended code of a linear code was introduced in Section 2.6. In this section,
we extend the QR codes in a slightly different way, and let QRC(n,q)

i denote this
extended code of QRC(n,q)

i . QR codes may be extended by adding an overall parity
check in such a way thatQRC(n,q)

i
⊥
= QRC(n,q)

i if n≡−1 (mod 4),

QRC(n,q)
0

⊥
= QRC(n,q)

1 if n≡ 1 (mod 4).
(3.8)

The specific way of adding the parity check is as follows.
We will need the following lemma [Huffman and Pless (2003)][Lemma

6.6.16].

Lemma 3.33. Let n≡−1 (mod 4) or n≡ 1 (mod 4) and q≡−1 (mod 4). Then
1+ζn2 = 0 has a solution ζ ∈ GF(q).

If c = (c0, . . . ,cn−1) is a codeword of QRC(n,q)
i , the extended code is formed

by appending

c∞ =−ζ
n−1

∑
i=0

ci, (3.9)

where 1+ ζ2n = 0 in GF(q). When q ∈ {2,3}, ζ may be taken to be 1, and the
extended code will be consistent with the conventional one defined in Section 2.6.

Let Gi denote the generator matrix of QRC(n,q)
i . Then the generator matrix Gi

of QRC(n,q)
i is given by

Gi =


Gi

0
0
...
0

1, 1, . . . , 1, −ζn

 . (3.10)

Clearly, QRC(n,q)
i have parameters [n + 1,(n + 1)/2]. The relations among

the two extended codes and their duals are documented in the following theorem
[Huffman and Pless (2003)][Theorem 6.6.18].
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Theorem 3.34. Let n≡−1 (mod 4) or n≡ 1 (mod 4) and q≡−1 (mod 4). If
n ≡ −1 (mod 4), both QRC(n,q)

i are self-dual [n+ 1,(n+ 1)/2] codes. If n ≡ 1

(mod 4), then
(

QRC(n,q)
0

)⊥
= QRC(n,q)

1 and
(

QRC(n,q)
1

)⊥
= QRC(n,q)

0 .

Let n≡±1 (mod 8) be a prime. The set of all permutations of {0,1, . . . ,n−
1,∞} of the form

y→ ay+b
cy+d

, (3.11)

where a,b,c,d ∈ GF(n) are such that ad−bc = 1, form a group, which is called
the projective special linear group, and denoted by PSL2(GF(n)). This group was
treated in Section 1.8.10.

The following result is due to Gleason and Prange.

Theorem 3.35. If n ≡ ±1 (mod 8), then the extended code QRC(n,2)
0 is fixed by

PSL2(GF(n)).

Proof. We present here a proof of this theorem developed in Blahut (1991). By
Theorem 1.88, it suffices to prove that QRC(n,2)

0 is fixed by the coordinate permu-
tation:

T : y→−y−1.

Let m = ordn(2). Let α be a generator of GF(n)∗, and let β = α(2m−1)/n. Then
β is an nth root of unity in GF(2m). For any vector c= (c0,c1, . . . ,cn−1)∈GF(2)n,
its Fourier transform, denoted by C = (C0,C1, . . . ,Cn−1) ∈ GF(2m)n, is given by

C j =
n−1

∑
i=0

βi jci = c(β j),

where c(x) = ∑n−1
i=0 cixi ∈ GF(2)[x] and 0≤ j ≤ n−1.

By definition, for any codeword c(x) ∈ QRC(n,q)
0 , we have C j = c(β j) = 0 for

all nonzero squares j in GF(n). By definition again, QRC(n,q)
0 consists of all the

binary vectors

c = (c0,c1, . . . ,cn−1,c∞),

where (c0,c1, . . . ,cn−1) is a codeword in QRC(n,q)
0 , and the extended bit indexed

by ∞ is defined by

c∞ =
n−1

∑
i=0

ci.
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Let π be a generator of GF(n)∗. By a coordinate permutation, the codewords
of QRC(n,q)

0 can be represented as

c = (c0,cπ0 ,cπ1 , . . . ,cπn−2).

Note that π−1 is another generator of GF(n)∗. Similarly, the Fourier transform C
of c can be written as

C = (C0,Cπ−0 ,Cπ−1 , . . . ,Cπ−(n−2)).

By definition

C0 =
n−1

∑
i=0

ci and C j = c0 +
n−1

∑
i=1

βi jci, j = 1,2, . . . ,n−1.

For 1≤ i, j ≤ n−1, let i = πr and j = π−s, where 0≤ r, s≤ n−2. Then we have

Cπ−s = c0 +
n−2

∑
r=0

βπr−s
cπr , s = 0,1, . . . ,n−2. (3.12)

We now define C′s =Cπ−s and c′r = cπr . Then (3.12) becomes

C′s = c0 +
n−2

∑
r=0

βπr−s
c′r, s = 0,1, . . . ,n−2. (3.13)

Let

u(x) =
n−2

∑
r=0

βπ−r
xr,

c′(x) =
n−2

∑
r=0

c′rx
r,

C′(x) =
n−2

∑
r=0

C′rx
r.

Then all the equations in (3.13) can be expressed into

C′(x) = u(x)c′(x)+ c0

p−2

∑
i=0

xi (mod xn−1−1), (3.14)

which is a polynomial representation of the equation of the Fourier transform.
Due to Theorem 1.88, it suffices to prove that QRC(n,2)

0 is invariant under

the permutation T : y→−1/y. For any c = (c0,c1, . . . ,cn−1,c∞) ∈ QRC(n,2)
0 , let

d = (d0,d1, . . . ,dn−1,d∞) be the permuted vector of c. Let C and D be the Fourier
transforms of c and d, respectively. We now want to derive a relation between D
and C.
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The inverse Fourier transform can be written as

ci =C0 +
n−1

∑
k=1

β−ikCk = c∞ +
n−1

∑
k=1

β−ikCk.

Notice that
n−1

∑
i=0

βi j = 0

for all j, as β j is an nth root of unity for all j. Now we have

di = c−1/i = c∞ +
n−1

∑
k=1

β(1/i)kCk, i = 1,2, . . . ,n−1

and d0 = c∞. Consequently,

D j = d0 +
n−1

∑
i=1

βi jdi

= c∞ +
n−1

∑
i=1

βi j

(
c∞ +

n−1

∑
k=1

β(1/i)kCk

)

=
n−1

∑
i=1

βi j
n−1

∑
k=1

β(1/i)kCk. (3.15)

Now we change indices again as follows:

i = πr, k = πt , j = π−s.

Then (3.15) becomes

Dπ−s =
n−1

∑
i=1

βπ−s+r
n−1

∑
k=1

βπ−r+t
Cπt . (3.16)

Consequently, (3.16) can be expressed as

D′−s =
n−1

∑
i=1

ur−s

n−1

∑
k=1

ut−rC′t , (3.17)

where C′t =Cπt , D′−s = Dπ−s and ur = βπ−r
.

Recall that Ci is zero if i is a nonzero square in GF(n). This is the same as
C′j = 0 if j is even. In polynomial notation, (3.17) is the same as

D′
(

1
x

)
= u(x)2C′(x) (mod xn−1−1). (3.18)

But by definition, C′(x) has only odd-indexed coefficients nonzero. The polyno-
mial u(x)2 has clearly only odd-indexed coefficients nonzero, as it is a square of a
polynomial over GF(2). As a result, the product u(x)2C′(x) (mod xn−1− 1) has
all even-indexed coefficients equal to zero. Hence, D′s equals zero if s is even. It
means that D j is zero if j is a nonzero square in GF(n). Therefore, d is a codeword

of QRC(n,2)
0 .
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In fact, the complete automorphism group of QRC(n,2)
0 is known and given as

follows [Huffman (1998)].

Theorem 3.36. Let n ≡ ±1 (mod 8) be a prime. If n 6∈ {7,23}, then
Aut(QRC(n,2)

0 ) = PAut(QRC(n,2)
0 ) is isomorphic to the group of PSL2(GF(n)).

3.9 Duadic Codes

In the previous subsection, we described quadratic residue codes briefly. In this
subsection, we introduce a family of cyclic codes that are generalizations of the
quadratic residue codes. Binary duadic codes were defined in Leon, Masley and
Pless (1984) and were generalized to arbitrary finite fields in Pless (1986, 1993);
Rushnan (1986).

As usual, let n be a positive integer and q a prime power with gcd(n,q) = 1.
Let S1 and S2 be two subsets of Zn such that

• S1∩S2 = /0 and S1∪S2 = Zn \{0}, and
• both S1 and S2 are a union of some q-cyclotomic cosets modulo n.

If there is a unit µ ∈ Zn such that S1µ = S2 and S2µ = S1, then (S1,S2,µ) is called
a splitting of Zn.

Let m = ordn(q) and let β be an nth root of unity in GF(qm). Let (S1,S2,µ) be
a splitting of Zn, Define

gi(x) = ∏
i∈Si

(x−βi) and g̃i(x) = (x−1)gi(x)

for i ∈ {1,2}. The pair of cyclic codes C1 and C2 of length n over GF(q) with
generator polynomials g1(x) and g2(x) are called odd-like duadic codes, and the
pair of cyclic codes C̃1 and C̃2 of length n over GF(q) with generator polynomials
g̃1(x) and g̃2(x) are called even-like duadic codes.

By definition, C1 and C2 have parameters [n,(n+ 1)/2] and C̃1 and C̃2 have
parameters [n,(n−1)/2]. For odd-like duadic codes, we have the following result
[Huffman and Pless (2003)][Theorem 6.5.2].

Theorem 3.37 (Square root bound). Let C1 and C2 be a pair of odd-like duadic
codes of length n over GF(q). Let do be their (common) minimum odd-like weight.
Then the following hold:

(a) d2
o ≥ n.

(b) If the splitting defining the duadic codes is given by µ=−1, then d2
o−do+1≥

n.
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(c) Suppose d2
o−do +1 = n, where do > 2, and assume that the splitting defining

the duadic codes is given by µ =−1. Then do is the minimum weight of both
C1 and C2.

It is easily seen that quadratic residue codes are duadic codes. Duadic codes
can be defined in terms of their generating idempotents. For further information on
the existence, constructions, and properties of duadic codes, the reader is referred
to Huffman and Pless (2003)[Chapter 6], Ding, Lam and Xing (1999) and Ding
and Pless (1999).

Example 3.38. Let (n,q) = (49,2). Define

S1 = {1,2,4,8,9,11,15,16,18,22,23,25,29,30,32,36,37,39,43,44,46}
∪{7,14,28}

and

S2 = {1,2, . . . ,48}\S1.

It is easily seen that (S1,S2,−1) is a splitting of Z48. The pair of odd-like duadic
codes C1 and C2 defined by this splitting have parameters [49,25,4] and generator
polynomials

x24 + x22 + x21 + x10 + x8 + x7 + x3 + x+1

and

x24 + x23 + x21 + x17 + x16 + x14 + x3 + x2 +1

respectively. The minimum weight of the two codes is even.

3.10 A Combinatorial Approach to Cyclic Codes

In this section, we present a combinatorial approach to the construction of cyclic
codes over finite fields.

Let D be any nonempty subset of Zn. The polynomial

D(x) :=
n−1

∑
i=0

s(D)ixi = ∑
i∈D

xi (3.19)

is called the Hall polynomial of the set D, and can be viewed as a polynomial over
any finite field.

The cyclic code over GF(q) with generator polynomial

g(x) = gcd(xn−1,D(x)) (3.20)
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is called the cyclic code of the set D, where gcd(xn− 1,D(x)) is computed over
GF(q).

It is clear that every cyclic code over a finite field can be produced in this way.
The key question about this approach is how to choose a subset D of of Zn so
that the cyclic code CGF(q)(D) has good parameters. Intuitively, if the subset D
has good combinatorial structures, its code CGF(q)(D) may be optimal. Further
information on this combinatorial approach could be found in Ding (2015a).

Note that the correspondence between s(D)∞ and D(x) is one-to-one. This
approach is also a sequence approach to the construction of all cyclic codes over
finite fields. The reader is referred to Ding (2018b) for further information on the
sequence construction of cyclic codes.

3.11 Notes

Cyclic codes can be treated in other ways. For example, they were treated with
q-polynomials over finite fields in Ding and Lin (2013) and with sequences in
Ding (2018b), which is closely related to the combinatorial approach introduced
in Section 3.10. However, the polynomial approach employed in this chapter
seems to be the most effective one.

Although a considerable amount of progress on the study of BCH codes has
been made in the past 60 years, little is known about the duals of BCH codes. It is
relatively harder to study the duals of BCH codes, as the dual of a BCH code may
not be a BCH code. We do not even have an efficient way to test if a given cyclic
code is a BCH code.

Let α be a primitive element of GF(qm). The following code

C (m,q,α) = {(Trqm/q(aα0),Trqm/q(aα1), · · · ,Trqm/q(aαqm−2)) : a ∈ GF(qm)}

is a [qm− 1,m,(q− 1)qm−1] cyclic code with check polynomial Mα−1(x), which
is the minimal polynomial of α−1 over GF(q) and is irreducible over GF(q). The
code C (m,q,α) is irreducible. It is easily seen that the weight enumerator of
C (m,q,α) is 1+(qm−1)zqm−qm−1

[Ding and Yang (2013)]. The following result
was proved by Heng and Ding (2019).

Theorem 3.39. Every linear code of length n over GF(q) with dual distance at
least 3 is a punctured code of an irreducible cyclic code C (m,q,α) for a positive
integer m and primitive element α ∈ GF(qm).

While cyclic codes form a subclass of linear codes, every linear code with
minimum distance at least two can be punctured from a special irreducible cyclic
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code C (m,q,α). This demonstrates the theoretical importance of the very special
subclass of irreducible cyclic codes C (m,q,α) and the puncturing technique.

Due to their nice algebraic structures, cyclic codes have efficient encoding and
decoding algorithms. They have been widely used in communication systems,
data storage systems and consumer electronics. Reed-Solomon codes are used
the most. In addition, cyclic codes have also applications in frequency hopping
sequences [Ding, Yang and Tang (2010)].
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Chapter 4

Designs and Codes

Designs and codes are companions. On one hand, a design may give many codes.
On the other hand, a code may yield many designs. The objective of this chapter
is to introduce basic connections between designs and codes, which will lay a
foundation for subsequent chapters.

4.1 Fundamentals of t-Designs

4.1.1 Incidence Structures

Many combinatorial designs are special incidence structures. The purpose of this
section is to give a short introduction to incidence structures.

An incidence structure is a triple D= (P ,B,R ), where P is a set of elements
called points and B is a set of elements called blocks (lines), and R ⊆ P ×B is a
binary relation, called incidence relation. The elements of R are called flags.

We use upper case Latin letters to denote blocks and lower case Latin letters
to denote points. If a point p is incident with a block B, we can write either pR B
or p ∈ B and use geometric languages such as “p lies on B”, “B passes through
p”, and “B contains p”.

An incidence structure D = (P ,B,R ) is called a finite incidence structure if
both P and B are finite sets. In this monograph we consider only finite incidence
structures whose blocks have the same cardinality. A finite incidence structure
with equally many points and blocks is called a square.

Example 4.1. Let P = {1,2,3,4,5,6,7} and put

B = {{1,2,3},{1,4,5},{1,6,7},{2,4,7},{2,5,6},{3,4,6},{3,5,7}}.

Let R be the set membership. Then (P ,B,R ) is an incidence structure obtained
from the Fano plane.

115
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4.1.2 Incidence Matrices

Let D = (P ,B,R ) be an incidence structure with v ≥ 1 points and b ≥ 1 blocks.
The points of P are usually indexed with p1, p2, . . . , pv, and the blocks of B are
normally denoted by B1,B2, . . . ,Bb. The incidence matrix MD = (mi j) of D is
a b× v matrix where mi j = 1 if p j is on Bi and mi j = 0 otherwise. It is clear
that the incidence matrix MD depends on the labeling of the points and blocks of
D, but is unique up to row and column permutations. Conversely, every (0,1)-
matrix (entries are 0 or 1) determines an incidence structure. Our definition of
the incidence matrix follows Assmus and Key (1992a)[p.12]. In some books, the
transpose of the matrix MD above is defined as the incidence matrix.

Example 4.2. Consider the incidence structure D = (P ,B,R ) of Example 4.1.
Let the labeling of the points and blocks of D be in the order of their appearance
in P and B . Then the incidence matrix of D is

MD =



1 1 1 0 0 0 0
1 0 0 1 1 0 0
1 0 0 0 0 1 1
0 1 0 1 0 0 1
0 1 0 0 1 1 0
0 0 1 1 0 1 0
0 0 1 0 1 0 1


. (4.1)

Let q be a prime power. The q-rank of an incidence structure D = (P ,B,R )

is the rank of an incidence matrix over GF(q), and will be useful later.

4.1.3 Isomorphisms and Automorphisms

An isomorphism γ from an incidence structure D1 onto an incidence structure D2

is a one-to-one mapping from the points of D1 onto the points of D2 and from the
blocks of D1 onto the blocks of D2 such that p is on B if and only if γ(p) is on
γ(B).

If there is an isomorphism from D1 to D2, then we say that the two incidence
structures are isomorphic. Let M1 and M2 be the incidence matrix of D1 and D2,
respectively. Then D1 and D2 are isomorphic if and only if there are permutation
matrices P and Q such that

PM1Q = M2.

An automorphism of a given incidence structure D is an isomorphism of D
onto itself. Obviously, the set of automorphisms of D forms a group, which is
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called the full automorphism group of D and denoted by Aut(D). Any subgroup
of Aut(D) will be called an automorphism group of D.

4.1.4 Definition and Properties of t-Designs

Let D = (P ,B,R ) be an incidence structure with v ≥ 1 points and b ≥ 1 blocks.
Let t and λ be two positive integers. Then the triple D is said to be t-balanced with
parameter λ if and only if every subset of t points of P is incident with exactly
λ blocks of B . If every block of D is also of the same size k, then D is called a
t-(v,k,λ) design, or simply t-design. The integers t,v,k,λ are referred to as the
parameters of the design. It is possible for a design to have repeated blocks. Only
in Chapter 16 of this monograph, we consider t-designs which may have repeated
blocks. But in the rest part of this monograph, we consider only designs without
repeated blocks, which are called simple t-designs. A t-design is called symmetric
if v = b.

It is clear that t-designs with k = t or k = v always exist. Such t-designs are
trivial. The family of all k-subsets of P forms a k-(v,k,1) design and is said
to be complete or trivial. A 1-design is referred to as a tactical configuration.
A nontrivial 2-design is called a balanced incomplete block design. A t-(v,k,λ)
design is referred to as a Steiner system if t ≥ 2 and λ = 1.

Example 4.3. The incidence structure (P ,B,R ) of Example 4.1 is a 2-(7,3,1)
design, and also a Steiner system.

The following is a fundamental result about t-designs.

Theorem 4.4. A t-(v,k,λt) design D is also an s-(v,k,λs) design for any 0≤ s < t,
where

λs = λt

(v−s
t−s

)(k−s
t−s

) . (4.2)

Proof. We first introduce a useful result. Let U and V be two finite sets, and let
U×V be the Cartesian product of U and V . For any subset S⊆U×V , put

S(u, ·) = {(u,v) ∈ S : v ∈V} and S(·,v) = {(u,v) ∈ S : u ∈U}.

Obviously, S is partitioned in the following two ways:

S =
∪

u∈U

S(u, ·) =
∪
v∈V

S(·,v).

Consequently,

|S|= ∑
u∈U
|S(u, ·)|= ∑

v∈V
|S(·,v)|. (4.3)
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Now let D = (P ,B,R ) be a t-(v,k,λt) design, and let s be an integer with
0 ≤ s ≤ t. We prove the desired conclusion by induction on s. We now assume
that the desired conclusion is true for s = i+ 1, i.e., every set of i+ 1 points is
incident with a fixed number λi+1 blocks of D. Let {p1, . . . , pi} be a set of i points
in P . Consider now the set

S = {(p,B) ∈ P ×B : p 6∈ {p1, . . . , pi},{p1, . . . , pi, p} is incident with B}.
Clearly, |S(·,B)|= k− i. By induction hypothesis, |S(p, ·)|= λi+1. Applying (4.3),
we see that the set {p1, . . . , pi} of points is incident with

λi = λi+1(v− i)/(k− i)
blocks in B , which does not depend on the choice of the points. Hence, the desired
conclusion holds also for s−1 = i. This completes the proof.

By definition, λ0 is the number of blocks in B , which is denoted by b in this
monograph. λ1 is the number of blocks that a point is incident with, and is denoted
by r traditionally. Hence, λ0 and λ1 have special meanings.

As a consequence of (4.2), we have
(v− i)λi+1 = (k− i)λi, 0≤ i≤ t−1.

When i = 0, the identity above becomes
vr = bk. (4.4)

It follows from (4.2) that in a t-(v,k,λ) design we have

b = λ
(v

t

)(k
t

) (4.5)

and every point is incident with (contained in) exactly bk/v blocks. Therefore, the
incidence matrix of the t-design D has a constant column sum r, and a constant
row sum k. The order of t-(v,k,λ) is defined to be λ1−λ2, i.e., r−λ when t = 2.

When t = 2, combining (4.4) and (4.5) yields
r = λ(v−1)/(k−1) (4.6)

and r > λ if k < v.
The existence of t-(v,k,λ) designs is a basic problem in combinatorial designs.

Theorem 4.4 gives necessary conditions for the existence of a t-(v,k,λ) design,
i.e., the right-hand side of (4.2) must be an integer for all s with 0≤ s≤ t.

One can easily prove the following necessary and sufficient condition for D to
be a 2-design.

Theorem 4.5. Let M be an incidence matrix of an incidence structure D. Then D
is a 2-(v,k,λ) design if and only if

MT M = (r−λ)Iv +λJv, (4.7)
where Iv is the v× v identity matrix and Jv is the all-one v× v matrix.
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Theorem 4.6. Let M be a v× v matrix with MT M satisfying (4.7). Then

det(MT M) = (r−λ)v−1(vλ−λ+ r).

If M is an incidence matrix of a 2-(v,k,λ) design with v > k, then by (4.6)

det(MT M) = (r−λ)v−1rk 6= 0.

Proof. Note that the matrix Jv has the eigenvector (1,1, . . . ,1) with eigenvalue v
and the following v−1 eigenvectors

(1,−1,0,0, . . . ,0),(1,0,−1,0, . . . ,0), . . . ,(1,0,0,0, . . . ,0,−1)

with eigenvalue 0. The matrix MT M satisfying (4.7) has one eigenvalue r−λ+λv
and v−1 eigenvalues r−λ. The desired conclusion of the first part then follows.
The conclusion of the second part is a special case of that of the first part.

As a corollary of Theorem 4.6, we have the following result due to Fisher,
which is referred to as the Fisher inequality.

Corollary 4.7. If D is a nontrivial t-design with t ≥ 2, then there are at least as
many blocks as points, i.e., b≥ v.

Note that the Fisher inequality does not hold for certain 1-designs. A sym-
metric 2-(v,k,λ) design with λ < k < v− 1 is simply called a (v,k,λ)-design.
Summarizing the forgoing discussions, we have the following conclusions about
(v,k,λ)-designs.

Theorem 4.8. Let D= (P ,B,R ) be a (v,k,λ)-design. Then

(i) r = k and the order of D is k−λ (it follows from (4.4));
(ii) λ(v−1) = k(k−1) (this is (4.6)); and

(iii) λ divides (k− λ)(k− λ− 1) (it follows from the conclusion of the second
part).

The development of a (v,k,λ) difference set is a (v,k,λ)-design. There are a
huge number of such (v,k,λ)-designs [Ding (2015a)]. The most comprehensive
reference on symmetric designs is Ionin and Shrikhande (2006).

The following theorem presents two characterisations of symmetric 2-designs
whose proof can be found in Hall (1986) and Beth, Jungnickel and Lenz (1999)[p.
78].

Theorem 4.9. A 2-(v,k,λ) design D is symmetric if and only if r = k or |A∩B|= λ
for any two distinct blocks A and B in D.
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Symmetric designs are special partially due to the following [Ionin and
Shrikhande (2006)][p. 188].

Theorem 4.10. A t-(v,k,λ) design with t ≥ 3 and k≤ v−2 cannot be a symmetric
design.

4.1.5 Intersection Numbers of t-Designs

Throughout this section, let D= (P ,B) be a t-(v,k,λ) design, where the incidence
relation R is the set inclusion. Let I and J be two disjoint subsets of P with |I|= i
and |J|= j. Denote by λ(i, j)(I,J) the number of blocks in B that contain I and are
disjoint from J. These numbers λ(i, j)(I,J) are called intersection numbers.

Under certain conditions, the intersection numbers λ(i, j)(I,J) are independent
of the specific choice of the elements in I and J, and depend only on |I| and |J|. In
this case, we use λ(i, j) to denote the intersection numbers. Specifically, we have
the following [Huffman and Pless (2003)][p. 295].

Theorem 4.11. Let i and j be nonnegative integers with i+ j≤ t. Then λ(i, j)(I,J)
is independent of the elements in I and J, and for j ≥ 1,

λ(i, j) = λ(i, j−1)−λ(i+1, j−1). (4.8)

Specifically,

λ(i, j) = λ
(v−i− j

k−i

)(v−t
k−t

) . (4.9)

For Steiner designs, the preceding theorem can be extended with the following
result [Huffman and Pless (2003)][p. 297].

Theorem 4.12. Let D= (P ,B) be a t-(v,k,1) design. Let I and J be two disjoint
subsets of P with |I|= i and |J|= j. Assume that I∪J is a subset of some block in
B . If t < i+ j ≤ k, then λ(i, j)(I,J) is independent of the elements in I and J, and
for j ≥ 1,

λ(i, j) = λ(i, j−1)−λ(i+1, j−1). (4.10)

Certain of the intersection numbers have specific meaning. For example, we
have the following:

(1) λ(0,0) = b, which is the number of blocks in B .
(2) λ(i,0) = λi.
(3) λ(0, j) is the number of blocks not intersecting a given set of j points.

The intersection numbers of designs have several applications. We will need them
later.



November 17, 2021 14:14 ws-book9x6 Designs from Linear Codes designscodes page 121

Designs and Codes 121

4.1.6 Related Designs of a t-Design

Given a t-(v,k,λ) design D = (P ,B), we can obtain several other designs in a
natural way. Below we introduce them briefly.

Let Bc be the set of the complements of the blocks in B , i.e., Bc = {P \B :
B ∈ B}. It can be easily proved that (P ,Bc) is a t-(v,v− k,λ(0,t)) design, where

λ(0,t) = λ
(v−t

k

)(v−t
k−t

) , (4.11)

and is called the complementary design of D.
Let

(P
k

)
denote the set of all k-subsets of P . Then (P ,

(P
k

)
\ B) is a t-

(v,k,
(v−t

k−t

)
−λ) design, and is called the supplementary design of D. Notice that

the complementary and supplementary design of a design defined in some refer-
ences are swapped versions of those defined above.

Let x ∈ P be fixed. The derived design for D= (P ,B) with respect to x is the
design Dx with point set P \{x} and blocks {B\{x} : x ∈ B ∈B} with parameters

(t−1)-(v−1,k−1,λ). (4.12)

Let x ∈ P be fixed. The residual design for (P ,B) with respect to x is the
design with point set P \{x} and blocks {B : x 6∈ B ∈ B} with parameters

(t−1)-(v−1,k,λt−1−λ). (4.13)

Derived and residual designs of a symmetric design D with respect to a block
can also be defined. We will deal with such designs in Chapter 14. The dual design
of a design D= (P ,B,R ) is defined by D∗ = (B,P ,R ∗), where R ∗ is the inverse
relation of R in D. By definition, the incidence matrix of the dual design is the
transpose of the incidence matrix of the original design. The following statements
can be easily verified:

• The dual of a 2-(v,k,λ) design is a 1-(λv(v−1)/k(k−1),λ(v−1)/(k−1),k)
design.
• The dual design of any 2-design D cannot be a 2-design if the number of

blocks is more than the number of points in D (due to the Fisher inequality).
• The dual design of a 2-design D is a 2-design if and only if D is symmetric.
• The dual of a 1-design may be a t-design for t ≥ 2.

A design E is called an extension of a design D if E has a point p such that the
derived design Ep is isomorphic to D. A design is said to be extendable if it has
an extension. Since an extension of a t-(v,k,λ) design is a (t +1)-(v+1,k+1,λ)
design, the following theorem then follows from Theorem 4.2.

Theorem 4.13. If a t-(v,k,λ) design has an extension, then k+1 divides b(v+1).
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The following result is quite useful [Alltop (1975)].

Theorem 4.14. Let D= (P ,B) be a t-(2k+1,k,λ) design and ∞ a new point not
in P .

(1) If t is even, then (P ∪{∞},{B∪{∞} : B ∈ B}∪{P \B : B ∈ B}) is a (t +1)-
(2k+2,k+1,λ) design.

(2) If t is odd and λ =
(v−t

k−t

)
/2, then (P ∪{∞},{B∪{∞} : B ∈ B}∪{P \B : B ∈(P

k

)
\B}) is a (t +1)-(2k+2,k+1,λ) design.

4.2 The Classical Codes of t-Designs

Although the focus of this monograph is constructions and properties of t-designs
from linear codes, we would also summarize certain basic results about linear
codes from t-designs in this section. We will not prove these basic results, but will
give a reference of each result where a proof is available.

4.2.1 Linear Codes of Incidence Structures

Let D = (P ,B,R ) be an incidence structure with v ≥ 1 points and b ≥ 1 blocks,
and let MD be its incidence matrix with respect to a labelling of the points and
blocks of D. The linear code of D over a field F is the subspace CF(D) of Fv

spanned by the row vectors of the incidence matrix MD. By definition CF(D) is a
linear code over F with length v and dimension at most b.

The linear code CF(D) depends on the labelling of the points and blocks of
the incidence structure D= (P ,B,R ). Whatever the labelling is, these codes are
all equivalent under coordinate permutations.

Example 4.15. Consider the incidence structure of Example 4.1 and the labelling
of the points and blocks in Example 4.2. Then the code CF(D) over GF(2) is the
binary Hamming code with parameters [7,4,3], and has the generator matrix MD
of (4.1).

The linear code of an incidence structure may have very bad parameters, as
an incidence structure may not have good combinatorial properties. However, the
linear code of a t-design could be optimal ([Assmus and Key (1992a)] and [Ding
(2015a)]).
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4.2.2 The Classical Codes of t-Designs

For the codes of 2-designs, we can say much more. The following theorem gives
information on the codes of 2-designs [Assmus and Key (1992a)][Theorem 2.4.1].

Theorem 4.16. Let D= (P ,B,R ) be a nontrivial 2-(v,k,λ) design with order r−
λ, where r is defined in (4.6). Let p be a prime and let F be a field of characteristic
p where p does not divide r−λ. Then

rankp(D)≥ v−1

with equality if and only if p divides k.
If rankp(D) = v− 1, then (CF(D))⊥ is generated by the all-one vector. If

rankp(D) = v, then CF(D) = Fv.

Example 4.17. As a demonstration of Theorem 4.16, we consider the code of the
2-(7,3,1) design of Example 4.3. In this case, r = 3 and the order of this design
D is r−λ = 2. We consider now the code CGF(p)(D) whose generator matrix is
given in (4.1).

When p = 3, p does not divide r−λ and p divides k = 3. In this case, we have

rank3(D) = v−1 = 6.

Hence, the dimension of the code CGF(3)(D) is 6. The ternary code CGF(3)(D)⊥
has parameters [7,1,7] and generator matrix [1111111].

When p = 5, p does not divide r−λ and p does not divide k = 3. In this case,
we have

rank5(D) = v = 7.

Hence, the dimension of the code CGF(5)(D) is 7. The code CGF(5)(D) is GF(5)7.

For symmetric 2-designs D, we have r = k and the order of D becomes r−λ =

k− λ. In this case, Theorem 4.16 can be refined as follows ([Bridges, Hall and
Hayden (1981)], [Huffman and Pless (2003)][Theorem 8.5.2]).

Theorem 4.18. Let D = (P ,B,R ) be a symmetric 2-(v,k,λ) design with order
k−λ. Let p be a prime and let F be a field of characteristic p. Then we have the
following.

(a) If p divides (k− λ) and p divides k, then CF(D) is self-orthogonal and has
dimension at most v/2.

(b) If p does not divide (k−λ) but p divides k, then CF(D) has dimension v−1.
(c) If p does not divide (k−λ) and p does not divide k, then CF(D) has dimension

v.
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The following theorem is due to Klemm (1986) (see also Assmus and Key
(1992a)[Theorem 2.4.2]).

Theorem 4.19. Let D= (P ,B,R ) be a 2-(v,k,λ) design with order r−λ, where
r is defined in (4.6). Let p be a prime dividing r−λ. Then

rankp(D)≤
|B|+1

2
;

moreover, if p does not divide λ and p2 does not divide r−λ, then

CF(D)⊥ ⊆ CF(D)

and rankp(D)≥ v/2, where F is a finite field with characteristic p.

Example 4.20. As a demonstration of Theorem 4.19, we consider the code of the
2-(7,3,1) design of Example 4.3. In this case, r = 3 and the order of this design
D is r−λ = 2. We consider the case that p = 2 and the code CGF(p)(D). It is clear
that p divides r−λ and

rankp(D) =
|B|+1

2
= 4.

Hence, the dimension of the code CGF(p)(D) is 4. The binary code CGF(p)(D) was
treated in Example 4.2, and has parameters [7,4,3].

Clearly, p does not divide λ and p2 does not divide r− λ. The dual code
CGF(p)(D)⊥ has the following generator matrix1 0 1 0 1 1 0

0 1 1 0 0 1 1
0 0 0 1 1 1 1

 .
Note that the row vectors of this matrix are pairwise orthogonal. In this case, we
have indeed

CGF(p)(D)⊥ ⊆ CGF(p)(D).

For symmetric 2-designs, Theorem 4.19 can be refined as follows ([Bridges,
Hall and Hayden (1981)], [Huffman and Pless (2003)][Theorem 8.5.3]).

Theorem 4.21. Let D = (P ,B,R ) be a symmetric 2-(v,k,λ) design with order
k−λ. Let p be the characteristic of a finite field F. Assume that p divides k−λ,
but p2 does not divide k−λ. Then v is odd, and we have the following.

(a) If p divides k, then CF(D) is self-orthogonal and has dimension (v−1)/2.
(b) If p does not divide k, then CF(D)⊥ ⊂ CF(D) and CF(D) has dimension (v+

1)/2.
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The next result is useful [Assmus and Key (1992a)][p. 54].

Theorem 4.22. Let D = (P ,B,R ) be a 2-(v,k,λ) design with k < v. If
CGF(q)(D) 6= GF(q)v, then the minimum weight of CGF(q)(D)⊥ is at least

v−1
k−1

+1.

4.3 The Support Designs of Linear Codes

So far, we have introduced the classical codes of designs. Conversely, we can
obtain t-designs from linear codes. The objective of this section is to introduce
the classical construction of t-designs with linear codes and the Assmus-Mattson
Theorem.

4.3.1 The Construction of t-Designs from Linear Codes

Let C be a linear code of length n. Consider all the codewords of weight w in
C . Let c = (c1,c2, . . . ,cn) be a codeword of weight w in C . The support of c is
defined by

Suppt(c) = {1≤ i≤ n : ci 6= 0} ⊆ {1,2,3, . . . ,n}.
Two different codewords of weight w may have the same support. Let P =

{1,2, . . . ,n} and B be the set of the supports of the codewords of weight w in
C , where no repeated blocks are allowed. Let the incidence relation R be the
usual containment of sets. Then it is possible that (P ,B,R ) is a t-design for some
t. In this case, we say that the codewords of weight w in C hold or support a
t-design, which is called a support design of C .

Example 4.23. The binary [7,4,3] Hamming code has the weight enumerator 1+
7z3 +7z4 + z7. It has 7 codewords of weight 3. The seven codewords are exactly
the row vectors of the matrix in (4.1). The supports of the seven codewords form
the set B in Example 4.1. Hence the codewords of weight 3 in the binary [7,4,3]
Hamming code hold a 2-(7,3,1) design, which is the Fano plane.

The Assmus-Mattson theorem below describes t-designs from linear codes
[Assmus and Mattson (1969)].

Theorem 4.24 (Assmus-Mattson). Let C be an [n,k,d] code over GF(q). Let d⊥

denote the minimum distance of C⊥. Let w be the largest integer satisfying w≤ n
and

w−
⌊

w+q−2
q−1

⌋
< d.
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Define w⊥ analogously using d⊥. Let (Ai)
n
i=0 and (A⊥i )

n
i=0 denote the weight

distribution of C and C⊥, respectively. Fix a positive integer t with t < d, and let
s be the number of i with A⊥i 6= 0 for 1≤ i≤ n− t. Suppose s≤ d− t. Then

(i) the codewords of weight i in C hold a t-design provided Ai 6= 0 and d ≤ i≤w,
and

(ii) the codewords of weight i in C⊥ hold a t-design provided A⊥i 6= 0 and d⊥ ≤
i≤min{n− t,w⊥}.

No simple proof of the Assmus-Mattson theorem is known in the literature.
The original proof can be found in Assmus and Mattson (1969). We will present a
slightly refined proof of this theorem given in Huffman and Pless (2003)[p. 303].
Before doing this, we prove the following lemma.

Lemma 4.25. Let C be a linear code over GF(q) with minimum weight d.

(a) Let c and c′ be two codewords of weight d with Suppt(c) = Suppt(c′). Then
c = ac′ for some nonzero a ∈ GF(q).

(b) Let w be the largest integer with w≤ n satisfying

w−
⌊

w+q−2
q−1

⌋
< d.

Let c and c′ be two codewords of weight i with d ≤ i ≤ w and Suppt(c) =
Suppt(c′). Then c = ac′ for some nonzero a ∈ GF(q).

Proof. We first prove the conclusion in Part (a). Let i be the smallest integer in
Suppt(c). Then the coordinates ci of c and c′i of c′ are nonzero. Let a = ci/c′i ∈
GF(q)∗. Then c−ac′ is a codeword in C with weight at most d−1. Thus c−ac′

must be the zero codeword. The desired conclusion of Part (a) then follows.
We now proceed to prove the conclusion in Part (b). Suppose that Suppt(c) =

{ j1, j2, . . . , ji}, where d ≤ i≤ w. Consider now the multiset{{
c jh
c′jh

: 1≤ h≤ i

}}
of elements in GF(q)∗. Let a be an element in this multiset with the highest
multiplicity, which is at least ⌊

i+q−2
q−1

⌋
.

Then the codeword c−ac′ has Hamming weight at most

i−
⌊

i+q−2
q−1

⌋
≤ w−

⌊
w+q−2

q−1

⌋
< d.

Consequently, c = ac′.
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Let w be defined as in Part (b) of Lemma 4.25. It can be easily shown that w
is the largest integer such that a codeword of weight w or less in an [n,k,d] code
over GF(q) is determined uniquely up to scalar multiplication by its support. This
can be done by finding two vectors in GF(q)w+1 of weight w+ 1 that generate
a [w+ 1,2,d] code over GF(q). Lemma 4.25 will be employed to determine the
parameters of certain t-designs in later chapters.

Proof of Theorem 4.24. We now proceed to prove the Assmus-Mattson theorem.
Let T be any set of t coordinate positions, and let C T denote the code of length
n− t obtained from C by puncturing on T . Let C⊥(T ) be the subcode of C⊥ that
is zero on T , and let (C⊥)T be the code C⊥ shortened on T . A pictorial illustration
of the relations among these codes is below:

[n,k,d] , Ai

C
←→

[
n,n− k,d⊥

]
,A⊥i

C⊥

l l
C T[
n− t,k,dT

]
, A′i

←→
(C T )⊥ = (C⊥)T[
n− t,n− t− k,(dT )⊥

]
, A′⊥i

Since t < d, it follows from Theorem 2.8 that C T is an [n− t,k,dT ] code with
dT ≥ d− t and (C T )⊥ = (C⊥)T .

Let A′i = Ai(CT ) and A′⊥i = Ai((CT )⊥) = Ai((C⊥)T ), for 0≤ i≤ n− t, be the
weight distributions of C T and (C T )⊥, respectively. Since s≤ d−t ≤ dT , we have
that A′i = 0 for 1 ≤ i ≤ s−1. If S = {i : A⊥i 6= 0, 0 < i ≤ n− t}, then the A′⊥i are
unknown only for i∈ S, as A′⊥i ≤ A⊥i and |S|= s. These facts about A′i and A′⊥i are
independent of the choice of the elements in T . By Theorem 2.6, there is a unique
solution for all A′i and A′⊥i , which must therefore be the same for each set T of
size t. The weight distribution of C⊥(T ) is the same as that of (C⊥)T . Hence, the
weight distribution of C⊥(T ) is the same for all T of size t.

Let B be the set of supports of the codewords of weight d in C . Let T be a
set of size t. The codewords of weight d in C , whose support contains T , is in
one-to-one correspondence with the codewords of weight d− t in C T . There are
A′d−t such codewords in C T and hence A′d−t/(q−1) blocks containing T in B by
Lemma 4.25. Thus the codewords of weight d in C hold a t-design.

The rest of Part (i) is then proved by induction as follows. Assume that the
codewords of weight x in C with Ax 6= 0 and d ≤ x≤ z−1 < w, for some integer
z, hold t-designs. Suppose the intersection numbers of these designs are λ(i, j)(x)
(see Section 4.1.5 for the definition and properties of intersection numbers). If
d ≤ x ≤ z− 1 < w but Ax = 0, set λ(i, j)(x) = 0. By Lemma 4.25, the value w
has been chosen to be the largest possible weight so that a codeword of weight w
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or less in C is determined uniquely up to scalar multiplication by its support. If
Az 6= 0, we show that the codewords of weight z in C hold a t-design. Suppose
that there are N(T ) codewords of weight z in C whose support contains T . Every
codeword of weight z in C whose support contains T is associated with a codeword
of weight z−t in C T . However, every codeword of weight z−t in C T is associated
with a codeword of weight z− ℓ in C whose support intersects T in a set of size
t−ℓ for 0≤ ℓ≤ z−d. It then follows from the definition of intersection numbers,
the induction hypothesis and Lemma 4.25 that

A′z−t = N(T )+(q−1)
z−d

∑
ℓ=1

(
t
ℓ

)
λ(t−ℓ,ℓ)(z− ℓ).

Therefore, N(T ) is independent of the elements in T . Hence, the codewords of
weight z hold a t-design. Thus, Part (i) holds by induction.

Let d⊥ ≤ i≤min{n− t,w⊥}. The codewords of weight w⊥ or less in C⊥ are
determined uniquely up to scalar multiplication by their supports by Lemma 4.25.
Let B be the set of all supports of the codewords of weight i in C⊥, and let B ′ be
their complements. Let B ′T be the set of blocks in B ′ that contain T . These blocks
are in one-to-one correspondence with the supports of the codewords of weight i
which are zero on T , i.e., codewords of weight i in C⊥(T ). The number of blocks
in B ′T is independent of the specific elements in T , as the weight distribution of
C⊥(T ) is independent of the elements in T . Therefore, |B ′T | is independent of the
elements of T , and B ′ is the set of blocks in a t-design. Hence, B is the set of
blocks in a t-design. This proves Part (ii).

A different proof of Theorem 4.24 is given in the proof of Theorem 16.3,
which gives a better understanding of the Assmus-Mattson Theorem.

The Assmus-Mattson Theorem applied to C is most useful when C⊥ has only
a few nonzero weights. It has been one of the two tools for discovering designs in
linear codes. When q = 2, Theorem 4.24 becomes the following.

Corollary 4.26 (Assmus-Mattson). Let C be an [n,k,d] binary code, and let d⊥

denote the minimum distance of C⊥. Let (Ai)
n
i=0 and (A⊥i )

n
i=0 denote the weight

distribution of C and C⊥, respectively. Fix a positive integer t with t < d, and let
s be the number of i with A⊥i 6= 0 for 1≤ i≤ n− t. Suppose s≤ d− t. Then

• the codewords of weight i in C hold a t-design provided Ai 6= 0 and d ≤ i ≤ n,
and
• the codewords of weight i in C⊥ hold a t-design provided A⊥i 6= 0 and d⊥ ≤ i≤

n− t.
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The next theorem will be employed frequently later [MacWilliams and Sloane
(1977)][p. 165], and is documented also as Corollary 16.25 with a different proof.

Theorem 4.27. Let C be an [n,k,d] binary linear code with k > 1, such that for
each weight w > 0 the supports of the codewords of weight w form a t-design,
where t < d. Then the supports of the codewords of each nonzero weight in C⊥

also form a t-design.

The following theorem may strengthen the Assmus-Mattson Theorem (i.e.,
Corollary 4.26) [MacWilliams and Sloane (1977)][p. 166]. It is also a special
case of Theorem B.8.

Theorem 4.28. Let C be an [n,k,d] binary code. Let (Ai)
n
i=0 and (A⊥i )

n
i=0 be the

weight distribution of C and C⊥, respectively. Let s and s⊥ be the total number of
nonzero weights in C and C⊥, respectively. Define

s̄ =
{

s if An = 0,
s−1 if An = 1

and

s⊥ =

{
s⊥ if A⊥n = 0,
s⊥−1 if A⊥n = 1.

If either s < d⊥ or s⊥ < d, then the supports of the codewords of weight w in
C form a t-design, where

t = max{d⊥− s̄,d− s⊥},
provided that t < d.

The construction of support designs from linear codes goes back at least to
Paige (1956), where he obtained two Steiner systems from linear subspaces (i.e.,
linear codes), though Paige did not use the language of coding theory. Perhaps
the first explicit construction of designs from codes was in Bose (1961). In 1996,
Assmus and Mattson followed the course Paige started in 1956, and constructed
several Steiner systems. These investigations eventually led them to the discov-
ery of the Assmus-Mattson theorem documented in Assmus and Mattson (1969),
where Steiner systems were also reported.

4.3.2 MDS Codes and Complete Designs

MDS codes can be characterised by designs as follows [Assmus and Mattson
(1969)].

Theorem 4.29. A linear code is MDS if and only if the supports of the minimum
weight codewords form a complete design.
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Proof. Let C be a code of length n. The coordinate functions fi, 0 ≤ i ≤ n− 1,
are defined by

fi((c0,c1, . . . ,cn−1)) = ci.

Suppose that C is an [n,k,d] code over GF(q) such that the supports of all
codewords of weight d form a complete design. Then every d-subset of coordinate
places holds a codeword. We wish to prove that d = n− k+1. Consider now the
subcode C1 of C spanned by the minimum weight codewords. Then every subset
of d coordinate functions of the dual code C⊥1 are linearly dependent, but no subset
of size d−1 has this property. Therefore, C⊥1 has dimension d−1. Consequently,
C1 has dimension n− (d− 1). Since C1 is a subcode of C , n− (d− 1) ≤ k. The
reverse inequality follows from the Singleton bound. As a result, n− (d−1) = k.
This means that C is MDS.

Conversely, suppose that d = n− (k− 1). Then every k coordinate functions
are linearly independent. Given a d-subset of coordinate functions, we consider
the n−d = k−1 functions of the complementary subset. The intersection of the
kernels of these is non-0. Hence, there is a nonzero codeword with Hamming
weight at most d and such that the coordinates are 0 in the complementary subset.
Therefore, this codeword must have Hamming weight d and have the given d-
subset of coordinates as its support. Consequently, the supports of all codewords
of weight d form a complete design.

One can prove that all support designs of MDS codes are complete, which are
trivial and not interesting. However, some MDS codes can be used to construct
hyperoval designs in a different way (see Chapter 13). Thus, support designs are
just one way to obtain designs from linear codes. There are other ways to construct
designs with linear codes.

4.3.3 Constructing Designs from Related Binary Codes

The objective of this section is to present an idea of constructing t-designs from
binary linear codes. Let C be a binary linear code with a few weights. If C holds

t-designs, so may C⊥, C⊥, and C⊥
⊥

. The idea goes as follows.

(a) We chose C with only a few weights and known weight distribution.
(b) We derive the weight distribution of C⊥ from that of C with the MacWilliams

Identity.
(c) We employ the Assmus-Mattson Theorem to prove that C and C⊥ hold t-

designs if C was chosen properly.
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(d) We derive the weight distribution of C⊥
⊥

from that of C with the help of
Theorem 2.10 and the Pless Power Moments.

(e) We derive the weight distribution of C⊥ from that of C⊥
⊥

with the
MacWilliams Identity.

(f) We finally prove that C⊥ and C⊥
⊥

hold (t + 1)-designs with the Assmus-
Mattson Theorem.

A pictorial description of the process is the following:

C⊥ ⇐= C
⇓

C⊥ ⇐= C⊥
⊥

The key to the success of this idea is to find out the right binary linear code C . We
will get back to this idea in some subsequent chapters.

4.4 Designs of Codes with Special Automorphism Groups

Recall now the automorphism group Aut(C ) and the permutation group Autpr(C )

defined in Section 2.8. Every element in Aut(C ) is of the form DPγ, where D is
a diagonal matrix, P is a permutation matrix, and γ is a field automorphism. We
say that Aut(C ) is t-homogeneous (respectively, t-transitive) if for every pair of
t-element sets of coordinates (respectively, t-element ordered sets of coordinates),
there is an element DPγ of the automorphism group Autpr(C ) such that its per-
mutation part P sends the first set to the second set, i.e., there is an element P in
Autpr(C ) such that P sends the first set to the second set.

Our objective in this section is to introduce and prove the following theorem,
which will be employed in some of the subsequent chapters for constructing t-
designs from codes.

Theorem 4.30. Let C be a code of length n over GF(q) where Aut(C ) is t-
homogeneous or t-transitive. Then the codewords of any weight i≥ t of C hold a
t-design.

Proof. Let P be the set of coordinates of the code and B the set of supports
of the codewords of weight i in C . Consider now all t-subsets of P . Let T1 =

{ j1, j2, . . . , jt} ⊆ P be one that is contained in the maximum number λ of blocks
in B . Suppose that these distinct blocks are B1,B2, . . . ,Bλ, which are the supports
of the codewords c1,c2, . . . ,cλ, respectively. Let T2 be any other t-element subset
of P . Then there exists an automorphism g of C whose permutation part maps T1

to T2 by definition. The codewords g(c1),g(c2), . . . ,g(cλ), have distinct supports,
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which are blocks of B . Hence, T2 is contained in these λ blocks. The maximality
of λ shows that T2 is in no more than λ blocks. It then follows that T2 is contained
in exactly λ blocks in B . Hence (P ,B) is a t-(n, i,λ) design.

It will be seen in later chapters that determining the parameters of some t-
designs could be harder than proving their design property. For instance, one may
be able to prove that the automorphism group of a linear code is 2-transitive or
2-homogeneous, and thus have proved that the code holds 2-designs. However, it
may be extremely difficult to determine the parameters k and λ in the 2-(v,k,λ)
designs.

4.5 Designs from Finite Geometries

Though this monograph is focused on designs from codes, we need to introduce
two families of 2-designs from finite geometries, as they are related to designs
from codes.

Recall the affine geometry AG(m,GF(q)), where the points are the vectors
in the vector space GF(q)m, the lines are the cosets of all the one-dimensional
subspaces, the planes are the cosets of the two-dimensional subspaces, the i-flats
are the cosets of the i-dimensional subspaces, and the hyperplanes are the cosets
of the (m−1)-dimensional subspaces of GF(q)m (see Section 1.6.2). The d-flats
of GF(q)m can be employed to construct 2-designs.

Theorem 4.31. Let B denote the sets of all d-flats in GF(q)m, and P the set
of all vectors in GF(q)m, and R the containment relation. Then the triple
AGd(m,GF(q)) := (P ,B,R ) is 2-(v,k,λ) design, where

v = qm, k = qd , λ =

[
m−1
d−1

]
q
,

and the Gaussian coefficients are defined by[n
i

]
q
=

(qn−1)(qn−1−1) · · ·(qn−i+1−1)
(qi−1)(qi−1−1) · · ·(q−1)

.

In addition, the number of blocks in this design is

b = qm−d
[m

d

]
q
.

In particular, AG1(m,GF(q)) is a Steiner system S(2,q,qm). When d ≥ 2,
AGd(m,GF(2)) is a 3-design. In particular, AG2(m,GF(2)) is a Steiner system
S(3,4,2m).
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Proof. It is straightforward to see that the group GAm(GF(q)) is a subgroup of
the automorphism group of the incidence structure AGd(m,GF(q)). The desired
conclusions on the design property then follow from Theorems 1.77 and 1.78
with an argument similar to the proof of Theorem 4.30. By Theorem 1.41, the
number of blocks in the design AGd(m,GF(q)) is equal to qm−d

[m
d

]
q. The desired

conclusion on the parameters of the design then follows.

By adding a new point to AG1(m,GF(q)), the Steinter system AG1(m,GF(q))
can be extended into a Steiner system S(3,q+1,qm+1) [Key and Wagner (1986)].

Example 4.32. Consider now the 2-design AG1(2,GF(q)). Its point set is GF(q)2.
The blocks are the lines

L(a,b,c) = {(x,y) ∈ GF(q)2 : ax+by+ c = 0},

where (a,b,c) ∈ GF(q)3 and (a,b) 6= (0,0). These lines are classified into the
following two types:

• Those with a = 0 and b 6= 0 (horizontal lines): There are q such lines defined
by

L(0,b,c) = {(x,y) ∈ GF(q)2 : y+ c/b = 0}, c/b ∈ GF(q).

• Those with a 6= 0 (slope lines): There are q2 such lines defined by

L(1,b/a,c/a) =

{
(x,y) ∈ GF(q)2 : x+

b
a

y+
c
a
= 0
}
, (b/a,c/a) ∈ GF(q)2.

The total number of distinct lines is q2+q. AG1(2,GF(q)) is a Steiner system
with parameters 2-(q2,q,1).
In particular, let q = 2. Then AG1(2,GF(2)) has point set

P = {(00), (01), (10), (11)}

and line set

B = {{(10),(00)},{(11),(00)},{(11),(10)},
{(11),(01)},{(01),(10)},{(01),(00)}}. (4.14)

We now look further into the design AG1(2,GF(2)) in Example 4.32. The
block set B in (4.14) can be partitioned into {B1,B2,B3}, where

B1 = {{(10),(00)},{(11),(01)}},
B2 = {{(11),(00)},{(01),(10)}},
B3 = {{(11),(10)},{(01),(00)}}.
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Note that each Bi (called parallel class) is a partition of the point set P , and
consists of two blocks. Such design is said to be resolvable.

In formal words, a design is resolvable if its block set B could be partitioned
into r subsets (called parallel classes), each consisting of b/r disjoint blocks and
partitioning the point set. Resolvable designs have many applications. However,
we will not discuss their applications in this monograph.

The projective space PG(m−1,GF(q)) and its d-flats were defined in Section
1.6.1. Similarly, the d-flats in the projective geometry PG(m− 1,GF(q)) form a
2-design, which is documented below.

Theorem 4.33. Let B denote the set of all d-flats in PG(m−1,GF(q)), and P the
point set of PG(m− 1,GF(q)), and R the containment relation. Then the triple
PGd(m−1,GF(q)) := (P ,B,R ) is a 2-(v,k,λ) design, where

v =
qm−1
q−1

, k =
qd+1−1

q−1
, λ =

[
m−2
d−1

]
q
.

In addition, the number of blocks in this design is

b =

[
m

d +1

]
q
.

In particular, PG1(m−1,GF(q)) is a Steiner system S(2,q+1,(qm−1)/(q−1)),
and PGm−2(m−1,GF(q)) is a symmetric design with parameters

2−
(

qm−1
q−1

,
qm−1−1

q−1
,

qm−2−1
q−1

)
for m≥ 3.

Proof. Clearly, the group PGLm(GF(q)) is a subgroup of the automorphism group
of the incidence structure PGd(m− 1,GF(q)). The design property then follows
from Theorem 1.83 with an argument similar to the proof of Theorem 4.30. The
desired conclusion on the parameters of the design then follows from Theorem
1.39 and (1.22).

The Steiner system PG1(m−1,GF(4)) with parameters S(2,5,(4m−1)/3) can
be extended into a Steiner system S(3,6,(4m+2)/3) for every m≥ 3 [Assmus and
Key (1986)].

General affine planes were discussed in Section 1.6.6. We have the following
result about finite affine planes [Ionin and Shrikhande (2006)][p. 63].

Theorem 4.34. An affine plane of order n is a 2-(n2,n,1) design. Conversely, for
n≥ 2, any 2-(n2,n,1) design is an affine plane.
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General projective planes were introduced in Section 1.6.3. Similarly, we
have the following conclusion about finite projective planes [Ionin and Shrikhande
(2006)][p. 73].

Theorem 4.35. Any projective plane of order n is a 2-(n2+n+1,n+1,1) design.
Conversely, any 2-(n2 +n+1,n+1,1) design with n≥ 2 is a projective plane.

The reader may work out a proof for the two theorems above, which should
be an easy task.

4.6 The Codes of Geometric Designs

In the preceding section, we treated the designs of the affine geometry
AG(m,GF(q)) and projective geometry PG(m− 1,GF(q)). In this section, we
briefly describe the classical codes of the geometric designs. Throughout the
whole section, let q be a prime. Notice that every integer i with 0≤ i≤ qm−1 has
the q-adic expression

i = i0 + i1q+ · · ·+ im−1qm−1,

where each i j ∈ {0,1, . . . ,q−1}. The q-weight of i, denoted by wtq(i), is defined
by

wtq(i) = i0 + i1 + · · ·+ im−1.

4.6.1 The Codes of the Designs of the Affine Geometry

Recall that q is a prime throughout this section. Let t ≥ 0 be an integer with
t = a(q− 1)+ b ≤ m(q− 1), where 0 ≤ b ≤ q− 1. We define a cyclic code Mt

over GF(q) with length qm−1 and defining set

{i : 0≤ i≤ qm−1, wtq(i)< t}.

Let Mt denote the extended code of Mt . The following theorem was proved in
Assmus and Key (1998).

Theorem 4.36. Let 0≤ r≤m. The code Mt over GF(q) has length qm, dimension

|{i : 0≤ i≤ qm−1, wtq(i)≤ m(q−1)− t}|

and minimum weight (b+1)qa, where t = a(q−1)+b and 0≤ b < q−1.

The main result of this section is the following whose proof can be found in
Assmus and Key (1998).
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Theorem 4.37. Let 0 ≤ r ≤ m. The code CGF(q)(AGr(m,GF(q))) of the design
AGr(m,GF(q)) of points and r-flats of the affine geometry AG(m,GF(q)) is the
code Mr(q−1) with minimum weight qr and dimension

|{i : 0≤ i≤ qm−1, wtq(i)≤ (m− r)(q−1)}|.

As corollaries of Theorem 4.37, we have the next two results.

Corollary 4.38. The code CGF(q)(AGm−1(m,GF(q))) of the geometric design
AGm−1(m,GF(q)) of points and (m−1)-flats of the affine geometry AG(m,GF(q))
has length qm, minimum weight qm−1 and dimension

(m+q−1
m

)
.

Corollary 4.39. The code CGF(q)(AG1(m,GF(q))) of the geometric design
AG1(m,GF(q)) of points and lines of the affine geometry AG(m,GF(q)) has
length qm, minimum weight q and dimension qm−

(m+q−2
m

)
.

In particular, the code CGF(3)(AG1(m,GF(3))) of the Steiner triple system of
points and lines of AG(m,GF(3)) has parameters [3m,3m−1−m,3].

In Chapter 5, we will prove that CGF(2)(AGr(m,GF(2))) is the binary Reed-
Muller code R2(m− r,m) of order m− r. Below is an example of the case that q
is not a prime.

Example 4.40. The binary code CGF(2)(AG1(2,GF(4))) has parameters [16,9,4]
and weight enumerator

1+20z4 +160z6 +150z8 +160z10 +20z12 + z16.

Its dual has parameters [16,7,6] and weight enumerator

1+48z6 +30z8 +48z10 + z16.

4.6.2 The Codes of the Designs of the Projective Geometry

Throughout this section, q is a prime. Let m≥ 2. A point of the projective geom-
etry PG(m−1,GF(q)) is given in homogeneous coordinates by (x0,x1, . . . ,xm−1)

where all xi are in GF(q) and are not all zero; each point has q− 1 coordinate
representations, since (ax0,ax1, ...,axm−1) and (x0,x1, ...,xm−1) yield the same 1-
dimensional subspace of GF(q)m for any non-zero a ∈ GF(q).

For an integer r ≥ 0, let PP(r,m − 1,q) denote the linear subspace of
GF(q)[x0,x1, . . . ,xm−1] that is spanned by all monomial xi0

0 xi1
1 · · ·x

im−1
m−1 satisfying

the following two conditions:

• ∑m−1
j=0 i j ≡ 0 (mod q−1),

• 0 < ∑m−1
j=0 i j ≤ r(q−1).
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Each a ∈ GF(q) is viewed as the constant function fa(x0,x1, . . . ,xm−1)≡ a.
Let {x1, . . . ,xN} be the set of projective points in PG(m− 1,q), where N =

qm−1
q−1 . Then, the rth order projective generalized Reed-Muller code PRM(r,m−

1,q) of length qm−1
q−1 is defined by

PRM(r,m−1,q) =
{(

f (x1), . . . , f (xN)
)

: f ∈ PP(r,m−1,q)∪GF(q)
}
.

When r > 1, let PRM∗(r,m−1,q) be the subcode of PRM(r,m−1,q) defined by

PRM∗(r,m−1,q) =
{(

f (x1), . . . , f (xN)
)

: f ∈ PP(r,m−1,q)
}
.

Thus, PRM∗(r,m− 1,q) is a subcode of PRM(r,m− 1,q). For the minimum
weight and the dual of the projective generalized Reed-Muller code, we have the
following [Assmus and Key (1998)].

Theorem 4.41. Let 0≤ r ≤ m−1. Then, the minimal weight of PRM(r,m−1,q)
is qm−r−1

q−1 and

PRM(r,m−1,q)⊥ = PRM∗(m−1− r,m−1,q).

The relation between the codes CGF(q)(PGr−1(m−1,GF(q))) of the designs of
projective geometries and the projective generalized Reed-Muller codes is given
as follows [Assmus and Key (1998)].

Theorem 4.42. Let m be a positive integer, q a prime, and 0≤ r ≤ m.
(i) The code CGF(q)(PGr−1(m− 1,GF(q))) from the design of points and

projective (r − 1)-dimensional subspaces of the projective geometry PG(m−
1,GF(q)) is the same as PRM(m− r,m−1,q) up to a permutation of coordinates.

(ii) CGF(q)(PGr−1(m − 1,GF(q))) has minimum weight qr−1
q−1 and the

minimum-weight vectors are the multiples of the characteristic vectors of the
blocks.

(iii) The dual code CGF(q)(PGr−1(m− 1,GF(q)))⊥ is the same as PRM∗(r−
1,m− 1,q) up to a permutation of coordinates and has minimum weight at least
qm−r+1−1

q−1 +1.
(iv) The dimension of the code CGF(q)(PGr−1(m−1,GF(q))) is

qm−1
q−1

−
r−2

∑
i=0

(−1)i
(
(r−1− i)(q−1)−1

i

)(
m− r+(r−1− i)q

m−1− i

)
.

In Chapter 5, we will prove that CGF(2)(PGr(m,GF(2))) is a punctured binary
Reed-Muller code. Below is an example of the codes in the case that q is not a
prime.
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Example 4.43. The binary code CGF(2)(PG1(2,GF(4))) has parameters [21,10,5]
and weight enumerator

1+21z5 +210z8 +280z9 +280z12 +210z13 +21z16 + z21.

Its dual has parameters [21,11,6] and weight enumerator
1+168z6 +210z8 +1008z10 +280z12 +360z14 +21z16.

4.7 Spherical Geometry Designs

Let q be a power of a prime p, and let m be a positive integer. Recall that the
points of PG(1,GF(qm)) are given by

P =
{(a

1

)
: a ∈ GF(qm)

}
∪
{(

1
0

)}
,

where
(

1
0

)
is usually denoted by ∞ and

( a
1

)
is identified by a.

Let

A =

[
a c
b d

]
with ad−bc 6= 0, where a,b,c,d ∈ GF(qm). Let σ(A,0) = Ay ∈ PGL2(GF(qm)) be
the permutation defined with A, where y ∈GF(qm)2. Then σ(A,0) acts on the point
set P as

σ(A,0)

(( x
1

))
=


( ax+c

bx+d
1

)
if bx+d 6= 0,(

1
0

)
otherwise,

and

σ(A,0)

((
1
0

))
=


(

1
0

)
if b = 0,(

ab−1

1

)
if b 6= 0.

Put

B =
{(a

1

)
: a ∈ GF(q)

}
∪
{(

1
0

)}
and

B = {σ(A,0)(B) : σ(A,0) ∈ PGL2(GF(qm))}.
Note that B is a subset of P and PGL2(GF(q)) is a subgroup of PGL2(GF(qm)).

Define D = (P ,B). Since PGL2(GF(qm)) acts 3-transitively on P , D is a 3-
(qm +1,q+1,λ) design for some λ. Since PGL2(GF(qm)) is sharply 3-transitive
on P and PGL2(GF(q)) is sharply 3-transitive on B, PGL2(GF(q)) is the setwise
stabiliser of B. Consequently, λ = 1. This has proved the following theorem.

Theorem 4.44. Let notation be the same as before. Let m≥ 2. Then D= (P ,B)

is a Steiner system S(3,q+1,qm +1).
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The design D= (P ,B) of Theorem 4.44 was constructed by Witt (1937), and
is called a spherical geometry design. It is not isomorphic to the design with
the same parameters proposed by Key and Wagner (1986). By the definition of
the spherical geometry design, the full automorphism group of the design D =

(P ,B) of Theorem 4.44 contains PGL2(GF(qm)). Experimental data indicates
that PΓL2(GF(qm)) is the full automorphism group of D= (P ,B). But a proof of
this statement is missing. A coding-theory construction of the spherical geometry
design will be presented in Section 15.5, where it will be shown that the p-rank of
D is qm +1.

Example 4.45. Let q = 3 and m = 2. Let w be a generator of GF(32)∗. Then the
design D= (P ,B) of Theorem 4.44 has point set

P = {(0,1),(1,1),(w,1),(w2,1),(w3,1),(2,1),(w5,1),(w6,1),(w7,1),(1,0)}

here and hereafter the vector (a,b) is used to denote the column vector
(a

b

)
. The

block set is

B = {{(2,1),(w,1),(w6,1),(w5,1)},{(2,1),(w2,1),(1,0),(w5,1)},
{(2,1),(0,1),(1,0),(1,1)},{(0,1),(w2,1),(w6,1),(1,0)},

{(w3,1),(w2,1),(w,1),(w6,1)},{(2,1),(w3,1),(0,1),(w6,1)},
{(w2,1),(w,1),(1,1),(w5,1)},{(0,1),(w,1),(1,0),(w5,1)},
{(w2,1),(w7,1),(w,1),(1,0)},{(0,1),(w7,1),(w,1),(w6,1)},
{(w3,1),(w7,1),(w6,1),(1,1)},{(w3,1),(0,1),(w2,1),(w5,1)},
{(0,1),(w2,1),(w7,1),(1,1)},{(2,1),(w3,1),(w2,1),(w7,1)},
{(w3,1),(1,0),(w6,1),(w5,1)},{(2,1),(w7,1),(w,1),(1,1)},
{(2,1),(0,1),(w7,1),(w5,1)},{(w,1),(w6,1),(1,0),(1,1)},
{(2,1),(w3,1),(w,1),(1,0)},{(2,1),(w7,1),(w6,1),(1,0)},

{(w3,1),(w2,1),(1,0),(1,1)},{(w2,1),(w7,1),(w6,1),(w5,1)},
{(2,1),(0,1),(w2,1),(w,1)},{(2,1),(w3,1),(1,1),(w5,1)},

{(w7,1),(1,0),(1,1),(w5,1)},{(w3,1),(w7,1),(w,1),(w5,1)},
{(w3,1),(0,1),(w,1),(1,1)},{(w3,1),(0,1),(w7,1),(1,0)},
{(2,1),(w2,1),(w6,1),(1,1)},{(0,1),(w6,1),(1,1),(w5,1)}},

where the base block is

B = {(2,1),(0,1),(1,0),(1,1)}.

D= (P ,B) is a Steiner quadruple system S(3,4,10).
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4.8 Notes

As mentioned at the beginning of this chapter, the focus of this monograph is
the construction of simple t-designs with linear codes. The other direction, i.e.,
the construction of linear codes with combinatorial designs was gently touched
in Sections 4.2.2 and 4.6. The reader is referred to Assmus and Key (1992a)
and Assmus and Key (1998) for detailed information on the codes of geometric
designs, and Ding (2015a) for information on codes of difference sets. There are
many other references on the classical codes of designs.

The conditions in the Assmus-Mattson Theorem make use of only information
on the minimum distance d(C ) and the weight distribution of C⊥. It is not easy
to understand why these conditions are sufficient. To have a better understanding
of the Assmus-Mattson Theorem, the reader is suggested to read Chapter 16 right
after reading this chapter. But one should keep in mind that t-designs in Chapter
16 may have repeated blocks or may be simple, while t-designs in the rest part of
this monograph are simple (i.e., they do not have repeated blocks).
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Chapter 5

Designs of Binary Reed-Muller Codes

In this chapter, we first treat binary Reed-Muller codes in details and then study
their designs. Binary Reed-Muller codes are named after Reed (1954) and Muller
(1954). These codes are of special interest, as they hold exponentially many 3-
designs.

5.1 Binary Reed-Muller Codes and Their Relatives

We first introduce binary Reed-Muller codes and their punctured versions, and
then prove their properties.

We begin with a decreasing ordering of the elements in GF(2)m. We
will then identify GF(2) with {0,1}, where 0 and 1 are integers. Then u =

(u0,u1, . . . ,um−1) ∈ GF(2)m is ordered as the (2m − nu)-th element in GF(2)m,
where

nu =
m−1

∑
i=0

ui2i,

and each ui is viewed as an integer. Thus, (1,1, . . . ,1) and (0,0, . . . ,0) are the first
and last elements in GF(2)m.

For example, GF(2)3 is ordered as follows:

P0 P1 P2 P3 P4 P5 P6 P7

ν̄3 1 1 1 1 0 0 0 0
ν̄2 1 1 0 0 1 1 0 0
ν̄1 1 0 1 0 1 0 1 0

(5.1)

where [P0,P1, . . . ,P7] are the ordered elements in GF(2)3, and ν̄i denotes the (4−
i)th row of the binary 3×8 matrix in (5.1).

In general, we use P0,P1, . . . ,P2m−1 to denote the ordered elements in GF(2)m.
When viewing Pi as a column vector and arranging them in the form of (5.1) as

141
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a binary m×2m matrix, we use ν̄i to denote the (m− i)th row of this matrix. We
shall fix the notation throughout this section.

A function from GF(2)m to GF(2) is called a Boolean function. Every Boolean
function, f (x) = f (x1, . . . ,xm), defines a vector ( f (x))x∈GF(2)m ∈ GF(2)2m

, where
x ranges over all elements in GF(2)m in the decreasing order. This vector is called
the truth table of f , and denoted by f.

The support of f , denoted by Suppt( f ), is defined by

Suppt( f ) = {x ∈ GF(2)m : f (x) = 1} ⊆ GF(2)m.

By definition,

f (x) = ∑
c∈Suppt( f )

(x1 + c1 +1)(x+ c2 +1) · · ·(x+ cm +1)

= f0 +
m

∑
t=1

∑
1≤i1<···<it≤m

f(i1,...,it )xi1 · · ·xit , (5.2)

where c = (c1,c2, . . . ,cm) ∈ GF(2)m, x = (x1,x2, . . . ,xm), and f(i1,...,it ) ∈ GF(2).
This means that any function f from GF(2)m to GF(2) can be expressed as a
linear combination of the following 2m basis functions:

Basis functions degree total number
1 0

(m
0

)
xi, 1≤ i≤ m 1

(m
1

)
xix j, 1≤ i < j ≤ m 2

(m
2

)
...

...
...

xi1 · · ·xir , 1≤ i1 < · · ·< ir ≤ m r
(m

r

)
...

...
...

x1x2 · · ·xm m
(m

m

)
The truth tables of these basis functions form a basis of GF(2)2m

over GF(2). The
expression in (5.2) is called the algebraic normal form of the Boolean function f .

The binary Reed-Muller code, denoted by R2(r,m), is spanned by the truth
tables of all the basis functions with degree at most r, where 0 ≤ r ≤ m. Hence
R2(r,m) has dimension

κ =
r

∑
i=0

(
m
i

)
.

To determine the minimum distance of R2(r,m), we prove the following.

Theorem 5.1.

R2(r+1,m+1) = {(u,u+ v) : u ∈ R2(r+1,m), v ∈ R2(r,m)}.
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Proof. Let f be a codeword in R2(r + 1,m+ 1). By definition, f is a Boolean
function with degree at most r+1, and can be written as

f (x1,x2, . . . ,xm+1) = g(x1,x2, . . . ,xm)+ xm+1h(x1,x2, . . . ,xm),

where g has degree at most r + 1, and h has degree at most r. Let g and h be
the vectors of length 2m corresponding to g(x1,x2, . . . ,xm) and g(x1,x2, . . . ,xm).
Clearly, g ∈ R2(r + 1,m) and h ∈ R2(r,m). We now consider g(x1,x2, . . . ,xm)

and xm+1h(x1,x2, . . . ,xm) as polynomials in x1,x2, . . . ,xm+1. Their corresponding
vectors of length 2m+1 are (g,g) and (0,h). Consequently, f = (g,g)+(0,h).

Let G(r,m) be a generator matrix of R2(r,m). Then Theorem 5.1 tells us that
the generator matrix G(r+1,m+1) of R2(r+1,m+1) is given by

G(r+1,m+1) =
[

G(r+1,m) G(r+1,m)

0 G(r,m)

]
.

Theorem 5.2. R2(r,m) has minimum weight 2m−r.

Proof. By Theorem 5.1,

d(R2(r+1,m+1)) = min{2d(R2(r+1,m)),d(R2(r,m))},
where d(C ) denotes the minimum distance of C . The desired conclusion then
follows by induction on m.

The following statements on binary Reed-Muller codes are obviously true:

(a) R2(0,m) consists of 0 and 1 only, and is the repetition code.
(b) R2(m−1,m) consists of all even weight vectors in GF(2)2m

.
(c) R2(m,m) = GF(2)2m

.
(d) R2(r,m) is a subcode of R2(r+1,m) for all r with 0≤ r ≤ m−1.

The duals of the Reed-Muller codes are related to the original family in the
following way.

Theorem 5.3. R2(r,m)⊥ = R2(m− r−1,m).

Proof. Let a ∈R2(m− r−1,m) and b ∈R2(r,m). Then a(x1, . . . ,xm) is a polyno-
mial of degree at most m− r− 1, and b(x1, . . . ,xm) is a polynomial of degree
at most r. It follows that their product ab has degree at most m− 1. Con-
sequently, ab ∈ R2(m− 1,m). Since all codewords in R2(m− 1,m) have even
weights, ab has even weight. Consequently, the dot product a ·b = 0. Therefore,
R2(m− r−1,m)⊆ R2(r,m)⊥. Note that

dim(R2(m− r−1,m))+dim(R2(r,m)) = 2m.

We deduce that R2(m− r−1,m) = R2(r,m)⊥.
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The error-correcting capability of Reed-Muller codes is not good, compared
with binary BCH codes with the same dimensions. But binary Reed-Muller codes
can be decoded efficiently with a majority logic decoding technique [MacWilliams
and Sloane (1977)][Chapters 14 and 15].

Let P(GF(2)m) denote the power set of GF(2)m. Let BF (m) denote the set of
all Boolean functions with m variables. Then we have the following one-to-one
correspondences among GF(2)2m

, BF (m) and P(GF(2)m):

GF(2)2m ↔ BF (m) ↔ P(GF(2)m)

f ↔ f (x1, . . . ,xm)↔ Suppt( f ),
(5.3)

where f∈GF(2)2m
is the truth table of f under the decreasing ordering of GF(2)m.

Thus, every vector f ∈ GF(2)2m
corresponds to a subset Suppt( f ) of GF(2)m

uniquely. In this case, f ∈ GF(2)2m
is called the incidence vector of Suppt( f )

with respect to the ordered set GF(2)m of 2m points. It is obvious that

wt(f) = |Suppt( f )|,

i.e., the Hamming weight of the vector f is equal to the cardinality of Suppt( f ).
Thus, R2(r,m) can be viewed as the set of all Boolean functions with degree

at most r, and also a subset of P(GF(2)m). This representation allows us to prove
more properties of binary Reed-Muller codes with the languages of projective
geometry and affine geometry (see Section 1.6).

The affine geometry AG(m,GF(2)) of dimension m employs the elements of
GF(2)m as its points. Any subset S of the points of AG(m,GF(2)) is associated
with its incidence vector in GF(2)2m

. Recall the vectors ν̄1, ν̄2, . . . , ν̄m defined
earlier. Let νi denote the complement of ν̄i for all 1 ≤ i ≤ m. One can verify the
following statements.

(1) The vectors νi have Hamming weight 2m−1 and their images in AG(m,GF(2))
are subspaces of dimension m− 1. Hence, these vectors are the incidence
vectors of these hyperplanes which pass through the origin. (There are of
course other hyperplanes passing through the origin.)

(2) The vectors νiν j (i 6= j) has Hamming weight 2m−2 and their images in
AG(m,GF(2)) are subspaces of dimension m−2. Hence, these vectors are the
incidence vectors of these subspaces which pass through the origin. (There
are of course other subspaces of dimension m−2 passing through the origin.)

Shortly in this section, we will prove that the minimum weight codewords in
R2(r,m) are the incidence vectors of (m− r)-flats in AG(m,GF(2)), i.e., cosets
of subspaces of dimension m− r of AG(m,GF(2)). Of course, we can state and
prove properties of the binary code R2(r,m) without using geometric languages.
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However, an advantage of using geometric languages is that it may give us a better
understanding of some properties.

Lemma 5.4. The incidence vector of any hyperplane in AG(m,GF(2)) is in
R2(r,m) for all 1≤ r ≤ m.

Let f ∈ R2(r,m) be the incidence vector of a set S ∈ P(GF(2)m). Let h be the
incidence vector of a hyperplane H in AG(m,GF(2)). Then fh ∈ R2(r+1,m) and
is the incidence vector of S∩H.

Proof. We present two proofs of the conclusion in the first part. Let H be a
hyperplane in AG(m,GF(2)). By definition, H = H0 + u, where H0 is an (m−
1)-dimensional subspace of GF(2)m and u ∈ GF(2)m. Let h(x1, . . . ,xm) be the
Boolean function with support H. Using the expression in (5.2), one can prove
that h(x1, . . . ,xm) is a linear combination of x1,x2, . . . ,xm and the constant Boolean
function 1. The desired conclusion in the first part then follows from the tact that
R2(0,m) and R2(1,m) are subcodes of R2(r,m) for all r with 1≤ r ≤ m.

The second proof of the conclusion in the first part goes as follows. By defini-
tion, any hyperplane H of AG(m,GF(2)) is the set of solutions (x1,x2, . . . ,xm) ∈
GF(2)m of the equation

a1x1 +a2x2 + · · ·+amxm +a0 = 0,

where at least one of these ai ∈ GF(2) is nonzero. Hence, the Boolean function
h(x1, . . . ,xm) with support H is given by

h(x1, . . . ,xm) = a1x1 +a2x2 + · · ·+amxm +a0 +1.

This means that the truth table h ∈ R2(1,m)⊂ R2(r,m) for all 1≤ r ≤ m.
Finally, we prove the conclusion of the second part. Since f ∈ R2(r,m), the

Boolean function f corresponding to f has degree at most r and support S. Note
that h(x1, . . . ,xm) has degree 1 and support H. The Boolean function g f has degree
at most r+1 and support S∩H. As a result, fh∈R2(r+1,m) and is the incidence
vector of S∩H.

The following lemma will play an important role later [Rothshild and Van Lint
(1974)].

Lemma 5.5. Let S be a subset of AG(m,GF(2)) such that |S| = 2m−r, and |S∩
H| = 0,2m−r−1 or 2m−r for all hyperplanes H in AG(m,GF(2)). Then S is an
(m− r)-dimensional flat in AG(m,GF(2)).

Proof. The proof is by induction on m. The conclusion is straightforward for
m = 2.
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Case 1: Suppose for some H we have |S∩H| = 2m−r. Then S ⊆ H, i.e, S ⊆
AG(m− 1,GF(2)). Let X be any hyperplane in H. Then there exists another
hyperplane H ′′ of AG(m,GF(2)) such that X = H ∩H ′′, and S∩X = S∩H ′′, i.e.,
|S∩X | = 0, 2m−1−(r−1)−1 or 2m−1−(r−1). By the induction hypothesis, S is an
((m−1)− (r−1))-flat in AG(m−1,GF(2)) and hence in AG(m,GF(2)).

Case 2: If for some H, |S∩H|= 0, then replace S with its parallel hyperplane
S′ := AG(m,GF(2))\S. In this way, Case 2 is reduced to Case 1.

Case 3: We finally consider the case when |S∩H|= 2m−r−1 for all hyperplanes
H. Let h denote the Boolean function with support H. Consider

∑
H⊂AG(m,GF(2))

|S∩H|2 = ∑
H⊂AG(m,GF(2))

(
∑
a∈S

h(a)

)2

= ∑
a∈S

∑
b∈S

∑
H⊂AG(m,GF(2))

h(a)h(b)

= |S|(2m−1)+ |S|(|S|−1)(2m−1−1)

since there are 2m− 1 hyperplanes in AG(m,GF(2)) though a point and 2m−1−
1 hyperplanes though a line. The left-hand side of the equation above is
22m−2r−1(2m − 1). Substituting |S| = 2m−r onto the right-hand side leads to a
contradiction.

We are now ready to prove the following.

Theorem 5.6. Let f be a minimum weight codeword of R2(r,m), and let S be the
support of the Boolean function f corresponding to f (i.e., the truth table of f is
f under the decreasing order defined earlier, or in other words, f is the incidence
vector of S). Then S is an (m− r)-flat in AG(m,GF(2)) (which need not pass
through the origin).

Proof. Let H be any hyperplane in AG(m,GF(2)) and let H ′ be its parallel hy-
perplane, so that AG(m,GF(2)) = H ∪H ′. By Lemma 5.4, S∩H and S∩H ′ are
in R2(r + 1,m), and so contain 0 or at least 2m−r−1 points. Since |S| = 2m−r =

|S∩H|+ |S∩H ′|, |S∩H| = 0, 2m−r−1 or 2m−r. The desired conclusion then fol-
lows from Lemma 5.5.

The converse of Theorem 5.6 is the following.

Theorem 5.7. The incidence vector of any (m− r)-flat in AG(m,GF(2)) is in
R2(r,m).

Proof. We present two proofs here. The first one is a sketch and goes as follows.
Let H be an (m− r)-flat in AG(m,GF(2)). Then H = H0 + u, where H0 is an
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(m− r)-dimensional subspace of GF(2)m and u ∈ GF(2)m. Using the expression
in (5.2), one can prove that the algebraic normal form of the Boolean function h
with support H has degree at most r. It then follows that truth table of h (i.e., the
incidence vector of H) is in R2(r,m).

It is now time to present the second proof. By definition, any (m− r)-flat H in
AG(m,GF(2)) consists of all points x = (x1, . . . ,xm) that satisfy r linear equations
over GF(2), say

m

∑
j=1

ai jxi = bi, i = 1,2, . . . ,r,

or equivalently

m

∑
j=1

ai jxi +bi +1 = 1, i = 1,2, . . . ,r.

This can be replaced by the following single equation

r

∏
i=1

(
m

∑
j=1

ai jxi +bi +1

)
= 1.

This means that the Boolean function

h(x1, . . . ,xm) :=
r

∏
i=1

(
m

∑
j=1

ai jxi +bi +1

)
has support H and degree at most r. Hence, the truth table of h (i.e., the incidence
vector of H) is in R2(r,m).

Combining Theorems 5.6 and 5.7, we arrive at the following.

Theorem 5.8. The codewords of minimum weight in R2(r,m) are exactly all the
incidence vectors of the (m− r)-dimensional flats in AG(m,GF(2)).

The next theorem will be useful in determining the parameters of some 3-
designs later.

Theorem 5.9. The number of minimum weight codewords in R2(r,m) is

A2m−r = 2r
m−r−1

∏
i=0

2m−i−1
2m−r−i−1

.

Proof. It follows from Theorems 5.8, 1.39 and 1.41.



November 17, 2021 14:14 ws-book9x6 Designs from Linear Codes designscodes page 148

148 Designs from Linear Codes

For 0 ≤ r ≤ m− 1, the punctured binary Reed-Muller code, denoted by
R2(r,m)∗, is obtained by puncturing (or deleting) the coordinate corresponding
to (x1,x2, . . . ,xm) = 0 from all the codewords in R2(r,m). It then follows from
the parameters of R2(r,m) that R2(r,m)∗ has length 2m− 1, minimum distance
2m−r−1 and dimension ∑r

i=0
(m

i

)
.

Minimum weight codewords in R2(r,m)∗ are obtained from the minimum
weight codewords in R2(r,m) that have a 1 in coordinate 0 by deleting the 1.
The following theorem then follows from Theorem 5.9.

Theorem 5.10. The number of minimum weight codewords in R2(r,m)∗ is

A2m−r−1 =
m−r−1

∏
i=0

2m−i−1
2m−r−i−1

.

Below we present further properties of the punctured Reed-Muller codes
R2(r,m)∗.

Theorem 5.11. The incidence vectors of all the (µ−1)-flats of PG(m−1,GF(2))
generate R2(r,m)∗, where µ = m− r.

Proof. Let α be a generator of GF(2m)∗. Then the points of PG(m− 1,GF(2))
can be taken to be the elements of {1,α,α2, . . . ,α2m−2}. Define ℓ= 2µ−2.

A subset T = {αd0 ,αd1 , . . . ,αdu} of these points will be represented by the
polynomial

WT (x) = xd0 + xd1 + · · ·+ xdu .

If T is a (µ− 1)-flat in PG(m− 1,GF(2)), then by definition the points of T
are all nonzero linear combinations over GF(2) of µ linearly independent points
α0,α1, . . . ,αµ−1 of GF(2m). In other words, the elements of T are

µ−1

∑
j=0

ai, jα j = αdi , i = 0,1, . . . , ℓ,

where (ai,0,ai,1, . . . ,ai,µ−1) runs through all nonzero elements in GF(2)µ. Note
that xWT (x) represents the (µ− 1)-flat spanned by αα0,αα1, . . . ,ααµ−1. Thus,
every cyclic shift of the incidence vector of a (µ− 1)-flat is the incidence vector
of another (µ−1)-flat.

Let C be the code generated by all WT (x), where T is any (µ−1)-flat. It then
follows from Theorem 5.7 and the observation above that C is a cyclic code and
is contained in R2(r,m)∗. Below we prove that C = R2(r,m)∗ by showing that

dim(C )≥
r

∑
i=0

(
m
i

)
.
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The dimension of C is the number of αs, which are not zeros of C ; i.e., the number
of αs such that WT (αs) 6= 0 for some T . We have now

WT (αs) =
ℓ

∑
i=0

αsdi =
ℓ

∑
i=0

(
µ−1

∑
j=0

ai, jα j

)s

= ∑
b
(b0α0 + · · ·+bµ−1αµ−1)

s,

where the summation extends over all nonzero b = (b0, . . . ,bµ−1) ∈GF(2)µ. Now
define

Fs(α0, . . . ,αµ−1) = ∑
b∈GF(2)µ\{0}

(b0α0 + · · ·+bµ−1αµ−1)
s.

Let γ = b1α1 + · · ·+bµ−1αµ−1. Then we have

Fs(α0, . . . ,αµ−1) = ∑
b0,...,bµ−1

(b0α0 + γ)s

= ∑
b1,...,bµ−1

(γs +(α0 + γ)s)

= ∑
b1,...,bµ−1

(
αs

0 +
s−1

∑
j=1

(
s
j

)
α j

0γs− j

)

=
s−1

∑
j=1

(
s
j

)
α j

0Fs− j(α1, . . . ,αµ−1)

= · · ·

= ∑
∑ ji=s

ji≥1

s!
j0! · · · jµ−1!

α j0
0 · · ·α

jµ−1
µ−1 . (5.4)

This is a homogeneous polynomial of degree s in α0, . . . ,αµ−1.
Then the dimension of C is the number of s such that Fs(α0, . . . ,αµ−1) is not

identically zero, when these αi are linearly independent. In fact, we need to count
those Fs(α0, . . . ,αµ−1) that contain a coefficient, which is nonzero modulo 2. Note
that such an F cannot be identically zero and cannot have α0, . . . ,αµ−1 linearly
dependent. By Lucas’ Theorem,

s!
j0! · · · jµ−1!

≡ 0 (mod 2)

if and only if

( j0)i+( j1)i + · · ·+( jµ−1)i ≤ (s)i for all i with 0≤ i≤ m−1,

where ( j)i denotes the ith bit in the binary expansion of j.
As a result, (5.4) contains a nonzero coefficient whenever the binary expansion

of s contains at least µ 1’s. The number of such s in the range 0≤ s≤ 2m−1 is
m

∑
j=µ

(
m
j

)
=

r

∑
i=0

(
m
i

)
.

This completes the proof.
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Theorem 5.11 explains why R2(r,m)∗ is called a geometric code and a code
of a geometric design. Furthermore, the proof of Theorem 5.11 has actually
proved the following fundamental result about R2(r,m)∗ [Kasami, Lin and Pe-
terson (1968b,c); Kolesnik and Mironchikov (1968)].

Theorem 5.12. The punctured Reed-Muller code R2(r,m)∗ is cyclic, and has ze-
ros αs for all s satisfying

1≤ ω2(s)≤ m− r−1 and 1≤ s≤ 2m−2,

where ω2(s) is the number of terms in the 2-adic expansion of s.
For 0≤ r ≤ m−1, the generator and check polynomials of R2(r,m) are

g(x) = ∏
1≤ω2(s)≤m−r−1

1≤s≤2m−2

Mαs(x) (5.5)

and

h(x) = (x−1) ∏
m−r≤ω2(s)≤m−1

1≤s≤2m−2

Mαs(x) (5.6)

where Mαs(x) denotes the minimal polynomial of αs over GF(2). By convention,
an empty product is 1.

The following is a consequence of Theorem 5.12.

Corollary 5.13. R2(r,m)∗ is a subcode of the narrow-sense primitive BCH
code C(2,2m−1,2m−r−1,1), and R2(r,m) is a subcode of the extended BCH code
C(2,2m−1,2m−r−1,1).

The geometric background of the Reed-Muller code R2(r,m) is explained by
the next theorem.

Theorem 5.14. The incidence vectors of all the (m− r)-flats in AG(m,GF(2))
generate R2(r,m).

Proof. Recall that R2(r,m) can be obtained from R2(r,m)∗ by adding an overall
parity check bit. By Theorem 5.11, the incidence vectors of the (m− r)-flats in
AG(m,GF(2)) with a 1 in coordinate 0 generate R2(r,m). The desired conclusion
then follows.

To prove that R2(r,m) and R2(r,m)∗ hold 3-designs and 2-designs, we would
determine the automorphism groups of these codes. Before doing this, we recall
the general affine group GAm(GF(2)) and the general linear group GLm(GF(2))
investigated in Sections 1.8.5 and 1.8.8, respectively.
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The group GAm(GF(2)) consists of all the following permutations of GF(2)m:

σ(A,b)(x) = Ax+b (5.7)

where x = (x1, . . . ,xm)
T ∈GF(2)m is the transpose of x = (x1, . . . ,xm), and A is an

m×m invertible matrix over GF(2). The group GLm(GF(2)) is composed of all
the following permutations of (GF(2)m)∗:

{σ(A,0)(x) : A invertible}. (5.8)

Recall that R2(r,m) consists of the truth tables of all Boolean functions with
degree at most r with respect to the decreasing ordering of the elements of GF(2)m.
This means that the coordinates of R2(r,m) are indexed by all the elements of
GF(2)m. Since GAm(GF(2)) is a permutation group of GF(2)m, it acts on a
Boolean function (hence the corresponding truth table) as follows

σ(A,b) : f (x1, . . . ,xm) 7→ f
(
∑a1 jx1 +b1, . . . ,∑am jx j +bm

)
.

Clearly, σ(A,b) transforms a Boolean function of degree r to a Boolean function of
degree r. This proves the following.

Theorem 5.15. The group GAm(GF(2)) is a subgroup of the automorphism group
Aut(R2(r,m)).

Note that every σ(A,0) fixes the zero vector of GF(2)m. The following result
then follows from Theorem 5.15.

Theorem 5.16. The group GLm(GF(2)) is a subgroup of the automorphism group
Aut(R2(r,m)∗).

The next theorem gives the automorphism groups of R2(r,m) and R2(r,m)∗.

Theorem 5.17. For 1≤ r ≤ m−2,

(a) Aut(R2(r,m)∗) = GLm(GF(2)), and
(b) Aut(R2(r,m)) = GAm(GF(2)).

A proof of Theorem 5.17 can be found in MacWilliams and Sloane (1977)[p.
400]. Theorems 5.15 and 5.16 would be sufficient for studying the designs held in
R2(r,m) and R2(r,m)∗.

5.2 Designs from the Binary Reed-Muller Codes

Our task in this section is to investigate the designs held in the binary Reed-Muller
code R2(r,m). We first justify the following general conclusion.
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Theorem 5.18. Let Ak denote the number of codewords of weight k in R2(r,m).
If Ak 6= 0, then the supports of all codewords with weight k form a 3-(2m,k,λ)
design, where

λ =
Ak
(k

3

)(2m

3

) .

Proof. The desired conclusion on the 3-design property follows from Theorems
5.15, 4.30, and 1.78. The conclusion on the value of λ follows from (4.5).

As a consequence of Theorems 5.18 and 5.9, we have the following.

Theorem 5.19. The supports of all minimum weight codewords in R2(r,m) form
a 3-(2m,2m−r,λ) design, where

λ =

(2m−r

3

)(2m

3

) 2r
m−r−1

∏
i=0

2m−i−1
2m−r−i−1

.

If we would find out the parameters of all the 3-designs held in R2(r,m), we
have to know the weight distribution of R2(r,m). However, this is known only for
a few r’s. We will determine the parameters of the 3-designs held in R2(r,m) for
these r.

5.2.1 Designs in R2(1,m) and R2(m−2,m)

The following was proved in Ding and Li (2017).

Lemma 5.20. The weight distribution of R2(m−2,m) is given by

A4k =
1

2m+1

[
2
(

2m

4k

)
+(2m+1−2)

(
2m−1

2k

)]
for 0≤ k ≤ 2m−2, and by

A4k+2 =
1

2m+1

[
2
(

2m

4k+2

)
− (2m+1−2)

(
2m−1

2k+1

)]
for 0≤ k ≤ 2m−2−1.

Proof. Note that R2(1,m) consists of the truth tables of all the following affine
Boolean functions

f (x1, . . . ,xm) = a1x1 + · · ·+amxm +a0,

where all ai ∈ GF(2). Obviously, the weight enumerator of R2(1,m) is

1+(2m+1−2)z2m−1
+ z2m

.
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By Theorem 2.4, the weight enumerator of R2(m− 2,m), which is the dual of
R2(1,m), is given by

B(z) =
1

2m+1 (1+ z)2m

[
1+(2m+1−2)

(
1− z
1+ z

)2m−1

+

(
1− z
1+ z

)2m]

=
1

2m+1

[
(1+ z)2m

+(2m+1−2)(1− z2)2m−1
+(1− z)2m

]
=

1
2m+1

[
2

2m−1

∑
i=0

(
2m

2i

)
z2i +(2m+1−2)

2m−1

∑
i=0

(
2m−1

i

)
(−1)iz2i

]

=
1

2m+1

2m−2

∑
k=0

[
2
(

2m

4k

)
+(2m+1−2)

(
2m−1

2k

)]
z4k +

1
2m+1

2m−2−1

∑
k=0

[
2
(

2m

4k+2

)
− (2m+1−2)

(
2m−1

2k+1

)]
z4k+2.

The desired conclusion then follows.

The following theorem gives parameters of all the 3-designs in both R2(m−
2,m) and R2(1,m).

Theorem 5.21. Let m ≥ 3. Then R2(m− 2,m) has dimension 2m−m− 1 and
minimum distance 4. For even positive integer κ with 4≤ κ≤ 2m−4, the supports
of the codewords with weight κ in R2(m−2,m) form a 3-(2m,κ,λ) design, where

λ =


1

2m+1 (
κ
3)
(

2(2m
4k)+(2m+1−2)(2m−1

2k )
)

(2m
3 )

if κ = 4k,

1
2m+1 (

κ
3)
(

2( 2m
4k+2)−(2

m+1−2)(2m−1
2k+1)

)
(2m

3 )
if κ = 4k+2.

The supports of all codewords of weight 2m−1 in R2(1,m) form a 3-
(2m,2m−1,2m−2−1) design.

Proof. The desired conclusions follow from Lemma 5.20 and Theorem 5.18.

We remark that Theorem 5.21 can also be proved by the Assmus-Mattson
Theorem (i.e., Corollary 4.26) and Lemma 5.20.

As a corollary of Theorem 5.21, we have the following.

Corollary 5.22. The minimum weight codewords in R2(m− 2,m) form a 3-
(2m,4,1) design, i.e., a Steiner quadruple system S(3,4,2m).

A few infinite families of Steiner systems could be constructed from linear
codes. This is the first family. We will introduce other families later.
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5.2.2 Designs in R2(2,m) and R2(m−3,m)

In this section, we first introduce the weight distribution of the 2nd-order Reed-
Muller code R2(2,m) obtained in McEliece (1969) and Slone and Berlekamp
(1970), and then describe the parameters of the 3-designs held in R2(2,m).

Recall that R2(2,m) consists of the truth tables of all Boolean functions
f (x1, . . . ,xm) of degree at most 2, which is expressed as

f (x1, . . . ,xm) = ∑
1≤i< j≤m

qi jxix j + ∑
1≤i≤m

ℓixi + ε, (5.9)

where all qi j, ℓi and ε are elements in GF(2).
Let x = (x1, . . . ,xm). Define a quadratic and linear form by

Q(x) = xQxT and L(x) = LxT ,

where Q = [qi j] is an upper triangular m × m matrix over GF(2) and L =

(ℓ1, . . . , ℓm) ∈ GF(2)m. Then we have

f (x) = Q(x)+L(x)+ ε. (5.10)

By definition, R2(1,m) is a subspace of the vector space R2(2,m). Therefore,
R2(2,m) is the union of some cosets of R2(1,m) in R2(2,m). When Q(x) is fixed
and L(x)+ ε runs over R2(1,m), f (x) = Q(x)+L(x)+ ε runs through a coset of
R2(1,m) in R2(2,m). This coset is defined by the quadratic form Q(x). This
quadratic form Q(x) can be characterized by a symmetric matrix BQ = Q+QT

whose diagonals are all zero. The correspondence between Q and BQ is one-to-
one. This matrix BQ defines another form

BQ(x,y) = xBQyT , (5.11)

where y= (y1, . . . ,ym). By the definitions of BQ(x,y) and f (x), it is easily checked
that

BQ(x,y) = f (x+ y)+ f (x)+ f (y)+ ε. (5.12)

One can verify that BQ(x,y) has the following properties:

(1) BQ(x,y) is bilinear, i.e.,

BQ(x+ z,y) = BQ(x,y)+BQ(z,y),
BQ(x,y+ z) = BQ(x,y)+BQ(x,z).

(5.13)

(2) BQ(x,y) is alternating, i.e.,

BQ(x,x) = 0 and BQ(x,y) = BQ(y,x).
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A binary form that is both bilinear and alternating is called a symplectic form.
Similarly, a symmetric matrix with zero diagonal is called a symplectic matrix.

Since the correspondence Q 7→ BQ is one-to-one, we have the following theo-
rem.

Theorem 5.23. There is a one-to-one correspondence between symplectic forms
and the cosets of R2(1,m) in R2(2,m). The zero symplectic form corresponds to
R2(1,m).

By definition, the total number of symplectic matrices (and thus the number
of symplectic forms) is equal to 2(

m
2). To determine the weight distribution of

R2(2,m), we now determine the total number of symplectic forms of each rank,
which is the rank of the corresponding symplectic matrix.

We shall need the following lemma.

Lemma 5.24. Let A be a fixed symplectic m×m matrix of rank r. Define

B =

[
A vT

v 0

]
which is a symplectic matrix of size (m+ 1)× (m+ 1) over GF(2) for every v ∈
GF(2)m. Then among the 2m different matrices B, 2m−2r of them have rank r+2,
and 2r of them have rank r.

Proof. The proof is carried out by considering two cases. If the vector v is inde-
pendent of the rows of A, which happens in 2m−2r ways, then

[
A
v

]
has rank r+1

and B has thus rank r+2. If v is dependent on the rows of A, say v = uA, then
[

A
v

]
has rank r. Now

[
vT

0

]
is dependent on the columns of

[
A
v

]
because[

A
v

]
uT =

[
vT

vuT

]
=

[
vT

uAuT

]
=

[
vT

0

]
.

Hence, in this case B has rank r. This completes the proof.

Theorem 5.25. Let N(m,r) denote the number of symplectic m×m matrices of
rank r over GF(2). Then we have N(m,2h+1) = 0 for all h with 1≤ 2h+1≤ m
and

N(m,2h) =
h

∏
i=1

22i−2
22i−1−1

×
2h−1

∏
i=0

(2m−i−1)

= 2h(h−1) ∏2h−1
i=0 (2m−i−1)

∏h
i=1(22i−1)

for all h with 1≤ 2h≤ m.
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Proof. Obviously, N(1,0) = 1, N(1,1) = 0, N(2,0) = 1, N(2,1) = 0, and
N(2,2) = 1. The idea of proof is to derive a recursion formula for N(m,r). It
follows from Lemma 5.24 that

N(m+1,r) = 2rN(m,r)+(2m−2r−2)N(m,r−2).

By the initial value N(1,1) = 0, we then obtain N(m,2h + 1) = 0. Using the
initial value N(m,0) = 1, we arrive at the desired formula for N(m,2h+ 1) with
the recursion formula above.

Our next step for determining the weight distribution of R2(r,m) is to prove
that the weight distribution of the coset defined by the symplectic form BQ(x,y)
depends only on the rank of the matrix BQ. To do this, we need the following two
lemmas due to Dickson.

Lemma 5.26. Let B be a symplectic m×m matrix of rank 2h. Then there exists an
invertible binary matrix R such that RBRT has zeros everywhere except on the two
diagonals immediately below and above the main diagonal, and the two diagonals
are the same and are (101010 · · ·101,0 · · ·0), where the first part has h 1’s, and
the second part 0 · · ·0 has length m−2h, which does not exist when h = m/2.

Proof. The proof is by induction on m. The conclusion is obviously true for
m = 1 and m = 2. Suppose the statement is true for m ≤ t and h ≤ bt/2c. Then
any (t +1)× (t +1) symplectic matrix B may be written as

B =

[
A vT

v 0

]
,

where A is a symplectic matrix of size t × t and the desired form by induction
hypothesis.

If rank(A)< 2bt/2c, by elementary row and column operations, we can reduce
B to 

A′ (v′)T 0 · · · 0
v′ 0 0 · · · 0
0 0 0 · · · 0
...

...
...

...
...

0 0 0 · · · 0

 ,
where [

A′ (v′)T

v′ 0

]
(5.14)

is of size at most t × t and A′ is a symplectic matrix of the desired form. By
induction hypothesis, the matrix in (5.14) can be reduced into the desired form.
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Now suppose that A has rank 2bt/2c. If 2bt/2c= t, then B has rank t and

B =



0 1 0 · · · 0 0 v1

1 0 0 · · · 0 0 v2

0 0 0 · · · 0 0 v3
...

...
...

...
...

...
...

0 0 0 · · · 0 1 vt−1

0 0 0 · · · 1 0 vt

v1 v2 v3 · · · vt−1 vt 0


,

where t must be even, as the rank of a symplectic matrix is always even. In this
case, put

R =

[
I 0
u 1

]
,

where I is the t × t identity matrix, 0 is the zero column vector, and u =

(v2v1v4v3 · · ·vtvt−1). Obviously, R is invertible. It is easily verified that

RBRT =



0 1 0 · · · 0 0 0
1 0 0 · · · 0 0 0
0 0 0 · · · 0 0 0
...

...
...

...
...

...
...

0 0 0 · · · 0 1 0
0 0 0 · · · 1 0 0
0 0 0 · · · 0 0 0


,

which is of the desired form.
If 2bt/2c= t−1, then

B =



0 1 0 · · · 0 0 0 v1

1 0 0 · · · 0 0 0 v2

0 0 0 · · · 0 0 0 v3
...

...
... · · ·

...
...

...
...

0 0 0 · · · 0 1 0 vt−2

0 0 0 · · · 1 0 0 vt−1

0 0 0 · · · 0 0 0 ε
v1 v2 v3 · · · vt−2 vt−1 ε 0


,

where rank(B) = t−1 if ε = 0 and rank(B) = t +1 if ε = 1. In either case, define

R =

[
I 0
u 1

]
,

where I is the t × t identity matrix, 0 is the zero column vector, and u =

(v2v1v4v3 · · ·vt−2vt−10). Then RBRT is the desired form. This completes the in-
duction step and thus the proof of the lemma.
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Lemma 5.27. Any Boolean function of m variables

f (x) = xQxT +L(x)+ ε,
where Q is an upper triangular matrix and L(x) is an arbitrary linear Boolean
function and ε ∈ GF(2), becomes

g(y) =
h

∑
i=1

y2i−1y2i +L1(y)+ ε

under the transformation of variables x = Ry, where R is given in Lemma 5.26,
B = Q+QT , and 2h is the rank of the symplectic matrix B. Moreover, y1, . . . ,y2h

are linearly independent.
If L1(y) is linearly dependent on y1,y2, . . . ,y2h, by an affine transformation of

variables we may write g(y) as
h

∑
i=1

z2i−1z2i + ε1,

where z1, . . . ,z2h are linearly independent, and each zi is a linear form of
y1, . . . ,y2h,1.

Proof. The conclusions follow from Lemma 5.26. The details of the proof are
left to the reader.

We still need the following two lemmas whose proofs are left to the reader.

Lemma 5.28. The number of solutions (x1, . . . ,x2h) ∈ GF(2)2h of the equation
∑h

i=1 x2i−1x2i = 0 is equal to 22h−1−2h−1.

Lemma 5.29. Let 3 ≤ 2h+ 1 ≤ m. Then the number of solutions (x1, . . . ,xm) ∈
GF(2)m of the equation

h

∑
i=1

x2i−1x2i +
m

∑
i=2h+1

aixi = 0,

where at least one of these ai is 1, is equal to 2m−1.

With the preparations above, we are now ready to settle the weight distribution
of a coset of R2(1,m) in R2(2,m). Specifically, we have the following.

Theorem 5.30. If a symplectic m×m matrix B has rank 2h, the weight distribution
of the coset defined by the symplectic form B(x,y) of R2(1,m) in R2(2,m) is as
follows:

Weight Number of vectors
2m−1−2m−h−1 22h

2m−1 2m+1−22h+1

2m−1 +2m−h−1 22h
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Proof. By Lemma 5.27, the quadratic part of any Boolean function in the coset
defined by B can be transformed into

Q(x) =
h

∑
i=1

x2i−1x2i.

Let L(x) be the linear part. Suppose L(x) is of the form

L(x) =
h

∑
i=1

aixi,

which can happen in 22h ways. It then follows from the second part of Lemma
5.27 that Q(x)+L(x) becomes one of

h

∑
i=1

z2i−1z2i and
h

∑
i=1

z2i−1z2i +1,

which have weights 2m−1−2m−1−h and 2m−1 +2m−1−h, respectively, by Lemma
5.28. On the other hand, if L(x) is not dependent on x1, . . . ,x2h, which happens
in 2m+1−22h+1 ways, by Lemma 5.29 the codeword has weight 2m−1. This com-
pletes the proof.

Combining Theorems 5.25 and 5.30, we obtain the following main result of
this section due to McEliece (1969) and Slone and Berlekamp (1970).

Theorem 5.31. Let Ai be the number of codewords of weight i in R2(2,m). Then
Ai = 0 unless i = 2m−1 or i = 2m−1±2m−1−h for some h with 0≤ h≤ bm/2c. Also
A0 = A2m = 1 and for all h with 1≤ h≤ bm/2c we have

A2m−1±2m−1−h = 2h(h−1) ∏2h−1
i=0 (2m−i−1)

∏h
i=1(22i−1)

.

In addition,

A2m−1 = 21+m+(m−1)m/2− ∑
i6=2m−1

Ai.

Putting together Theorems 5.18 and 5.31, we deduce the following.

Theorem 5.32. For each h with 1 ≤ h ≤ bm/2c, the code R2(2,m) holds a 3-
(2m,2m−1±2m−1−h,λ) design, where

λ =

(2m−1±2m−1−h

3

)(2m

3

) 2h(h−1) ∏2h−1
i=0 (2m−i−1)

∏h
i=1(22i−1)

.

In addition, R2(2,m) holds a 3-(2m,2m−1,λ) design, where

λ =

(2m−1

3

)(2m

3

) [21+m+m(m−1)/2−2−
bm/2c

∑
h=1

2h(h−1)+1 ∏2h−1
i=0 (2m−i−1)

∏h
i=1(22i−1)

]
.
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Recall that R2(m−3,m) = R2(2,m)⊥. In theory, Theorems 5.31 and 2.4 can
be employed to give a weight distribution formula and thus a formula for the
parameters of the 3-designs held in R2(m−3,m). However, these formulas are so
complex and hence not readable. We omit them here.

5.2.3 Designs in R2(r,m) for 3≤ r ≤ m−4

Determining the weight distribution of R2(r,m) looks infeasible for 3≤ r≤m−4.
Therefore, it may be difficult to find out the parameters of all the 3-designs held
in R2(r,m) for 3 ≤ r ≤ m−4. However, some progress was made in Kasami and
Tokura (1970). Specifically, we have the following.

Theorem 5.33 (Kasami-Tokura). Let Aw be the number of codewords of weight
w in R2(r,m), where r ≥ 2. Suppose that

d = 2m−r ≤ w < 2d.

Define u = min{m− r,r} and v = (m− r+2)/2.

(1) Aw = 0 unless w = w(µ) := 2m−r−1−2m−r−µ for some µ in the range 1≤ µ≤
max{u,v}. The case µ = 1 was covered in Theorem 5.9.

(2) If µ = 2 or max{u,2}< µ≤ v then

Aw(µ) =
2r+µ2+µ−2 ∏r+2µ−3

i=0 (2m−i−1)

∏r−3
i=0 (2r−2−i−1)∏µ−1

i=0 (4i+1−1)
. (5.15)

(3) If max{v,2}< µ≤ u then

Aw(µ) =
2r+µ2+µ−1 ∏r+µ−1

i=0 (2m−i−1)

∏r−µ−1
i=0 (2r−µ−i−1)∏µ−1

i=0 (2µ−i−1)
. (5.16)

(4) If 3≤ µ≤min{u,v}, then Aw(µ) is equal to the sum of (5.15) and (5.16).

Combining Theorems 5.18 and 5.33, one can write down the parameters of
some of the 3-designs held in R2(r,m) for 3 ≤ r ≤ m− 4. This is left to the
reader. Theorem 5.33 was extended slightly further in Kasami, Tokura and Azumi
(1974). But the technique becomes very complicated. The following problem
looks challenging.

Problem 5.34. Determine the weight distribution of R2(r,m) for 3 ≤ r ≤ m− 4,
where m≥ 7.
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5.2.4 Designs from Binary Codes between R2(r,m) and R2(r+1,m)

Recall that the automorphism group Aut(R2(r,m)) of R2(r,m) is the general affine
group GAm(GF(2)). Since GAm(GF(2)) is triply transitive on GF(2)m, R2(r,m)

holds 3-designs. For each r with 1 ≤ r ≤ m− 2, R2(r,m) is a proper subcode of
R2(r + 1,m). There are clearly many binary linear codes C which are a proper
subcode of R2(r+ 1,m) and also contain R2(r,m) as a proper subcode. We then
have the following open problems.

Problem 5.35. Let r be an integer with 1 ≤ r ≤ m− 2. Are there binary linear
code C of length 2m such that R2(r,m)⊂ C ⊂ R2(r+1,m) and C holds nontrivial
3-designs?

Note that GA1(GF(2m)) is a subgroup of the permutation automorphism group
of R2(r,m), and GA1(GF(2m)) is doubly transitive on GF(2m). Some linear codes
C between R2(r,m) and R2(r+1,m) might be affine-invariant. In the case that the
answer to Problem 5.35 is negative, we still have the next question.

Problem 5.36. Let r be an integer with 1 ≤ r ≤ m− 2. Are there binary linear
code C of length 2m such that R2(r,m)⊂ C ⊂ R2(r+1,m) and C holds nontrivial
2-designs?

Section 6.2.4 may provide partial answers to the two questions above in the
special case r = 1. The two problems above do not have any partial answer for
r ≥ 2.

5.3 Designs from the Punctured Binary Reed-Muller Codes

In this section, we investigate designs held in R2(r,m)∗ and its dual code. We fist
state and prove the following general result.

Theorem 5.37. Let Ak denote the number of codewords of weight k in R2(r,m)∗.
If Ak 6= 0, then the supports of all codewords with weight k form a 2-(2m−1,k,λ)
design, where

λ =
Ak
(k

2

)(2m−1
2

) .
Proof. The desired conclusion on the 2-design property follows from Theorems
5.16, 4.30, and 1.71. The conclusion on the value of λ follows from (4.5).

As a consequence of Theorems 5.37 and 5.9, we have the following.
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Theorem 5.38. The supports of all minimum weight codewords in R2(r,m)∗ form
a 2-(2m−1,2m−r−1,λ) design, where

λ =

(2m−r−1
2

)(2m−1
2

) m−r−1

∏
i=0

2m−i−1
2m−r−i−1

.

Theorem 5.39. Let A⊥k denote the number of codewords of weight k in the code
(R2(r,m)∗)⊥. If A⊥k 6= 0, then the supports of all codewords with weight k form a
2-(2m−1,k,λ) design, where

λ =
A⊥k
(k

2

)(2m−1
2

) .
Proof. Since the codes are binary, it follows from Theorems 2.14 and 5.17 that

Aut((R2(r,m)∗)⊥) = PAut((R2(r,m)∗)⊥) = PAut(R2(r,m)∗) = GL(m).

By Theorem 1.71, GL(m) is doubly transitive. The 2-design property follows
from Theorem 4.30. The conclusion on the value of λ follows from (4.5).

To determine the parameters of all the 2-designs held in R2(r,m)∗ and its dual,
we must know the weight distributions of these codes. This is again a very hard
problem in general, but can be solved in a few cases.

Recall that R2(1,m)∗ consists of the punctured versions of the truth tables of
all the following affine Boolean functions

f (x1, . . . ,xm) = a1x1 + · · ·+amxm +a0,

where all ai ∈ GF(2). Obviously, the weight enumerator of R2(1,m)∗ is

A(z) = 1+(2m−1)z2m−1−1 +(2m−1)z2m−1
+ z2m−1. (5.17)

Hence, R2(1,m)∗ holds two nontrivial 2-designs. One of them was described in
Theorem 5.38 and has parameters 2-(2m− 1,2m−1− 1,2m−2− 1). The other is
documented in the following corollary. Both are the development design of a
Singer difference set.

Corollary 5.40. The supports of all codewords of weight 2m−1 in R2(r,m)∗ form
a 2-(2m,2m−1,2m−2) design.

The weight distribution of the code (R2(1,m)∗)⊥ is given in the following
lemma.

Lemma 5.41. Let m ≥ 4. Then the weight distribution of (R2(1,m)∗)⊥ is given
by A⊥0 = 1 and

A⊥2i =

(2m−1
2i

)
+(−1)i(2m−1)

(2m−1−1
i

)
2m (5.18)
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for 2≤ i≤ 2m−1−2, and A⊥j = 0 for other j.
In addition, (R2(1,m)∗)⊥ has parameters [2m−1,2m−m−2,4].

Proof. Since R2(1,m)∗ contains the all-one codeword 1, every weight in
(R2(1,m)∗)⊥ must be even. Recall that R2(1,m)∗ has parameters [2m− 1,m+

1,2m−1−1] and its weight enumerate A(z) is given in (5.17). By Theorem 2.4, we
obtain that

2m+1A⊥(z) = (1+ z)2m−1A
(

1− z
1+ z

)
= (1+ z)2m−1 +(1− z)2m−1 +(2m+1−2)(1− z2)2m−1−1

=
2m−1

∑
i=0

(
2m−1

i

)(
1+(−1)i)zi +

(2m+1−2)
2m−1−1

∑
i=0

(−1)i
(

2m−1−1
i

)
z2i

=
2m−1−1

∑
i=0

2
(

2m−1
2i

)
z2i +

(2m+1−2)
2m−1−1

∑
i=0

(−1)i
(

2m−1−1
i

)
z2i

=
2m−1−1

∑
i=0

2
[(

2m−1
2i

)
+(−1)i(2m−1)

(
2m−1−1

i

)]
z2i.

This proves the weight distribution formula in (5.18).
It is easily verified that A⊥2 = A⊥2m−2 = 0 and

A⊥4 =

(2m−1
4

)
+(2m−1)

(2m−1−1
2

)
2m > 0.

Consequently, (R2(1,m)∗)⊥ has minimum distance 4.

The parameters of the 2-designs held in (R2(1,m)∗)⊥ are presented in the next
theorem.

Theorem 5.42. Let m≥ 4. For each 2≤ k ≤ 2m−1−2, the supports of the code-
words of weight 2k in (R2(1,m)∗)⊥ form a 2-(2m−1,2k,λ) design, where

λ =
2k(2k−1)

((2m−1
2k

)
+(−1)k(2m−1)

(2m−1−1
k

))
2m(2m−1(2m−2)

.
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Proof. With the formula in (5.18), it is straightforward to verify that A⊥2k > 0 for
all 2≤ k ≤ 2m−1−2. The desired conclusion then follows from Lemma 5.41 and
Theorem 5.39.

Theorem 5.42 shows that (R2(1,m)∗)⊥ holds 2m−1−3 2-designs. It can also
be proved by the Assmus-Mattson Theorem (i.e., Corollary 4.26) and Lemma
5.41, together with the weight enumerator of R2(1,m)∗ given in (5.17).

We remark that the code R2(1,m)∗ contains the Simplex code as a subcode.
Hence, the 2-designs held in R2(r,m)∗ and (R2(r,m)∗)⊥ are related to those held
in the Simplex and Hamming codes (See Section 10.5.4), respectively.

To settle the parameters of the 2-designs held in R2(r,m)∗ and (R2(r,m)∗)⊥,
we have to solve the following problem.

Problem 5.43. Determine the weight distributions of R2(r,m)∗ and (R2(r,m)∗)⊥

for 2≤ r ≤ m−2, where m≥ 4.

Given the weight distribution of R2(2,m) in Section 5.2.2, one might be able
to settle the weight distribution of R2(2,m)∗.

5.4 Notes

Recall that R2(m,m) = GF(2)2m
. Every binary linear code C of length 2m must

be a subcode of R2(r,m) for some r with 0 ≤ r ≤ m. The smallest r such that
C ⊆ R2(r,m) is called the Reed-Muller cover size. The existence of the Reed-
Muller cover size for any linear code C of length 2m is clear. If the Reed-Muller
cover size of C is r, then the minimum distance d(C ) is at least 2m−r. Hence, the
following problem is interesting.

Problem 5.44. Work out an efficient method that can determine the Reed-Muller
cover size of binary linear codes of length 2m for positive integers m.

Binary Reed-Muller codes were generalised into two different directions and
two families of nonbinary codes were obtained. The two families of generalised
codes will be treated separately in Chapter 6, as they support only 2-designs.

Reed–Muller codes are error-correcting codes that are used in wireless
communications applications, particularly in deep-space communication in the
Mariner 9 Spacecraft. Recently, Reed–Muller codes have become a hot topic due
to the fact that they belong to the class of locally testable codes and locally decod-
able codes, which makes them useful in the design of probabilistically checkable
proofs in computational complexity theory.
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Chapter 6

Affine Invariant Codes and Their Designs

A cyclic code of length qm−1 over GF(q) is said to be primitive. In this chapter,
we treat a special type of primitive cyclic codes and their extended codes over
GF(q), which are called affine-invariant extended cyclic codes, and describe the
support designs of these codes.

6.1 Affine-Invariant Extended Cyclic Codes and Their Designs

In this section, we first give a special representation of primitive cyclic codes and
their extended codes, and then define and characterise affine-invariant codes.

Recall that Rn denotes the quotient ring GF(q)[x]/(xn−1). Any cyclic code C

of length n over GF(q) is an ideal of Rn, and every codeword of C is a polynomial
c(x) = ∑n−1

i=0 cixi, where all ci ∈ GF(q).
Let J and J∗ denote GF(qm) and GF(qm)∗, respectively. Let α be a primitive

element of GF(qm). The set J will be the index set of the extended cyclic codes of
length qm, and the set J∗ will be the index set of the cyclic codes of length n. Let
X be an indeterminate. Define

GF(q)[J] =

{
a = ∑

g∈J
agXg : ag ∈ GF(q) for all g ∈ J

}
. (6.1)

The set GF(q)[J] is an algebra under the following operations

u ∑
g∈J

agXg + v ∑
g∈J

bgXg = ∑
g∈J

(uag + vbg)Xg

for all u, v ∈ GF(q), and(
∑
g∈J

agXg

)(
∑
g∈J

bgXg

)
= ∑

g∈J

(
∑
h∈J

ahbg−h

)
Xg. (6.2)

The zero and unit of GF(q)[J] are ∑g∈J 0Xg and X0, respectively.

165
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Similarly, let

GF(q)[J∗] =

{
a = ∑

g∈J∗
agXg : ag ∈ GF(q) for all g ∈ J∗

}
. (6.3)

The set GF(q)[J∗] is not a subalgebra, but a subspace of GF(q)[J]. Obviously, the
elements of GF(q)[J∗] are of the form

n−1

∑
i=0

aαiXαi
,

and those of GF(q)[J] are of the form

a0X0 +
n−1

∑
i=0

aαiXαi
.

Subsets of the subspace GF(q)[J∗] will be used to characterise primitive cyclic
codes over GF(q) and those of the algebra GF(q)[J] will be employed to charac-
terise extended primitive cyclic codes over GF(q).

We define a one-to-one correspondence between Rn and GF(q)[J∗] by

ϒ : c(x) =
n−1

∑
i=0

cixi→C(X) =
n−1

∑
i=0

CαiXαi
, (6.4)

where Cαi = ci for all i.
The following theorem is obviously true.

Theorem 6.1. C ⊆Rn has the circulant cyclic shift property if and only if ϒ(C )⊆
GF(q)[J∗] has the property that

n−1

∑
i=0

CαiXαi
= ∑

g∈J∗
CgXg ∈ ϒ(C )

if and only if
n−1

∑
i=0

CαiXααi
= ∑

g∈J∗
CgXαg ∈ ϒ(C ).

With Theorem 6.1, every primitive cyclic code over GF(q) can be viewed as
a special subset of GF(q)[J∗] having the property documented in this theorem.
This new representation of primitive cyclic codes over GF(q) will be very useful
for determining a subgroup of the automorphism group of certain primitive cyclic
codes.

It is now time to extend primitive cyclic codes, which are subsets of GF(q)[J∗].
We use the element 0 ∈ J to index the extended coordinate. The extended code-
word C(X) of a codeword C(X) = ∑g∈J∗CgXg in GF(q)[J∗] is defined by

C(X) = ∑
g∈J

CgXg (6.5)
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with ∑g∈JCg = 0.
Notice that Xα0 = X0 = 1. The following then follows from Theorem 6.1.

Theorem 6.2. The extended code C of a cyclic code C ⊆GF(q)[J∗] is a subspace
of GF(q)[J] such that

C(X) = ∑
g∈J

CgXg ∈ C if and only if ∑
g∈J

CgXαg ∈ C and ∑
g∈J

Cg = 0.

If a cyclic code C is viewed as an ideal of Rn = GF(q)[x]/(xn− 1), it can be
defined by its set of zeros or its defining set (see Section 3.4). When C and C are
put in the settings GF(q)[J∗] and GF(q)[J], respectively, they can be defined with
some counterpart of the defining set. This can be done with the assistance of the
following function ϕs from GF(q)[J] to J:

ϕs

(
∑
g∈J

CgXg

)
= ∑

g∈J
Cggs, (6.6)

where s ∈N = {i : 0≤ i≤ n} and by convention 00 = 1 in J.
The following follows from Theorem 6.2 and the definition of ϕs directly.

Lemma 6.3. C(X) is the extended codeword of C(X) ∈ GF(q)[J∗] if and only if
ϕ0(C(X)) = 0. In particular, if C is the extended code of a primitive cyclic code
C ⊆ GF(q)[J∗], then ϕ0(C(X)) = 0 for all C(X) ∈ C .

Lemma 6.4. Let C be a primitive cyclic code of length n over GF(q). Let T be
the defining set of C with respect to α, when it is viewed as an ideal of Rn. Let
s ∈ T and 1≤ s≤ n−1. We have then ϕs(C(X)) = 0 for all C(X) ∈ C .

Proof. Note that 0s = 0 in J, as s 6= 0. We have then

ϕs(C(X)) = 0s +
n−1

∑
i=0

Cαi(αi)s =
n−1

∑
i=0

ci(αs)i = c(αs) = 0, (6.7)

where c(x) ∈ Rn is the polynomial associated to C(X) ∈ GF(q)[J∗].

Lemma 6.5. Let C be a primitive cyclic code of length n over GF(q). Let T be
the defining set of C with respect to α, when it is viewed as an ideal of Rn. Then
0 ∈ T if and only if ϕn(C(X)) = 0 for all C(X) ∈ C .

Proof. By definition, αn = 1. It then follows from (6.7) that ϕn(C(X)) = c(1),
where c(x) ∈ Rn is the polynomial associated to C(X) ∈ GF(q)[J∗]. The desired
conclusion then follows.
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Combining Lemmas 6.3, 6.4, 6.5 and the discussions above, we can define an
extended cyclic code in terms of a defining set as follows.

A code C of length qm is an extended primitive cyclic code with defining set T
provided T \{n} ⊆N is a union of q-cyclotomic cosets modulo n = qm−1 with
0 ∈ T and

C =
{

C(X) ∈ GF(q)[J] : ϕs(C(X)) = 0 for all s ∈ T
}
. (6.8)

The following remarks are helpful for fully understanding the characterisation
of extended primitive cyclic codes:

• The condition that T \{n} ⊆N is a union of q-cyclotomic cosets modulo n =

qm−1 is to ensure that the code C obtained by puncturing the first coordinate of
C and ordering the elements of J with (0,αn,α1, . . . ,αn−1) is a primitive cyclic
code.
• The additional requirement 0 ∈ T and (6.8) are to make sure that C is the ex-

tended code of C .
• If n ∈ T , then C is an even-like code. In this case, the extension is trivial, i.e.,

the extended coordinate in every codeword of C is always equal to 0. If n 6∈ T ,
then 0 6∈ T . Thus, the extension is nontrivial.
• If C is the extended code of a primitive cyclic code C , then

T =

{
{0}∪T if 0 6∈ T,
{n}∪T if 0 ∈ T,

where T and T are the defining sets of C and C , respectively.

A pictorial illustration of the representations of primitive cyclic codes and their
extended codes is summarised in Table 6.1.

Table 6.1 A comparison of the representations of primitive cyclic codes and their extensions
Cyclic codes Cyclic codes Extended codes

GF(q)[x]/(xn−1) GF(q)[J∗] GF(q)[J]
C ideal C subset C subset

c(x) = ∑n−1
i=0 cixi C(X) = ∑n−1

i=0 Cαi Xαi
C(X) =C0 +∑n−1

i=0 Cαi Xαi

Cαi = ci, 0≤ i≤ n−1 with C0 +∑n−1
i=0 Cαi = 0

C0 is the extended coordinate
Defining set T Defining set T

{i ∈N : g(αi) = 0} {s ∈N : ϕs(C(X)) = 0 ∀C(X) ∈ C}
N = {0,1, . . . ,n−1} N = {0,1, . . . ,n}

Let σ be a permutation on J. This permutation acts on a code C ⊆ GF(q)[J]
as follows:

σ

(
∑
g∈J

CgXg

)
= ∑

g∈J
CgXσ(g). (6.9)
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Recall that the general affine group GA1(GF(qm)) consists of the following
permutations of GF(qm):

{σ(a,b)(y) = ay+b : a ∈ J∗, b ∈ J}. (6.10)

This group was studied in Section 1.8.5. We have the following conclusions about
GA1(GF(qm)):

• GA1(GF(qm)) is a permutation group on J under the function composition.
• The group action of GA1(GF(qm)) on GF(qm) is doubly transitive, i.e., 2-

transitive (see Theorem 1.77).
• GA1(GF(qm)) has order (n+1)n = qm(qm−1) (see Theorem 1.76).
• Obviously, the maps σ(a,0) are merely the cyclic shifts on the coordinates
(αn,α1, . . . ,αn−1) each fixing the coordinate 0.

An affine-invariant code is an extended primitive cyclic code C such that
GA1(GF(qm)) ⊆ PAut(C ). For certain applications, it is important to know if
a given extended primitive cyclic code C is affine-invariant or not. This question
can be answered by examining the defining set of the code. In order to do this,
we introduce a partial ordering � on N . Suppose that q = pt for some positive
integer t. Then by definition N = {0,1,2, . . . ,n}, where n = qm− 1 = pmt − 1.
The p-adic expansion of each s ∈N is given by

s =
mt−1

∑
i=0

si pi, where 0≤ si < p for all 0≤ i≤ mt−1.

Let the p-adic expansion of r ∈N be

r =
mt−1

∑
i=0

ri pi.

We say that r � s if ri ≤ si for all 0 ≤ i ≤ mt−1. By definition, we have r ≤ s if
r � s.

We shall need the following theorem, which is due to Lucas (1878).

Theorem 6.6 (Lucas). Let r =∑mt−1
i=0 ri pi and s =∑mt−1

i=0 si pi be the p-adic expan-
sions of r and s. Then (

s
r

)
≡

mt−1

∏
i=0

(
si

ri

)
(mod p).

The following is a characterisation of affine-invariant codes due to Kasami,
Lin and Peterson (1968a). The original characterisation of Kasami, Lin and Pe-
terson is combinatorial. The partial order approach presented here comes from
Charpin (1990).
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Theorem 6.7 (Kasami-Lin-Peterson). Let C be an extended cyclic code of
length qm over GF(q) with defining set T . The code C is affine-invariant if and
only if whenever s ∈ T then r ∈ T for all r ∈N with r � s.

Proof. Let C(X) = ∑g∈JCgXg ∈ C . Let s ∈N and a,b ∈ J with a 6= 0. We have
then

σ(a,b)(C(X)) = ∑
g∈J

CgXag+b.

Consequently,

ϕs
(
σ(a,b)(C(X))

)
= ∑

g∈J
Cg(ag+b)s = ∑

g∈J
Cg

s

∑
r=0

(
s
r

)
(ag)rbs−r.

According to Lucas’ Theorem,
(s

r

)
is nonzero modulo p if and only if ri ≤ si for all

0≤ i≤mt−1, where r = ∑mt−1
i=0 ri pi and s = ∑mt−1

i=0 si pi are the p-adic expansions
of r and s. Hence,

ϕs
(
σ(a,b)(C(X))

)
= ∑

g∈J
Cg ∑

r�s

(
s
r

)
(ag)rbs−r = ∑

r�s

(
s
r

)
arbs−r ∑

g∈J
Cggr.

Therefore,

ϕs
(
σ(a,b)(C(X))

)
= ∑

r�s

(
s
r

)
arbs−rϕr(C(X)). (6.11)

Let s be any element of T and assume that if r � s, then r ∈ T . By (6.8),
ϕr(C(X)) = 0 as r ∈ T . It then follows from (6.11) that

ϕs
(
σ(a,b)(C(X))

)
= 0.

As s is an arbitrary element of T , by (6.8), C is affine-invariant.
Conversely, assume that C is affine-invariant. Let s ∈ T and r � s. We would

prove that r ∈ T , that is ϕr(C(X)) = 0 by (6.8). Since C is affine-invariant,
ϕs
(
σ(a,b)(C(X))

)
= 0 for all a ∈ J∗ and b ∈ J. In particular, this holds for a = 1;

putting a = 1 in (6.11) gives

0 = ∑
r�s

(
s
r

)
ϕr(C(X))bs−r

for all b∈ J. But the right-hand side of this equation is a polynomial in b of degree
at most s< qm with all qm possible b∈ J. Hence, this must be the zero polynomial.
It follows that

(s
r

)
ϕr(C(X)) = 0 in J for all r � s. However, by Lucas’ Theorem

again,
(s

r

)
6≡ 0 (mod p) and thus these binomial coefficients are nonzero in J. As

a result, ϕr(C(X)) = 0 implies that r ∈ T .
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The following corollary will be useful subsequently.

Corollary 6.8. Let C be an extended cyclic code of length qm over GF(q) with
defining set T . If C is affine-invariant and n = qm−1∈ T , then C is the zero code.

Proof. Let q = pt and n = qm−1 = pmt −1. Recall that N = {0,1, . . . ,n}. Note
that the p-adic expansion of n is n = ∑mt−1

i=0 (p−1)pi. We have s� n for all s∈N .
As a result, T = N . The desired conclusion then follows.

Corollary 6.8 implies that the extended code of an even-like primitive cyclic
code cannot be affine-invariant.

The following result is fundamental.

Theorem 6.9. The dual of an affine-invariant code C over GF(q) of length n = qm

is also affine-invariant.

Proof. Let C be an affine-invariant code over GF(q) with length n = qm. By
definition, GA1(GF(qm)) is a subgroup of the permutation automorphism group
PAut(C ). It then follows from Theorem 2.14 that GA1(GF(qm)) is also a subgroup
of the permutation automorphism group PAut(C⊥). The desired conclusion then
follows.

Affine-invariant codes are very attractive partly due to the following result.

Theorem 6.10. Let Ai denote the number of codewords of weight i in an affine-
invariant code C of length qm. Then for each i with Ai 6= 0, the supports of the
codewords of weight i in C form a 2-design.

Proof. By definition, the permutation automorphism group of an affine-invariant
code C contains GA1(GF(qm)) as a subgroup, and is thus 2-transitive. The desired
conclusion then follows from Theorem 4.30.

In general, affine-invariant codes of length qm hold only 2-designs for q >

2. However, some binary affine-invariant codes (e.g., binary Reed-Muller codes)
hold 3-designs. In the subsequent section, we will introduce several families of
affine-invariant codes and investigate their designs. They all hold 2-designs, and
some of them hold 3-designs.

6.2 Specific Families of Affine-Invariant Extended Cyclic Codes

In this section, we present several families of affine-invariant extended cyclic
codes, and consider the designs of some of these codes. The designs of other
affine-invariant codes are dealt with in other chapters.
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6.2.1 Extended Narrow-Sense Primitive BCH Codes

BCH codes were briefly introduced in Section 3.7. Recall that the narrow-sense
primitive BCH code C(q,qm−1,δ,1) has definition set T = ∪δ−1

i=1 Ci, where Ci is the
q-cyclotomic coset modulo n = qm−1 containing i and 2≤ δ≤ n. By the discus-
sions in Section 6.1, the extended code C(q,qm−1,δ,1) has defining set T = {0}∪T ,
as 0 6∈ T . Note that n 6∈ T .

We are now ready to prove the following.

Theorem 6.11. Let 2≤ δ≤ n. Then C(q,qm−1,δ,1) is affine-invariant.

Proof. As shown above, C(q,qm−1,δ,1) has defining set T = {0}∪ T , where T =

∪δ−1
i=1 Ci. Let s ∈ T and r ∈ N . Assume that r � s. We need prove that r ∈ T by

Theorem 6.7.
If s = 0, then r = 0. In this case, we have indeed r ∈ T . We now assume that

s > 0. Since n = qm− 1 and r � s, we have rqi mod n � sqi mod n for all non-
negative integer i. Let sqi mod n be the coset leader of Cs for some nonnegative
integer i. Then we deduce

rqi mod n≤ sqi mod n≤ δ−1.

Therefore, rqi mod n ∈ T . It then follows that

r ∈Crqi mod n ⊆ T .

This completes the proof.

The automorphism group of the code C(q,qm−1,δ,1) is given in Berger and
Charpin (1999). As a corollary of Theorem 6.11, we have the following.

Corollary 6.12. The automorphism group Aut(C(q,qm−1,δ,1)) is doubly transitive.

Proof. Recall that the group action of GA1(GF(qm)) on the set GF(qm) is doubly
transitive. By Theorem 6.11, GA1(GF(qm)) ⊆ Aut(C(q,qm−1,δ,1)). Recall that the
coordinates of C(q,qm−1,δ,1) are indexed by the elements in GF(qm). The desired
conclusion then follows.

Theorem 6.13. The supports of the codewords of weight i> 0 in C(q,qm−1,δ,1) form
a 2-design, provided that Ai 6= 0.

Proof. The desired conclusion follows from Theorems 6.11 and 6.10.

We will treat the designs of the codes C(q,qm−1,δ,1) in Chapters 9 and 8, as
narrow-sense primitive BCH codes form a large class of cyclic codes. It is noticed
that C(q,qm−1,2,1) is in fact the first-order generalised Reed-Muller code, which will
be treated in Section 6.2.2.
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6.2.2 Generalised Reed-Muller Codes and Their Designs

Binary Reed-Muller codes were introduced in Section 5.1, and their designs were
studied in Section 5.2. In this subsection, we introduce the generalised Reed-
Muller codes and describe their designs. Binary Reed-Muller codes were treated
in Chapter 5 separately, as they hold 3-designs, while generalised Reed-Muller
codes over GF(q) hold only 2-designs for q > 2.

We first define the punctured generalised Reed-Muller codes, and will then
introduce the generalised Reed-Muller codes. Let q be a prime power as before.
For any integer j = ∑m−1

i=0 jiqi, where 0≤ ji ≤ q−1 for all 0≤ i≤m−1 and m is
a positive integer, we define

ωq( j) =
m−1

∑
i=0

ji, (6.12)

where the sum is taken over the ring of integers, and is called the q-weight of j.
Let ℓ be a positive integer with 1 ≤ ℓ < (q− 1)m. The ℓ-th order punctured

generalized Reed-Muller code Rq(ℓ,m)∗ over GF(q) is the cyclic code of length
n = qm−1 with generator polynomial

g(x) = ∏
1≤ j≤n−1

ωq( j)<(q−1)m−ℓ

(x−α j), (6.13)

where α is a generator of GF(qm)∗. Since ωq( j) is a constant function on each
q-cyclotomic coset modulo n = qm−1, g(x) is a polynomial over GF(q).

The parameters of the punctured generalized Reed-Muller code Rq(ℓ,m)∗ are
known and summarized in the next theorem.

Theorem 6.14. For any ℓ with 0 ≤ ℓ < (q−1)m, Rq(ℓ,m)∗ is a cyclic code over
GF(q) with length n = qm−1, dimension

κ =
ℓ

∑
i=0

m

∑
j=0

(−1) j
(

m
j

)(
i− jq+m−1

i− jq

)
and minimum weight d = (q− ℓ0)qm−ℓ1−1−1, where ℓ= ℓ1(q−1)+ ℓ0 and 0 ≤
ℓ0 < q−1.

Proof. We first prove the conclusion on the dimension of the code. Notice that
the number of ways of picking j objects from a set of m objects with repetitions
allowed is equal to

( j+m−1
j

)
. By an inclusion-exclusion argument, one can show

that the number of ways of picking i objects from a set of m objects, under the
restriction that no objects can be chosen more than q−1 times, is equal to

m

∑
j=0

(−1) j
(

m
j

)(
i− jq+m−1

i− jq

)
.
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Summarizing on i gives the desired conclusion on the dimension of this code.
We now deal with the minimum weight d of this code. By definition, we have

(q−1)m− ℓ= (m− ℓ1−1)(q−1)+(q−1− ℓ0).

Let h be the smallest integer with ωq(h) = (q−1)m− ℓ. Then

h = (q−1− ℓ0)qm−ℓ1−1 +
m−ℓ1−2

∑
i=0

(q−1)qi = (q− ℓ0)qm−ℓ1−1−1.

By the construction of this code, every integer u with 0 < u < h satisfies ωq(u)<
(q− 1)m− ℓ. Hence, the elements α1,α2, . . . ,αh−1 are all roots of the generator
polynomial g(x) of (6.13). It then follows from the BCH bound that

d ≥ (q− ℓ0)qm−ℓ1−1−1.

It was shown in Assmus and Key (1992a)[Theorem 5.5.3] and Delsarte, Goethals
and MacWilliams (1970) that the code has a codeword of Hamming weight (q−
ℓ0)qm−ℓ1−1−1. This proves the desired conclusion on the minimum weight.

Example 6.15. Let (q,m, ℓ) = (3,3,3), and let α be a generator of GF(33)∗ with
α3 +2α+1 = 0. Then R3(3,3)∗ is a ternary code with parameters [26,17,5] and
generator polynomial

g(x) = x9 +2x8 + x7 + x6 + x5 +2x4 +2x3 +2x2 + x+1.

Example 6.16. Let (q,m, ℓ) = (5,2,2), and let α be a generator of GF(52)∗ with
α2 + 4α+ 2 = 0. Then R5(2,2)∗ is a cyclic code over GF(5) with parameters
[24,6,14] and generator polynomial

g(x) = x18 +2x16 +3x15 +3x13 + x11 +2x9 + x8 +2x7

+4x6 +3x5 +2x4 +4x3 +3x2 +4x+4.

The weight distribution of Rq(1,m)∗ is given as follows.

Theorem 6.17. Rq(1,m)∗ has parameters [qm − 1,m+ 1,(q− 1)qm−1 − 1] and
weight enumerator

1+(q−1)(qm−1)z(q−1)qm−1−1 +(qm−1)z(q−1)qm−1
+(q−1)zqm−1.

The dual code (Rq(1,m)∗)⊥ has parameters [qm−1,qm−m−2,d⊥], where d⊥ =

4 if q = 2, and d⊥ = 3 if q≥ 3.

Proof. The proof is left to the reader.
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The weight distribution of Rq(2,m)∗ may be known. However, it looks very
challenging to settle the weight distribution of Rq(r,m)∗ for r ≥ 3.

The dual of the punctured generalized Reed-Muller code is described in the
following theorem [Assmus and Key (1992a)][Corollary 5.5.2].

Theorem 6.18. For 0 ≤ ℓ < m(q− 1), the code (Rq(ℓ,m)∗)⊥ is the cyclic code
with generator polynomial

g⊥(x) = ∏
0≤ j≤n−1
ωq( j)≤ℓ

(x−α j), (6.14)

where α is a generator of GF(qm)∗. In addition,

(Rq(ℓ,m)∗)⊥ = (GF(q)1)⊥∩Rq(m(q−1)−1− ℓ,m)∗,

where 1 is the all-one vector in GF(q)n and GF(q)1 denotes the code over GF(q)
with length n generated by 1.

The parameters of the dual of the punctured generalized Reed-Muller code are
summarized as follows.

Corollary 6.19. For 0 ≤ ℓ < m(q− 1), the code (Rq(ℓ,m)∗)⊥ has length n =

qm−1, dimension

κ⊥ = n−
ℓ

∑
i=0

m

∑
j=0

(−1) j
(

m
j

)(
i− jq+m−1

i− jq

)
,

and minimum weight

d⊥ ≥ (q− ℓ′0)q
m−ℓ′1−1, (6.15)

where m(q−1)−1− ℓ= ℓ′1(q−1)+ ℓ′0 and 0≤ ℓ′0 < q−1.

Proof. The desired conclusion on the dimension of the cyclic code (Rq(ℓ,m)∗)⊥

follows from Theorem 6.14. Note that the generator polynomial g⊥(x) of (6.14)
has the extra zero α0 compared with the generator polynomial of the cyclic code
Rq(m(q− 1)− 1− ℓ,m)∗. Then the lower bound of (6.15) follows from the
BCH bound and the proof of Theorem 6.14. Another way to prove the lower
bound on the minimum distance d⊥ goes as follows. By Theorem 6.14, the code
Rq(m(q− 1)− 1− ℓ,m)∗ has minimum distance (q− ℓ′0)q

m−ℓ′1−1− 1. Since the
extended code of Rq(m(q− 1)− 1− ℓ,m)∗ is affine-invariant, all the minimum
weight codewords of Rq(m(q− 1)− 1− ℓ,m)∗ are odd-like. By Theorem 6.18,
(Rq(ℓ,m)∗)⊥ is the even-like subcode of Rq(m(q− 1)− 1− ℓ,m)∗, the desired
lower bound then follows.
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Example 6.20. Let (q,m, ℓ) = (3,3,3), and let α be a generator of GF(33)∗ with
α3 + 2α+ 1 = 0. Then (R3(3,3)∗)⊥ is a ternary code with parameters [26,9,9]
and generator polynomial

g⊥(x) = x17 +2x16 +2x15 + x14 + x13 + x11 +2x10 +2x9 +

x8 +2x7 +2x5 + x4 +2x3 +2x+2.

The generalized Reed-Muller code Rq(ℓ,m) is defined to be the extended code
of Rq(ℓ,m)∗, and its parameters are given below.

Theorem 6.21. Let 0 ≤ ℓ < q(m− 1). Then the generalized Reed-Muller code
Rq(ℓ,m) has length n = qm, dimension

κ =
ℓ

∑
i=0

m

∑
j=0

(−1) j
(

m
j

)(
i− jq+m−1

i− jq

)
,

and minimum weight

d = (q− ℓ0)qm−ℓ1−1,

where ℓ= ℓ1(q−1)+ ℓ0 and 0≤ ℓ0 < q−1.

Proof. The desired conclusions follow from Theorem 6.14.

The following was proved in Delsarte, Goethals and MacWilliams (1970).

Theorem 6.22. Let 0≤ ℓ < q(m−1) and ℓ= ℓ1(q−1)+ℓ0, where 0≤ ℓ0 < q−1.
The total number A(q−ℓ0)qm−ℓ1−1 of minimum weight codewords in Rq(ℓ,m) is given
by

A(q−ℓ0)qm−ℓ1−1 = (q−1)
qℓ1(qm−1)(qm−1−1) · · ·(qℓ1+1−1)
(qm−ℓ1 −1)(qm−ℓ1−1−1) · · ·(q−1)

Nℓ0 ,

where

Nℓ0 =

{
1 if ℓ0 = 0,( q
ℓ0

) qm−ℓ1−1
q−1 if 0 < ℓ0 < q−1.

The generalized Reed-Muller codes Rq(ℓ,m) can also be defined with a
multivariate polynomial approach. The reader is referred to Assmus and Key
(1992a)[Section 5.4] for details.

As a generalisation of Theorem 5.3, we have the following.

Theorem 6.23. For ν < (q−1)m, we have

Rq(ν,m)⊥ = Rq(m(q−1)−1−ν,m).
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Proof. A proof can be found in Assmus and Key (1992a)[p. 156].

One of the major objectives of this section is to prove the following.

Theorem 6.24. Let ℓ be an integer with 1 ≤ ℓ < (q− 1)m, and let q = pt be a
prime power for some positive integer t. Then Rq(ℓ,m) is affine-invariant.

Proof. As before, let n = qm−1 and let T denote the defining set of Rq(ℓ,m). By
(6.13), we have

T = {0}∪{1≤ j ≤ n−1 : ωq( j)< (q−1)m− ℓ}.
Put N = {0,1, . . . ,n}. Let s ∈ T and r ∈ N . Assume that r � s. We need prove
that r ∈ T by Theorem 6.7.

Let the q-adic expansions of r and s be

r =
m−1

∑
i=0

riqi, 0≤ ri ≤ q−1

and

s =
m−1

∑
i=0

siqi, 0≤ si ≤ q−1.

Furthermore, let the p-adic expansions of ri and si be

ri =
t−1

∑
j=0

ri j p j, 0≤ ri j ≤ p−1

and

si =
t−1

∑
i=0

si j p j, 0≤ si j ≤ p−1.

Then the p-adic expansions of r and s are

r =
m−1

∑
i=0

t−1

∑
j=0

ri j p j+ti

and

s =
m−1

∑
i=0

t−1

∑
j=0

si j p j+ti.

Since we assumed that r � s, it then follows from the definition of the precedence
relation that ri j ≤ si j for all i and j. Consequently,

ri =
t−1

∑
j=0

ri j p j ≤
t−1

∑
i=0

si j p j = si

for all i. We now deduce that

ωq(r) =
m−1

∑
i=0

ri ≤ ωq(s) =
m−1

∑
i=0

si < (q−1)m− ℓ.

This means that r ∈ T .
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Corollary 6.25. The automorphism group Aut(Rq(ℓ,m)) is doubly transitive.

Proof. As pointed out earlier, the group action of GA1(GF(qm)) on GF(qm) is
doubly transitive. By Theorem 6.24, GA1(GF(qm))⊆ PAut(Rq(ℓ,m)). Recall that
the coordinates of Rq(ℓ,m) are indexed by the elements in GF(qm). The desired
conclusion then follows.

Theorem 6.26. Let ℓ be an integer with 1 ≤ ℓ < (q− 1)m. Then the supports of
the codewords of weight i > 0 in Rq(ℓ,m) form a 2-design, provided that Ai 6= 0.

Proof. The desired conclusion follows from Theorems 6.24 and 6.10.

Combining Theorems 6.22 and 6.26, we deduce the following.

Theorem 6.27. Let 0 ≤ ℓ < q(m− 1) and ℓ = ℓ1(q− 1) + ℓ0, where 0 ≤ ℓ0 <

q− 1. The supports of the minimum weight codewords in Rq(ℓ,m) form a 2-
(qm,(q− ℓ0)qm−ℓ1−1,λ) design, where

λ =
A(q−ℓ0)qm−ℓ1−1

q−1

((q−ℓ0)qm−ℓ1−1

2

)(qm

2

)
and A(q−ℓ0)qm−ℓ1−1 was given in Theorem 6.22.

Theorem 6.27 is a generalisation of Theorem 5.19. But Rq(ℓ,m) does not hold
3-designs when q > 2.

The following result is easy to prove and is left to the reader.

Theorem 6.28. We have the following equality:

Rq(1,m) = C(q,qm−1,2,1).

Theorem 6.29. Rq(1,m) has parameters [qm,1+m,(q−1)qm−1] and the weight
enumerator

1+q(qm−1)z(q−1)qm−1
+(q−1)zqm

. (6.16)

Furthermore, the supports of all minimum weight codewords in Rq(1,m) form a
2-(qm,(q−1)qm−1,(q−1)qm−1−1) design.

Proof. Note that Rq((q−1)m−2,m) = Rq(1,m)⊥. The punctured code Rq((q−
1)m−2,m)∗ has generator polynomial Mα(x), where α is a generator of GF(qm)∗,
and is a narrow-sense BCH code with designed distance 2. The parameters and the
weight enumerator of Rq(1,m) are then easily seen. The 2-design property of the
supports of all minimum weight codewords in Rq(1,m) follows from Theorem
6.26. Since A(q−1)qm−1 = q(qm− 1) and (q− 1)qm−1 is the minimum weight of
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the code, the total number of the supports of all minimum weight codewords is
A(q−1)qm−1/(q−1). Hence

λ =
A(q−1)qm−1

q−1

((q−1)qm−1

2

)(qm

2

) = (q−1)qm−1−1.

Theorem 6.30. Let q > 2. Then the code Rq((q− 1)m− 2,m) has parameters
[qm,qm−m−1,3] and weight enumerator

A(z) =
(1+(q−1)z)qm

+(q−1)(1− z)qm

qm+1 +

q(qm−1)(1− z)(q−1)qm−1
(1+(q−1)z)qm−1

qm+1 .

In particular,

A3 =
q(qm−1)

[
(q−1)3

(qm−1

3

)
− (q−1)2

(qm−1

2

)((q−1)qm−1

1

)]
qm+1 +

q(qm−1)
[
(q−1)

(qm−1

1

)((q−1)qm−1

2

)
−
((q−1)qm−1

3

)]
qm+1 +(qm

3

)[
(q−1)3− (q−1)

]
qm+1

=
(q−1)(q−2)(qm−1)qm

6
. (6.17)

Proof. Note that (q− 1)m− 2 = (q− 1)(m− 1) + q− 3 and q ≥ 3. It then
follows from Theorem 6.21 that Rq((q− 1)m− 2,m) has minimum distance 3.
By Theorem 6.23, Rq((q− 1)m− 2,m) = Rq(1,m)⊥. Hence, the dimension of
Rq((q−1)m−2,m) is qm−m−1. The desired conclusion on the weight enumer-
ator of Rq((q−1)m−2,m) follows from Theorem 2.4 and the weight enumerator
of Rq(1,m) given in (6.16). One can verify that the coefficient of z3 in the weight
enumerator A(z) is the A3 given in (6.17).

Combining Theorems 6.26 and 6.30, we arrive at the following.

Corollary 6.31. The supports of all codewords of weight 3 in Rq((q−1)m−2,m)

form a 2-(qm,3,q− 2) design. In particular, the supports of all minimum code-
words in R3(2m− 2,m) form a 2-(3m,3,1) design, i.e., a Steiner triple system
S(2,3,3m).
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Proof. Combining Theorems 6.26 and 6.30, we have

λ =
6A3

(q−1)(qm−1)qm = q−2.

It is interesting to obtain an infinite family of Steiner triple systems S(2,3,3m)

from the generalised Reed-Muller ternary codes R3(2m− 2,m). It was shown in
Chapter 5 that the binary Reed-Muller codes R2(m−2,m) holds an infinite family
of Steiner quadruple systems S(3,4,2m) (see Corollary 5.22).

Experimental data indicates that Ai > 0 for all 4≤ i≤ qm for the code Rq((q−
1)m− 2,m). In theory, one can write down a formula for Ai of all i ≥ 4 with the
weight enumerator given in Theorem 6.30. But this does not mean that one can
determine the total number of supports of the codewords with weight i and hence
the parameters of the corresponding 2-design.

The weight distribution of the second-order Reed-Muller code Rq(2,m) for
q > 2 is documented in Li (2019), which corrects some errors in McEliece (1969).
Hence, the parameters of some of the designs held in Rq(2,m) can be worked out.

Example 6.32. The generalised Reed-Muller code R3(2,3) has parameters
[27,10,9] and weight enumerator

1+78z9 +1404z12 +14040z15 +27300z18 +15444z21 +702z24 +80z27.

It holds 2-(27,k,λ) designs with the following pairs (k,λ):

(9,4), (12,132), (15,2100), (18,5933), (21,4060), (24,92).

As demonstrated in Section 5.2, binary Reed-Muller codes hold 3-designs.
However, experimental data indicates that Rq(ℓ,m) does not hold 3-designs in
general for q > 2. To determine the parameters of the 2-designs held in Rq(ℓ,m),
we need to to settle the following problem.

Problem 6.33. Let 3≤ ℓ≤ (q−1)m. Determine the nonzero weights in Rq(ℓ,m).
For each nonzero weight w, determine the number Aw of codewords of weight w
and the number of supports of the codewords of weight w.

6.2.3 Dilix Codes and Their Designs

In this section, we introduce a type of extended cyclic codes, which are called
Dilix codes and were developed in Ding, Li and Xia (2018), and prove that they
are affine-invariant.
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Let m be a positive integer and let n = qm−1, where q = pρ, p is a prime and
ρ is a positive integer. For any integer a with 0≤ a≤ n−1, we have the following
q-adic expansion

a =
m−1

∑
j=0

a jq j,

where 0≤ a j ≤ q−1. The Hamming weight of a, denoted by wt(a), is the Ham-
ming weight of the vector (a0,a1, . . . ,am−1).

Let α be a generator of GF(qm)∗. For any 1≤ h≤ m, we define a polynomial

g(q,m,h)(x) = ∏
1≤a≤n−1

1≤wt(a)≤h

(x−αa). (6.18)

Since wt(a) is a constant function on each q-cyclotomic coset modulo n,
g(q,m,h)(x) is a polynomial over GF(q). By definition, g(q,m,h)(x) is a divisor of
xn−1.

Let Ω(q,m,h) denote the cyclic code over GF(q) with length n and generator
polynomial g(m,q,h)(x), which is called the punctured Dilix code. To analyse this
code, we set

I(q,m,h) = {1≤ a≤ n−1 : 1≤ wt(a)≤ h}. (6.19)

The dimension of the code Ω(q,m,h) is equal to n−|I(q,m,h)|.

Theorem 6.34. Let m ≥ 2 and 1 ≤ h ≤ m− 1. Then Ω(q,m,h) has parameters
[n,k,d ≥ (qh+1−1)/(q−1)], where

k = qm−
h

∑
i=0

(
m
i

)
(q−1)i.

Proof. As shown earlier, I(q,m,h) is the union of some q-cyclotomic cosets mod-
ulo n. The total number of elements in Zn with Hamming weight i is equal to(m

i

)
(q−1)i. It then follows that

|I(q,m,h)|=
h

∑
i=1

(
m
i

)
(q−1)i.

Hence, the dimension k of the code is given by

k = qm−1−
h

∑
i=1

(
m
i

)
(q−1)i.

Note that every integer a with 1 ≤ a ≤ (qh+1− 1)/(q− 1)− 1 has Hamming
weight wt(a)≤ h. By definition,{

1,2,3, . . . ,(qh+1−1)/(q−1)−1
}
⊂ I(q,m,h).

It then follows from the BCH bound that d ≥ (qh+1−1)/(q−1).
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When q = 2, Ω(q,m,h) clearly becomes the classical punctured binary Reed-
Muller code PGRM2(m−1−h,m). Hence, Ω(q,m,h) is indeed a generalization
of the original punctured binary Reed-Muller code.

Example 6.35. The following is a list of examples of the code Ω(q,m,h).

• When (q,m,h) = (3,3,1), Ω(q,m,h) has parameters [26,20,4].
• When (q,m,h) = (3,4,1), Ω(q,m,h) has parameters [80,72,4].
• When (q,m,h) = (3,4,2), Ω(q,m,h) has parameters [80,48,13].
• When (q,m,h) = (3,4,3), Ω(q,m,h) has parameters [80,16,40].
• When (q,m,h) = (4,3,1), Ω(q,m,h) has parameters [63,54,5].

An interesting fact about the family of newly generalised codes Ω(q,m,h) is
the following.

Corollary 6.36. Let m≥ 2. Then the ternary cyclic code Ω(3,m,1) has parame-
ters [3m−1,3m−1−2m,4] and is distance-optimal.

Proof. It follows from Theorem 6.34 that the ternary code Ω(3,m,1) has length
3m−1, dimension 3m−1−2m, and minimum distance d ≥ 4. We now prove that
d cannot be 5 or more. Suppose on the contrary that d ≥ 5. By the sphere-packing
bound, we have

b(d−1)/2c

∑
i=0

(
n
i

)
2i ≤ 32m = (n+1)2,

where n = 3m−1. Since we assume that d ≥ 5, we have then

b(d−1)/2c

∑
i=0

(
n
i

)
2i ≥

2

∑
i=0

(
n
i

)
2i = 1+2n+4

(
n
2

)
= 2n2 +1 > (n+1)2.

This is contrary to the sphere-packing bound. Consequently, d = 4, and the ternary
code Ω(3,m,1) is distance-optimal.

We inform the reader that the dual code Ω(3,m,1)⊥ has three nonzero weights
for odd m ≥ 3 and five nonzero weights for even m. The weight distribution of
Ω(3,m,1)⊥ can be worked out. We have also the next special case in which the
parameters of the code Ω(q,m,h) are known.

Theorem 6.37. Let m be even. Then the cyclic code Ω(q,m,1) has parameters
[qm−1,qm−1−m(q−1),q+1].
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Proof. It follows from Theorem 6.34 that Ω(q,m,1) has parameters [qm−1,qm−
1−m(q− 1),d ≥ q+ 1]. It then suffices to show that Ω(q,m,1) has a codeword
of weight q+1. Put

c(x) =
xqm−1−1

x
qm−1
q+1 −1

.

Note that every integer a with 1 ≤ a ≤ n and wt(a) = 1 must be of the form
a = iq j, where 1 ≤ i ≤ q− 1 and 0 ≤ j ≤ m− 1. For every such a, αa cannot

be a solution of x
qm−1
q+1 − 1 = 0. As a result, c(αa) = 0. It then follows that the

generator polynomial g(q,m,1)(x) of Ω(q,m,1) divides c(x). Therefore, c(x) is a
codeword of Ω(q,m,1). Obviously, c(x) has weight q+1. The desired conclusion
then follows.

The parameters of Ω(q,m,h) are also known in the following case.

Theorem 6.38. Let m ≥ 2. Then the cyclic code Ω(q,m,m−1) has parameters
[qm−1,(q−1)m,(qm−1)/(q−1)].

Proof. Recall that m ≥ 2. It follows from Theorem 6.34 that Ω(q,m,m−1) has
parameters [qm−1,(q−1)m,d ≥ (qm−1)/(q−1)]. It then suffices to demonstrate
that Ω(q,m,m−1) has a codeword of weight (qm− 1)/(q− 1). To this end, we
define c(x) = (xqm−1−1)/(xq−1−1), which has Hamming weight (qm−1)/(q−
1). We now prove that c(x) is a codeword of Ω(q,m,m−1). Notice that

{αi(qm−1)/(q−1) : 0≤ i≤ q−2}

is the set of all roots of xq−1−1 over GF(q). Obviously, the Hamming weight of
i(qm−1)/(q−1) is either 0 or m for all 0≤ i≤ q−2. We have then

{i(qm−1)/(q−1) : 0≤ i≤ q−2}∩ I(q,m,m−1) = /0.

Consequently, the generator polynomial g(q,m,m−1)(x) of Ω(q,m,m−1) divides
c(x). This proves the desired conclusion.

In a few special cases above, we were able to settle the minimum distance of
the code Ω(q,m,h). However, the following problem is still open.

Problem 6.39. Is it true that the minimum distance of the code Ω(q,m,h) is equal
to (qh+1−1)/(q−1)?

When q = 2, the dual code Ω(q,m,h)⊥ is the binary Reed-Muller code. Thus,
we need to study the dual code Ω(q,m,h)⊥ for the case q > 2 only. The following
theorem gives information on the parameters of the dual code Ω(q,m,h)⊥.
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Theorem 6.40. Let m ≥ 2 and 1 ≤ h ≤ m− 1. The dual code Ω(q,m,h)⊥ has
parameters [n,k⊥,d⊥], where

k⊥ =
h

∑
i=1

(
m
i

)
(q−1)i.

The minimum distance d⊥ of Ω(q,m,h)⊥ is lower bounded by

d⊥ ≥ qm−h +q−2.

Proof. The desired conclusion on the dimension of Ω(q,m,h)⊥ follows from the
dimension of Ω(q,m,h). What remains to be proved is the lower bound on the
minimum distance d⊥. Let Ω(q,m,h)c denote the complement of Ω(q,m,h),
which is generated by the check polynomial of Ω(q,m,h). It is well known that
Ω(q,m,h)c and Ω(q,m,h)⊥ have the same length, dimension and minimum dis-
tance.

By definition, the defining set of Ω(q,m,h)c is

I(q,m,h)c = {0}∪{1≤ b≤ n−1 : wt(b)≥ h+1}.

Let b = qm−h +qm−h+1 + · · ·+qm−1. Define

A = {a+b : 1≤ a≤ qm−h−1}

and

B = { jb : 0≤ j ≤ q−2}.

It is straightforward to verify that A+B⊂ I(q,m,h)c. Note that n ∈ A+B. In this
case, we identify n with 0.

Clearly, A is a set of qm−h − 1 consecutive elements in the defining set
I(q,m,h)c. Note that

gcd(b,n) = gcd
(

qh−1
q−1

,qm−1
)
≤ gcd(qh−1,qm−1) = qgcd(h,m)−1.

By assumption, 1≤ h≤ m−1. We then have gcd(h,m)≤ m−h. Consequently,

gcd(b,n)< qm−h.

The desired conclusion on d⊥ then follows from the Hartmann-Tzeng bound (see
Theorem 3.19).

When q = 2, the lower bound on the minimum distance d⊥ of Ω(q,m,h)⊥

given in Theorem 6.40 is achieved. The lower bound is not tight when q > 2.
However, it is open how to improve this lower bound.

Problem 6.41. Determine the minimum distance d⊥ of the code Ω(q,m,h)⊥.
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To further study the dual code Ω(q,m,h)⊥, we need to establish some relation
between wt(a) and wt(n−a) for a ∈ Zn. Let a ∈ Zn and let a = ∑m−1

j=0 a jq j be the
q-adic expansion of a. We define

γ(a) = |{0≤ j≤m−1 : 1≤ a j < q−1}|= wt(a)−|{0≤ j≤m−1 : a j = q−1}|.

Then we have the following lemma whose proof is straightforward and omitted.

Lemma 6.42. For a ∈ Zn, we have

wt(n−a) = m−wt(a)+ γ(a) = m−|{0≤ j ≤ m−1 : a j = q−1}|.

For 0≤ i≤ m, define

N(i) = {a ∈ Zn : wt(a) = i}

and

−N(i) = {n−a : a ∈ N(i)}.

Clearly, |N(i)|=
(m

i

)
(q−1)i.

The following lemma will be useful later.

Lemma 6.43. In the set −N(i), there are exactly
(m

i

)( i
j

)
(q− 2) j elements with

Hamming weight m− i+ j for each j with 0≤ j ≤ i.

Proof. Let a ∈ N(i). By definition, wt(a) = i. It follows from Lemma 6.42 that

wt(n−a) = m− i+ γ(a).

It is easily seen that

|{1≤ a≤ n−1 : wt(a) = i and γ(a) = j}|=
(

m
i

)(
i
j

)
(q−2) j.

This completes the proof.

Theorem 6.44. Let m≥ 2. Then Ω(q,m,h)⊥ is a subcode of Ω(q,m,m−1−h)∩
1⊥. In particular, Ω(2,m,h)⊥ = Ω(2,m,m−1−h)∩1⊥.

Proof. By definition, the defining set of Ω(q,m,h)⊥ is −I(q,m,h)c, where

−I(q,m,h)c = {0}∪{n−a : 1≤ a≤ n−1 and wt(a)> h}.

We now prove that

I(q,m,m−1−h)∪{0} ⊆ −I(q,m,h)c.

Let a ∈ I(q,m,m−1−h). By definition, wt(a)≤ m−1−h. It then follows from
Lemma 6.42 that

wt(n−a) = m−wt(a)+ γ(a)≥ h+1+ γ(a)≥ h+1.
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This means that n−a ∈ I(q,m,h)c.
Let b ∈ −I(q,m,h)c and b 6= 0. Then b = n− a for some a 6= 0 and a ∈

I(q,m,h)c. By definition, wt(a)≥ h+1. It then follows from Lemma 6.42 that

wt(b) = wt(n−a) = m−wt(a)+ γ(a)≤ m−1−h+ γ(a).

Notice that γ(a) may be positive for q > 2. It is likely that wt(b) > m− 1−
h. Consequently, I(q,m,m−1−h)∪{0} may be a proper subset of −I(q,m,h)c

when q > 3. However, when q = 2 we have always γ(a) = 0 and thus the identity:

{0}∪ I(2,m,m−1−h) =−I(2,m,h)c.

This means that Ω(2,m,h)⊥ = Ω(2,m,m−1−h)∩1⊥.

Example 6.45. Let (q,m,h) = (3,3,1). Then

I(q,m,m−1−h)∪{0}= {0,1,2,3,6,9,18}

and

−I(q,m,h)c = {0,1,2,3,4,5,6,7,9,10,11,12,13,14,15,16,18,19,21,22}.

This means that Ω(q,m,h)⊥ is indeed a proper subcode of Ω(q,m,m−1−h)∩1⊥

in this case. This shows a fundamental difference between the binary case and the
nonbinary case regarding the codes Ω(q,m,h).

Experimental data shows that one of I(q,m,m−h)∪{0} and −I(q,m,h)c is
not a subset of the other. Consequently, none of Ω(q,m,h)⊥ and Ω(q,m,m−h) is
a subcode of the other in general.

Example 6.46. The following is a list of examples of the code Ω(q,m,h)⊥.

• When (q,m,h) = (2,4,2), the code Ω(q,m,h)⊥ has parameters [15,10,4]. In
this case, the lower bound on the minimum distance is achieved.
• When (q,m,h) = (3,3,1), the code Ω(q,m,h)⊥ has parameters [26,6,15]. In

this case, the lower bound on the minimum distance is 10.
• When (q,m,h) = (3,3,2), the code Ω(q,m,h)⊥ has parameters [26,18,6]. In

this case, the lower bound on the minimum distance is 4.

We now consider the extended code Ω(q,m,h) of Ω(q,m,h), called the Dilix
code, and have the following result about the permutation automorphism group of
the code.

Theorem 6.47. Let q = pρ be a prime power. Then the Dilix code Ω(q,m,h) is
affine-invariant.
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Proof. By (6.18), the defining set T of Ω(q,m,h) is given by

T = {0}∪{1≤ a≤ n−1 : 1≤ wt(a)≤ h}.

Put N = {0,1, . . . ,n}. Let s ∈ T and r ∈ N . Assume that r � s. We need prove
that r ∈ T by Theorem 6.7.

Let the q-adic expansions of r and s be

r =
m−1

∑
i=0

riqi, 0≤ ri ≤ q−1

and

s =
m−1

∑
i=0

siqi, 0≤ si ≤ q−1.

Furthermore, let the p-adic expansions of ri and si be

ri =
ρ−1

∑
j=0

ri j p j, 0≤ ri j ≤ p−1

and

si =
ρ−1

∑
i=0

si j p j, 0≤ si j ≤ p−1.

Then the p-adic expansions of r and s are

r =
m−1

∑
i=0

ρ−1

∑
j=0

ri j p j+ρi

and

s =
m−1

∑
i=0

ρ−1

∑
j=0

si j p j+ρi.

Since we assumed that r � s, it then follows from the definition of the precedence
relation that ri j ≤ si j for all i and j. Consequently,

ri =
ρ−1

∑
j=0

ri j p j ≤
ρ−1

∑
i=0

si j p j = si

for all i. Hence,

wt(r)≤ wt(s)≤ h.

This means that r ∈ T . The desired conclusion then follows.

Corollary 6.48. The permutation automorphism group PAut(Ω(q,m,h)) is dou-
bly transitive.
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Proof. Recall that the action of GA1(GF(qm)) on GF(qm) is doubly transitive. By
Theorem 6.47, GA1(GF(qm)) ⊆ PAut(Ω(q,m,h)). Recall that the coordinates of
Ω(q,m,h) are indexed by the elements in GF(qm). The desired conclusion then
follows.

Theorem 6.49. Let m≥ 2 and 1≤ ℓ≤m−1. Then the supports of the codewords
of weight i > 0 in the Dilix code Ω(q,m, ℓ) form a 2-design, provided that Ai 6= 0.

Further, the same conclusion holds for the dual code Ω(q,m, ℓ)
⊥

.

Proof. The desired conclusion of the first part follows from Theorems 6.47 and
6.10. Note that Ω(q,m, ℓ)

⊥
and Ω(q,m, ℓ) have the same permutation automor-

phism group. The conclusion of the second part follows.

Example 6.50. The Dilix code Ω(3,3,2 has parameters [27,8,14] and weight enu-
merator

1+810z14 +702z15 +1404z17 +780z18 +2106z20 +702z21 +54z26 +2z27.

It holds 2-(27,k,λ) designs with the following pairs (k,λ):

(14,105), (15,105), (17,272), (18,170), (20,570), (21,210), (26,25).

Experimental data indicates that the Dilix code Ω(q,m, ℓ) does not hold 3-
designs in general for q > 2. To determine the parameters of the 2-designs held in
Ω(q,m, ℓ), we need to solve the following problem.

Problem 6.51. Let 1 ≤ ℓ ≤ m− 1. Determine the nonzero weights in Ω(q,m, ℓ).
For each nonzero weight w, determine the number Aw of codewords of weight w
and the number of supports of the codewords of weight w.

The following theorem provides information on the parameters of the Dilix
code Ω(q,m,h).

Theorem 6.52. Let m ≥ 2 and 1 ≤ h ≤ m− 1. Then Ω(q,m,h) has parameters
[qm,k,d], where

k = qm−
h

∑
i=0

(
m
i

)
(q−1)i

and

qh+1−1
q−1

+1≤ d ≤ 2qh. (6.20)
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Proof. The dimension of the code Ω(q,m,h) follows from Theorem 6.34, as
Ω(q,m,h) and Ω(q,m,h) have the same dimension. The upper bound on the
minimum distance of Ω(q,m,h) also follows from that of Ω(q,m,h). The only
nontrivial part is the proof of the lower bound on the minimum distance of the
code Ω(q,m,h), which goes as follows.

For the convenience of proof, we use d(C ) to denote the minimum distance of
a linear code C of length n. It is known that every minimum weight codeword of
C must be odd-like if the permutation automorphism group of the extended code
C is transitive (see Theorem 2.13). It then follows that

d(C ) = d(C )+1

if the permutation automorphism group of the extended code C is transitive.
By the proof of Theorem 6.47, the permutation automorphism group of

Ω(q,m,h) is transitive. It then follows from the discussion above that

d(Ω(q,m,h)) = d(Ω(q,m,h))+1. (6.21)

The desired lower bound on the minimum distance of Ω(q,m,h) then follows from
the lower bound on the minimum distance of the code Ω(q,m,h) given in Theorem
6.34.

In the following special cases, we are able to determine the parameters of the
code Ω(q,m,h). The following theorem follows from (6.21) and Corollary 6.36

Theorem 6.53. Let m ≥ 2. Then the ternary code Ω(3,m,1) has parameters
[3m,3m−1−2m,5] and is dimension-optimal.

The ternary code Ω(3,m,1) is said to be dimension-optimal, as there is no
ternary code with parameters [3m,3m−2m,5]. This can be proved with the sphere-
packing bound. The next theorem follows from (6.21) and Theorem 6.37.

Theorem 6.54. Let m be even. Then the Dilix code Ω(q,m,1) has parameters
[qm,qm−1−m(q−1),q+2].

The following theorem follows from (6.21) and Theorem 6.38.

Theorem 6.55. Let m≥ 2. Then the Dilix code Ω(q,m,m−1) has parameters[
qm,(q−1)m,

qm +q−2
q−1

]
.
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6.2.4 Extended Binary Cyclic Codes with Zeros of the Forms α and
α1+2e and Their Designs

In this section, we deal with only binary codes and their support designs, and we
define n = 2m− 1 and n̄ = 2m. The materials of this section comes from Ding
(2018a).

Let m≥ 2 be a positive integer. Define m = bm/2c and M = {1,2, . . . ,m}. Let
E be any nonempty subset of M. Let

gE(x) =Mα(x)LCM{Mα1+2e (x) : e ∈ E}, (6.22)

where α is a generator of GF(2m)∗, Mαi(x) denotes the minimal polynomial of αi

over GF(2), and LCM denotes the least common multiple of a set of polynomials.
Note that every e ∈ E satisfies e ≤ m, and the 2-cyclotomic cosets C1 and Ce are
disjoint. Consequently, the two irreducible polynomials Mα(x) and Mα1+2e (x) are
relatively prime. It then follows that gE(x) divides xn − 1. Let CE denote the
binary cyclic code of length n with generator polynomial gE(x).

Theorem 6.56. Let m≥ 3. Then the generator polynomial of CE is given by

gE(x) =Mα(x)∏
e∈E

Mα1+2e (x).

Furthermore, CE has dimension

dim(CE) =

{
2m−1− (2|E|+1)m/2 if m is even and m/2 ∈ E,
2m−1− (|E|+1)m otherwise.

(6.23)

Proof. The following list of properties was proved in Dianwu and Zhengming
(1996):

• For each e ∈ E, 1+2e is a coset leader.
• For each e ∈ E, |Ce| = m, except that m is even and e = m/2, in which case
|Cm/2|= m/2.

Note that 1 is the coset leader of the 2-cyclotomic coset C1 with |C1| = m. Then
the desired conclusions on the generator polynomial and dimension follow.

Theorem 6.57. The extended code CE is affine invariant.

Proof. We prove the desired conclusion with Theorem 6.7 and follow the notation
employed in the proof of Theorem 6.7. Let N = {0,1,2, . . . ,n}, where n= 2m−1.
The defining set T of the cyclic code CE is T = C1 ∪ (∪e∈ECe). Since 0 6∈ T , the
defining set T of CE is given by

T =C1∪ (∪e∈ECe)∪{0}.
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Let s ∈ T and r ∈ N . Assume that r � s. We need prove that r ∈ T by Theorem
6.7.

If r = 0, then obviously r∈ T . Consider now the case r > 0. In this case s≥ r≥
1. If s ∈C1, then the Hamming weight wt(s) = 1. As r � s, r = s. Consequently,
r ∈ C1 ⊂ T . If s ∈ Ce, then the Hamming weight wt(s) = 2. As r � s, either
wt(r) = 1 or r = s. In bother cases, r ∈ T . The desired conclusion then follows
from Theorem 6.7.

Combining Theorems 6.57, 6.10 and 4.27, we arrive at the following.

Theorem 6.58. Let m≥ 3. The supports of the codewords of every weight k in CE

(respectively, CE
⊥

) form a 2-design, provided that Ak 6= 0 (respectively, A⊥k 6= 0).

Theorem 6.58 includes a class of 2bm/2c− 1 affine invariant binary codes CE

and their duals. They give exponentially many infinite families of 2-(2m,k,λ)
designs. To determine the parameters (2m,k,λ) of the 2-designs, we need to settle
the weight distributions of these codes. The weight distributions of these codes
are related to quadratic form, bilinear forms, and alternating bilinear forms, and
are open in general. Note that the code CE may be a BCH code in some cases, but
is not a BCH code in most cases.

We would construct an infinite family of Steiner systems S(2,4,2m). To this
end, we consider the code CE and its extended code CE for the special case E =

{1+2e}, where 1≤ e≤ m = bm/2c. For simplicity, we denote this code by Ce.

Table 6.2 Weight distribution I
Weight w No. of codewords Aw

0 1
2m−1−2m−1−h (2m−1)(2h +1)2h−1

2m−1 (2m−1)(2m−22h +1)
2m−1 +2m−1−h (2m−1)(2h−1)2h−1

Table 6.3 Weight distribution II
Weight w No. of codewords Aw

0 1
2m−1−2(m−2)/2 (2m/2−1)(2m−1 +2(m−2)/2)

2m−1 2m−1
2m−1 +2(m−2)/2 (2m/2−1)(2m−1−2(m−2)/2)

The following theorem provides information on the parameters of Ce and its
dual C⊥e [Kasami (1969)].
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Table 6.4 Weight distribution III
Weight w No. of codewords Aw

0 1
2m−1−2(m+ℓ−2)/2 2(m−ℓ−2)/2(2(m−ℓ)/2 +1)(2m−1)/(2ℓ/2 +1)
2m−1−2(m−2)/2 2(m+ℓ−2)/2(2m/2 +1)(2m−1)/(2ℓ/2 +1)
2m−1 ((2ℓ/2−1)2m−ℓ+1)(2m−1)
2m−1 +2(m−2)/2 2(m+ℓ−2)/2(2m/2−1)(2m−1)/(2ℓ/2 +1)
2m−1 +2(m+ℓ−2)/2 2(m−ℓ−2)/2(2(m−ℓ)/2−1)(2m−1)/(2ℓ/2 +1)

Theorem 6.59. Let m ≥ 4 and 1 ≤ e ≤ m/2. Then C⊥e is a three-weight code if
and only if either m/gcd(m,e) is odd or m is even and e = m/2, where n = 2m−1.

When m/gcd(m,e) is odd, define h = (m−gcd(m,e))/2. Then the dimension
of C⊥e is 2m, and the weight distribution of C⊥e is given in Table 6.2. The code Ce

has parameters [n,n−2m,d], where

d =

{
3 if gcd(e,m)> 1;
5 if gcd(e,m) = 1.

When m is even and e = m/2, C⊥e has dimension 3m/2 and the weight distri-
bution of Table 6.3. The code Ce has parameters [n,n−3m/2,3].

When m/gcd(m,e) is even and 1 ≤ e < m/2, C⊥e has dimension 2m and the
weight distribution in Table 6.4, where ℓ = 2gcd(m,e), and Ce has parameters
[n,n−2m,d], where

d =

{
3 if gcd(e,m)> 1;
5 if gcd(e,m) = 1.

The weight distributions of the code C⊥e documented in Theorem 6.59 were
indeed proved in Kasami (1969). However, the conclusions on the minimum dis-
tance d of Ce were stated in Kasami (1969) without proof. We inform the reader
that they can be proved with the proved weight distribution of C⊥e and Theorem
2.4, though the details of proof are tedious in some cases.

We would find the parameters of the 2-designs held in the codes Ce and Ce
⊥,

and need to know the weight distributions of these two codes, which could be
derived from those of the code C⊥e described in Theorem 6.59. We first determine
the weight distribution of Ce

⊥.
The following theorem provides information on the parameters of Ce and its

dual Ce
⊥.

Theorem 6.60. Let m≥ 4 and 1≤ e≤m/2. When m/gcd(m,e) is odd, define h =

(m−gcd(m,e))/2. Then Ce
⊥

has parameters [2m,2m+1,2m−1−2m−1−h], and the



November 17, 2021 14:14 ws-book9x6 Designs from Linear Codes designscodes page 193

Affine Invariant Codes and Their Designs 193

Table 6.5 Weight distribution IV
Weight w No. of codewords Aw

0 1
2m−1−2m−1−h (2m−1)22h

2m−1 (2m−1)(2m+1−22h+1 +2)
2m−1 +2m−1−h (2m−1)22h

2m 1

Table 6.6 Weight distribution V
Weight w No. of codewords Aw

0 1
2m−1−2(m−2)/2 (2m/2−1)2m

2m−1 2m+1−2
2m−1 +2(m−2)/2 (2m/2−1)2m

2m 1

Table 6.7 Weight distribution VI
Weight w No. of codewords Aw

0 1
2m−1−2(m+ℓ−2)/2 2m−ℓ(2m−1)/(2ℓ/2 +1)
2m−1−2(m−2)/2 2(2m+ℓ)/2(2m−1)/(2ℓ/2 +1)
2m−1 2((2ℓ/2−1)2m−ℓ+1)(2m−1)
2m−1 +2(m−2)/2 2(2m+ℓ)/2(2m−1)/(2ℓ/2 +1)
2m−1 +2(m+ℓ−2)/2 2m−ℓ(2m−1)/(2ℓ/2 +1)
2m 1

weight distribution in Table 6.5. The parameters of Ce are [2m,2m− 1− 2m,d],
where

d =

{
4 if gcd(e,m)> 1;
6 if gcd(e,m) = 1.

When m is even and e = m/2, Ce
⊥

has parameters [2m,1 + 3m/2,2m−1 −
2(m−2)/2] and the weight distribution in Table 6.6. The code Ce has parameters
[2m,2m−1−3m/2,4].

When m/gcd(m,e) is even and 1≤ e < m/2, Ce
⊥

has parameters

[2m, 2m+1, 2m−1−2(m+ℓ−2)/2]

and the weight distribution in Table 6.7, where ℓ= 2gcd(m,e), and Ce has param-
eters [2m,2m−1−2m,d], where

d =

{
4 if gcd(e,m)> 1;
6 if gcd(e,m) = 1.
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Proof. We prove only the conclusions of the first part. The conclusions of the
other parts can be proved similarly.

Consider now the case that m/gcd(m,e) is odd. Since the minimum weight of
Ce is odd, the minimum distance of Ce is one more than that of Ce. This proves
the conclusion on the minimum distance of Ce. By definition, dim(Ce) = dim(Ce),
and the length of Ce is n̄ = n+1 = 2m.

The dimension of Ce
⊥ follows from that of Ce. It remains to prove the weight

distribution of Ce
⊥. By definition, Ce has only even weights. It then follows that

the all-one vector is a codeword of Ce
⊥. Then by Theorems 2.10 and 6.59, Ce

⊥

has all the following weights

2m−1±2m−1−h, 2m−1±2(m−2)/2, 2m−1, 2m.

Due to symmetry of weights and the existence of the all-one vector in Ce
⊥,

A2m−1+2m−1−h = A2m−1−2m−1−h , A2m−1+2(m−2)/2 = A2m−1−2(m−2)/2 .

Note that the minimum distance of Ce is 4 or 6. Solving the first four Pless power
moments yields the frequencies of all the weights.

Combining Theorem 6.58 and (9.1), we deduce the following.

Theorem 6.61. Let m ≥ 4 and 1 ≤ e ≤ m/2. When m/gcd(m,e) is odd, define
h = (m− gcd(m,e))/2. Then Ce

⊥
holds a 2-(2m,k,λ) design for the following

pairs (k,λ):

• (k,λ) =
(
2m−1±2m−1−h, (22h−1±2h−1)(2m−1±2m−1−h−1)

)
,

• (k,λ) =
(
2m−1, (2m−1−1)(2m−22h +1)

)
.

When m is even and e = m/2, Ce
⊥

holds a 2-(2m,k,λ) design for the following
pairs (k,λ):

• (k,λ) =
(

2m−1±2(m−2)/2, 2(m−2)/2(2m/2−1)(2(m−2)/2±1)
)
,

• (k,λ) =
(
2m−1, 2m−1−1

)
.

When m/gcd(m,e) is even and 1 ≤ e < m/2, Ce
⊥

holds a 2-(2m,k,λ) design
for the following pairs (k,λ):

• (k,λ) =
(

2m−1±2(m+ℓ−2)/2, (2m−1±2(m+ℓ−2)/2)(2m−1±2(m+ℓ−2)/2−1)
2ℓ(2ℓ/2+1)

)
,

• (k,λ) =
(

2m−1±2(m−2)/2, 2(m+ℓ−2)/2(2m/2±1)(2m−1±2(m−2)/2−1)
2ℓ/2+1

)
,

• (k,λ) =
(
2m−1, ((2ℓ/2−1)2m−ℓ+1)(2m−1−1)

)
,
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where ℓ= 2gcd(m,e).

To determine the parameters of the 2-designs held in the extended code Ce, we
need to find out the weight distribution of Ce. In theory, the weight distribution
of Ce can be settled using the weight enumerator of Ce

⊥ given in Tables 6.5, 6.6,
and 6.7. However, it is practically hard to find a simple expression of the weight
distribution of Ce.

In the rest of this section, we consider only the weight distribution of Ce in a
special case, in order to construct an infinite family of Steiner systems S(2,4,2m)

for all m≡ 2 (mod 4).
As a special case of Theorem 6.60, we have the following.

Corollary 6.62. Let m ≡ 2 (mod 4) and 2 ≤ e ≤ bm/2c. If gcd(m,e) = 2, then
Ce
⊥

has parameters [2m,2m+1,2m−1−2m/2] and weight enumerator

A⊥(z) = 1+uz2m−1−2m/2
+ vz2m−1

+uz2m−1+2m/2
+ z2m

, (6.24)

where

u = (2m−1)2m−2, v = (2m−1)(2m+1−2m−1 +2). (6.25)

Theorem 6.63. Let m≡ 2 (mod 4) and 2≤ e≤ bm/2c. If gcd(m,e) = 2, then Ce

has parameters [2m,2m−1−2m,4] and weight distribution

22m+1Ak = (1+(−1)k)

(
2m

k

)
+

1+(−1)k

2
(−1)bk/2c

(
2m−1

bk/2c

)
v+

u ∑
0≤i≤2m−1−2

m
2

0≤ j≤2m−1+2
m
2

i+ j=k

[(−1)i +(−1) j]

(
2m−1−2m/2

i

)(
2m−1 +2m/2

j

)

for 0≤ k ≤ 2m, where u and v are given in (6.25).

Proof. The parameters of Ce were proved in Theorem 6.60. The weight distribu-
tion formula for Ce follows from the weight enumerator A⊥(z) of Ce

⊥ in (6.24)
and Theorem 2.4.

We are now ready to prove the main result of this section.

Theorem 6.64. Let m ≡ 2 (mod 4), 2 ≤ e ≤ bm/2c, and gcd(m,e) = 2. Then
the supports of the codewords of weight 4 in Ce form a 2-(2m,4,1) design, i.e., a
Steiner system S(2,4,2m).
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Proof. Employing the weight distribution formula Ak given in Theorem 6.63, we
obtain

A4 =
2m−1(2m−1)

6
.

It then follows that

λ = A4

(4
2

)(2m

2

) = 1.

This completes the proof.

For every m ≡ 2 (mod 4) and m ≥ 6, we can choose e = 2e1 with
gcd(m/2,e1) = 1 and e1 ≤ bmc/2. Such e will satisfy the conditions in Theo-
rem 6.64. At least we can choose e = 2. This means that for every m≡ 2 (mod 4)
with m≥ 6, Theorem 6.64 gives at least one Steiner system S(2,4,2m). In fact, it
constructs more than one Steiner system S(2,4,2m). For example, when m = 14,
we can choose e to be any element of {2,4,6}. Therefore, Theorem 6.64 gives an
infinite family of Steiner system S(2,4,2m).

In addition to the infinite family of Steiner systems S(2,4,2m), Theorem 6.64
gives many other 2-designs. Below we present two more examples.

Theorem 6.65. Let m≡ 2 (mod 4), 2≤ e≤ bm/2c, and gcd(m,e) = 2. Then the
supports of the codewords of weight 6 in Ce form a 2-(2m,6,λ) design, where

λ =
(2m−4)(2m−24)

24
.

Proof. Using the weight distribution formula Ak in Theorem 6.63, we obtain

A6 =
2m(2m−1)(2m−4)(2m−24)

720
.

It then follows that

λ = A6

(6
2

)(2m

2

) = (2m−4)(2m−24)
24

.

This completes the proof.

Theorem 6.66. Let m≡ 2 (mod 4), 2≤ e≤ bm/2c, and gcd(m,e) = 2. Then the
supports of the codewords of weight 8 in Ce form a 2-(2m,8,λ) design, where

λ =
(2m−4)(23m−23×22m +344×2m−1612)

720
.
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Proof. Using the weight distribution formula Ak in Theorem 6.63, we obtain

A8 =
2m(2m−1)(2m−4)(23m−23×22m +344×2m−1612)

2×20160
.

It then follows that

λ = A8

(8
2

)(2m

2

) = (2m−4)(23m−23×22m +344×2m−1612)
720

.

This completes the proof.

We point out that Theorems 6.64, 6.65 and 6.66 cannot be proved with the
Assmus-Mattson Theorem due to the weight distribution of Ce

⊥ and the low mini-
mum distance of Ce. Results similar to Theorems 6.64 and 6.65 for the case m≡ 0
(mod 4) were recently developed in Wang (2019).

When m is odd and gcd(m,e) = 1, the code Ce and their relatives are also very
interesting due to the following:

• The code Ce and its dual C⊥e hold many infinite families of 2-designs.
• The extended code Ce and its dual Ce

⊥ hold many infinite families of 3-designs.

These results were proved by the Assmus-Mattson Theorem, and the designs of
those codes will be treated in Section 9.2.

When m/gcd(m,e) is even and 1 ≤ e ≤ m, one can find an algebraic expres-
sion of the weight distribution of the code Ce with the weight distribution of Ce

⊥

depicted in Table 6.7 and Theorem 2.4, and then determine the parameters of some
of the two designs held in Ce.

We now provide information on the support designs from other codes CE and
their relatives. When m≥ 5 is odd and E = {(m−3)/2,(m−1)/2} or E = {1,2},
CE has parameters [2m− 1,2m− 1− 3m,7] and CE has parameters [2m,2m− 1−
3m,8]. CE

⊥ has dimension 3m+ 1 and has six weights. In this case, CE and C⊥E
hold many infinite families of 2-designs, while the codes CE and CE

⊥ hold many
infinite families of 3-designs. These designed will be treated in Sections 8.3 and
8.4.

When m≥ 4 is even and E = {1,2}, CE does not hold 2-designs. But CE and
CE
⊥ hold 2-designs. The parameters of these 2-designs are determined in Section

9.4.
When m ≥ 4 is even and E = {(m− 2)/2,m/2}, CE has parameters [2m −

1,2m− 1− 3m/2,5], CE has parameters [2m,2m− 1− 3m/2,6], and the weight
distribution of CE

⊥ is known [Kasami (1969)]. The parameters of the 2-designs
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held in CE and CE
⊥ are the same as those of the 2-designs held in some codes in

Section 9.4.
When m≥ 7 is odd and E = {(m−5)/2,(m−3)/2,(m−1)/2}, the code C⊥E

has dimension 4m and has 7 weights [Kasami (1969)]. Its weight distribution is
given below.

Theorem 6.67. Let m ≥ 7 be odd and E = {(m− 5)/2,(m− 3)/2,(m− 1)/2}.
Then C(1,V,2,m) has parameters [n,n−4m,d] and CE has parameters [2m,2m−1−
4m,d +1], where d ≥ 7. The code C⊥E has dimension 4m and its weight distribu-
tion is given by

A
2m−1±2

m+3
2

= (2m−6∓2(m−7)/2)(2m−3−1)(2m−1−1)(2m−1)/45,

A
2m−1±2

m+1
2

= (2m−2∓2(m−1)/2)(23 ·2m−5 +1)(2m−1−1)(2m−1)/9,

A
2m−1±2

m−1
2

= (2m−1∓2(m−1)/2)(151 ·22m−3 +25 ·2m +25)(2m−1)/45,

A2m−1 = 24m−1−A
2m−1+2

m+3
2
−A

2m−1−2
m+3

2
−A

2m−1+2
m+1

2
−

A
2m−1−2

m+1
2
−A

2m−1+2
m−1

2
−A

2m−1−2
m−1

2
,

and Ai = 0 for all other i.

It can be proved that CE has parameters [2m− 1,2m− 1− 4m,7]. The weight
distribution of CE

⊥ can be determined. Hence, the parameters of the 2-designs
held in CE

⊥ and some of the 2-designs held in CE can be worked out.
The cyclic codes CE treated in this section are closely related to the punctured

binary Reed-Muller codes R2(2,m)∗. To introduce the connection, we need the
following result from Kasami (1969).

Theorem 6.68. Let C be a binary linear code of length 2m− 1 whose generator
polynomial g(x) satisfies g(1) = 0. Then C is a subcode of R2(r,m)∗ if and only if

g(x) =
x2m−1−1

h1(x) · · ·ht(x)
,

where h1(x), . . . ,ht(x) are pairwise distinct irreducible polynomials over GF(2)
and there are integers µi such that

0≤ µ1 < µ2 < · · ·µt ≤ m/2, hi

(
α−(2

µi+1)
)
= 0 for all i,

and α is a generator of GF(2m)∗.

It follows from Theorem 6.68 that the code CE is the dual code of a subcode
of R2(2,m)∗.
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6.3 Another Family of Affine-Invariant Codes and Their Designs

In this section, we introduce a family of affine-invariant linear codes which are
also extended cyclic codes [Ding and Tang (2020)]. We order the elements of
GF(qm) and GF(qm)∗ as

{1,α,α2, . . . ,αqm−2,0}
and

{1,α,α2, . . . ,αqm−2},
respectively, where α is a primitive element of GF(qm). Throughout this section,
let Tr(x) be the trace function from GF(qm) to GF(q).

Let t be a positive integer, and let fi be a polynomial over GF(qm) with fi(0) =
0 and 1≤ deg( fi)≤ qm−2 for 1≤ i≤ t. We define two related linear codes over
GF(q) by

C f =


(

Tr

(
t

∑
i=1

ai fi(x)

)
+h

)
x∈GF(qm)

: ai ∈ GF(qm), h ∈ GF(q)

 (6.26)

and

C ∗f =


(

Tr

(
t

∑
i=1

ai fi(x)

))
x∈GF(qm)∗

: ai ∈ GF(qm)

 . (6.27)

By definition, C f and C ∗f are a linear code over GF(q) with length qm and
qm−1, respectively. Their dimensions satisfy dim(C f ) ≤ tm+ 1 and dim(C ∗f ) ≤
tm. The two codes C f and C ∗f are related in the following way.

Theorem 6.69. Let notation be the same as before. Then C f = (C ∗f )
⊥⊥. Further,

dim(C f ) = dim(C ∗f )+1, and C ∗f is a subcode of C f .

Proof. Define

G =



Tr(α0 f1(α0)) Tr(α0 f1(α1)) · · · Tr(α0 f1(αqm−2))

Tr(α1 f1(α0)) Tr(α1 f1(α1)) · · · Tr(α1 f1(αqm−2))
...

...
...

...
Tr(αm−1 f1(α0)) Tr(αm−1 f1(α1)) · · · Tr(αm−1 f1(αqm−2))
...

...
...

...
Tr(α0 ft(α0)) Tr(α0 ft(α1)) · · · Tr(α0 ft(αqm−2))

Tr(α1 ft(α0)) Tr(α1 ft(α1)) · · · Tr(α1 ft(αqm−2))
...

...
...

...
Tr(αm−1 ft(α0)) Tr(αm−1 ft(α1)) · · · Tr(αm−1 ft(αqm−2))


.
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Then G is a generator matrix of C ∗f , though the rank of G could be less than tm.
Notice that f (0) = 0. By the ordering of the elements in GF(qm) and GF(qm)∗

and the definition of the two codes C ∗f and C f in (6.26) and (6.27), C f has the
following generator matrix [

1 1
G 0

]
,

where 1= (111 · · ·1) is the all-one vector of length qm−1, 0= (000 · · ·0)T , which

is a column vector of length tm. It follows from Theorem 2.11 that C f = (C ∗f )
⊥⊥

and dim(C f ) = dim(C ∗f )+1.
Finally, we are in a position to prove the last conclusion. We first prove that

∑x∈GF(qm)∗ x j = 0 for each j with 1 ≤ j ≤ qm− 2. Let i = gcd( j,qm− 1). Set
β = αi. Then β(qm−1)/i = 1. Consequently,

∑
x∈GF(qm)∗

x j = ∑
x∈GF(qm)∗

xi =
qm−2

∑
ℓ=0

αi j = i

qm−1
i −1

∑
ℓ=0

βℓ = 0.

It then follows from fi(0) = 0 that

∑
x∈GF(qm)∗

fi(x) = 0.

As a result, C ∗f has the generator matrix[
G 0

]
.

The last desired conclusion then follows. Notice that C ∗f is a trivial extension.

When each fi is a monomial, the codes C ∗f and (C ∗f )
⊥ are cyclic, and C f is the

dual of an extended cyclic code by Theorem 6.69. In general, C ∗f and (C ∗f )
⊥ may

not be cyclic, and C f is not an extended cyclic code. The code C f is obtained from
C ∗f in the following order:

C ∗f −→ (C ∗f )
⊥ −→ (C ∗f )

⊥ −→ (C ∗f )
⊥⊥ = C f .

Let the coordinates of the code C f be indexed by the elements in the ordered
set GF(qm). Any σ(u,v)(y) = uy+ v ∈ GA1(GF(qm)) maps C f into the following
code 

(
Tr

(
t

∑
i=1

ai fi(ux+ v)

)
+h

)
x∈GF(qm)

: ai ∈ GF(qm), h ∈ GF(q)

 .

In general, the code C f may not be affine-invariant. In some special cases, C f is
affine-invariant.
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Let t ≥ 2 be an integer. For any set of integers {i2, · · · , it} with 0≤ i2 < · · ·<
it ≤ bm/2c, we consider the following code

C (1, i2, · · · , it) = {c(h,a1,...,at ) : h ∈ GF(q), ai ∈ GF(qm)} (6.28)

where

c(h,a1,...,at ) =

(
h+Tr

(
a1x+

t

∑
ℓ=2

aℓx1+qiℓ

))
x∈GF(qm)

. (6.29)

We now prove that C (1, i2, · · · , it) and its dual are affine-invariant and hold support
2-designs.

Theorem 6.70. The code C (1, i2, · · · , it) defined in (6.28) is affine-invariant and
the supports of all codewords of any fixed weight in the code form a 2-design. The
same conclusions hold for the dual code C (1, i2, · · · , it)⊥.

Proof. Define

f (x) = h+Tr

(
a1x+

t

∑
ℓ=2

aℓx1+qiℓ

)
.

For u ∈ GF(qm)∗ and v ∈ GF(qm), we have

f (ux+ v) = h+Tr

(
a1(ux+ v)+

t

∑
ℓ=2

aℓ(ux+ v)1+qiℓ

)

= g(h)+Tr

(
u

(
a1 +

t

∑
ℓ=2

[
aℓvqiℓ +(aℓv)qm−iℓ

])
x

)
+

Tr

(
t

∑
ℓ=2

aℓu1+qiℓ x1+qiℓ

)
. (6.30)

Let σ(u,v)(x) = ux+ v, where u ∈ GF(qm)∗ and v ∈ GF(qm). It then follows
from (6.30) that

σ(u,v)(c(h,a1,...,at )) = c(h′,a′1,...,a′t ) ∈ C (1, i2, · · · , it),

where

h′ = f (v),

a′1 = u

(
a1 +

t

∑
ℓ=2

[
aℓvqiℓ +(aℓv)qm−iℓ

])
,

a′ℓ = aℓu1+q1+qiℓ
for 2≤ ℓ≤ t.
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Hence, C (1, i2, . . . , it) is affine-invariant. Since the group GA1(GF(qm)) acts
on GF(qm) doubly transitively, the conclusion on the support designs of
C (1, i2, . . . , it) holds.

It is well known that the permutation automorphism groups of any code C and
its dual are the same. The desired conclusions on C (1, i2, . . . , it)⊥ follow from
those of C (1, i2, . . . , it).

It is easily seen that C (1, i2, . . . , it) is an extended cyclic code, as the permu-
tation σ(x) = αx fixes the code. In fact, it is the extended code of the cyclic code
over GF(q) with length qm−1 and check polynomial

Mα−1(x)
t

∏
ℓ=2

M
α−(1+qiℓ )(x),

where α is a generator of GF(qm) and Mαℓ(x) denotes the minimal polynomial
of αℓ over GF(q). The dimension of the code C (1, i2, . . . , it) in Theorem 6.70 de-
pends on the rank of the quadratic functions Tr( f (x)). The weight distribution of
the code C (1, i2, . . . , it) is known in some special cases. The determination of the
parameters of the support designs of the codes C (1, i2, . . . , it) and C (1, i2, . . . , it)⊥

is difficult in general, but can be done in some special cases.
Theorem 6.70 says that the code C (1, i2, . . . , it) and its dual hold 2-designs. It

will be pointed out below that the two codes hold 3-designs in some special cases.

6.3.1 The Special Case q = 2

When q = 2, the codes C (1, i2, . . . , it) and C (1, i2, . . . , it)⊥ become the affine-
invariant binary codes treated in Section 6.2.4, where a class of Steiner systems
S(2,4,2m) was obtained.

6.3.2 Several Special Cases of 3-Designs

Let m ≥ 5 be an odd integer and (i2, i3) = (1,2) or (i2, i3) = (1,(m+ 1)/2). Let
P = {0,1,2, · · · ,2m− 1}, and let Bk be the set of the supports of the codewords
of C (1, i2, i3) with weight k, where Ak 6= 0. Then (P ,Bk) is a 3-(2m,k,λ) design.
The dual code C (1, i2, i3) holds also 3-designs. Details of these 3-designs will be
treated in Section 8.3.3.

6.4 Notes

Let p be a prime and let r, e and m be positive integers such that r|e and e|m.
Extended cyclic codes of length pm over GF(pr), which are invariant under the
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group GAm/e(GF(pe)), can be characterised under a partial order �e in the set

{0,1, . . . , pm−1} .

The characterisation is a generalisation of Theorem 6.7. For information on this
characterisation and such codes, the reader is referred to Berger and Charpin
(1996), Berger and Charpin (1999), Delsarte (1970), and Hou (2005).

Recently, a lot of progress on the study of affine-invariant codes and their
designs has been made. For details, the reader is referred to Ding and Tang (2020);
Du, Wang and Fan (2020); Du, Wang, Tang and Wang (2020a); Du, Wang, Tang
and Wang (2020b); Wang, Du and Fan (2021); Wang, Du, Fan and Niu (2021);
and Wang (2019).
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Chapter 7

Weights in Some BCH Codes over GF(qqq)

BCH codes are an important class of cyclic codes and were treated in Section
3.7. In this chapter, we introduce several families of BCH codes whose weight
distributions are known. Some of these codes will be employed to construct t-
designs in subsequent chapters.

7.1 A Recall of BCH Codes

Throughout this chapter, let q be a prime power, and let n be a positive integer such
that gcd(q,n) = 1. Let m = ordn(q). Put β = α(qm−1)/n, where α is a primitive
element of GF(qm). Then β is an n-th primitive root of unity in GF(qm).

Let δ be an integer with 2≤ δ≤ n and let b be an integer. Recall that the BCH
code over GF(q) of length n and designed distance δ, denoted by C(q,n,δ,b), is the
cyclic code with generator polynomial

g(q,n,δ,b)(x) = LCM(Mβb(x),Mβb+1(x), . . . ,Mβb+δ−2(x)), (7.1)

where Mβs(x) is the minimal polynomial of βs over GF(q) and is given by

Mβs(x) = ∑
j∈Cs

(x−β j)

and Cs is the q-cyclotomic coset modulo n containing s. Recall that C(q,n,δ,b) is
primitive if n = qm−1, and narrow-sense if b = 1.

7.2 The Parameters of the Codes C(q,qm−1,δ1,1) and C(q,qm−1,δ1+1,0),
where δ1 = (q−1)qm−1−1

The following two lemmas are fundamental, and were proved in Ding (2015b).

Lemma 7.1. The largest q-cyclotomic coset leader modulo n = qm−1 is given by
δ1 = (q−1)qm−1−1. Furthermore, |Cδ1 |= m.

205
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Theorem 7.2. The code C(q,qm−1,δ1+1,0) has parameters [n, m, δ1 +1], and meets
the Griesmer bound, where n = qm − 1 and δ1 = (q− 1)qm−1 − 1. The code
C(q,qm−1,δ1,1) has parameters [n, m+1, δ1], and meets the Griesmer bound.

7.3 The Parameters of the Codes C(q,qm−1,δ2,1) and C(q,qm−1,δ2+1,0),
where δ2 = (q−1)qm−1−1−qb(m−1)/2c

In this section, we determine the parameters of the codes C(q,qm−1,δ2,1) and
C(q,qm−1,δ2+1,0), where δ2 = (q− 1)qm−1− 1− qb(m−1)/2c. The results presented
in this section are mainly taken from Ding, Fan and Zhou (2017). We will need
the following lemma shortly.

Lemma 7.3. The second largest q-cyclotomic coset leader modulo n is given by
δ2 = (q−1)qm−1−1−qb(m−1)/2c. Furthermore,∣∣Cδ2

∣∣={m if m is odd,
m
2 if m is even.

Proof. The proof is divided into the following two cases according to the parity
of m.

Case I, i.e., m is odd:

In this case, we have

δ2 = (q−1)qm−1−1−q(m−1)/2 = n−
(

q(m−1)/2 +1
)

q(m−1)/2.

It is easily seen that

qδ2 mod n = n− (q(m+1)/2 +1).

One can then verify that

Cδ2 =

{
n−
(

q(m+1)/2 +1
)

qi : i = 0,1, . . . ,
m−3

2

}
∪{

n−
(

q(m−1)/2 +1
)

qi : i = 0,1, . . . ,
m−1

2

}
.

Therefore, δ2 is the smallest integer in Cδ2 and is thus the coset leader. Clearly,
we have |Cδ2 |= m.

Let t = (m−3)/2, 1≤ i≤ q(m−1)/2−1 and let Ji = (q−1)qm−1−1− i. Notice
that

q(m−1)/2−1 = (q−1)qt +(q−1)qt−1 + · · ·+(q−1)q+q−1.
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The q-adic expansion of i must be of the form

i = itqt + it−1qt−1 + · · ·+ i1q+ i0,

where each i j satisfies 0≤ i j ≤ q−1, but at least one of the i j’s is nonzero. It then
follows that the q-adic expansion of Ji is given by

Ji = (q−2)qm−1 +(q−1)qm−2 +(q−1)qm−3 + · · ·+(q−1)qt+1 +

(q−1− it)qt +(q−1− it−1)qt−1 + · · ·+(q−1− i1)q+q−1− i0.

Subcase I.1, i.e., q = 2:

In this subcase, we have

Ji = 2m−2 +2m−3 + · · ·+2t+1 +(1− it)2t +

(1− it−1)2t−1 + · · ·+(1− i1)2+1− i0.

If i0 = 1, then Ji/2 and Ji are in the same 2-cyclotomic coset modulo n. Hence,
Ji cannot be a coset leader.

We now assume that i0 = 0. Since i 6= 0, one of the iℓ’s must be nonzero. Let
ℓ denote the largest one such that iℓ = 1. One can then verify that

Ji2m−1−ℓ mod n < Ji.

Whence, Ji cannot be a coset leader.

Subcase I.2, i.e., q > 2:

If iℓ > 1 for some ℓ with 0 ≤ ℓ ≤ t, then Jiqm−1−ℓ mod n < Ji. In this case, Ji

cannot be a coset leader.
We now assume that all iℓ ∈ {0,1}. Since i≥ 1, at least one of the iℓ’s must be

1. Let ℓ denote the largest one such that iℓ = 1. One can then verify that

Jiqm−1−ℓ mod n < Ji.

Whence, Ji cannot be a coset leader.
Summarizing all the conclusions above, we conclude that δ2 is the second

largest coset leader for the case that m is odd.

Case II, i.e., m is even:

In this case, we have

δ2 = (q−1)qm−1−1−q(m−2)/2 = n−
(

qm/2 +1
)

q(m−2)/2.
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It is easily seen that

Cδ2 =

{
n−
(

qm/2 +1
)

qi : i = 0,1, . . . ,
m−2

2

}
.

Therefore, δ2 is the smallest integer in Cδ2 and is the coset leader. Obviously,
|Cδ2 |= m/2.

When m = 2, δ2 = δ1+1, where δ1 was defined in Lemma 7.1. There does not
exist any coset leader between δ1 and δ2. Therefore, we now assume that m≥ 4.

Let t = (m−4)/2, 1≤ i≤ q(m−2)/2−1 and let Ji = (q−1)qm−1−1− i. Notice
that

q(m−2)/2−1 = (q−1)qt +(q−1)qt−1 + · · ·+(q−1)q+q−1.

The q-adic expansion of i must be of the form

i = itqt + it−1qt−1 + · · ·+ i1q+ i0,

where each i j satisfies 0≤ i j ≤ q−1, but at least one of the i j’s is nonzero. It then
follows that the q-adic expansion of Ji is given by

Ji = (q−2)qm−1 +(q−1)qm−2 +(q−1)qm−3 + · · ·+(q−1)qt+1 +

(q−1− it)qt +(q−1− it−1)qt−1 + · · ·+(q−1− i1)q+q−1− i0.

Subcase II.1, i.e., q = 2:

In this subcase, we have

Ji = 2m−2 +2m−3 + · · ·+2t+1 +(1− it)2t +

(1− it−1)2t−1 + · · ·+(1− i1)2+1− i0.

If i0 = 1, then Ji/2 < Ji. But Ji/2 and Ji are in the same 2-cyclotomic coset
modulo n. Hence, Ji cannot be a coset leader.

We now assume that i0 = 0. Since i 6= 0, one of the iℓ’s must be nonzero. Let
ℓ denote the largest one such that iℓ = 1. One can then verify that

Ji2m−1−ℓ mod n < Ji.

Whence, Ji cannot be a coset leader.

Subcase II.2, i.e., q > 2:

If iℓ > 1 for some ℓ with 0 ≤ ℓ ≤ t, then Jiqm−1−ℓ mod n < Ji. In this case, Ji

cannot be a coset leader.
We now assume that all iℓ ∈ {0,1}. Since i≥ 1, at least one of the iℓ’s must be

1. Let ℓ denote the largest one such that iℓ = 1. One can then verify that

Jiqm−1−ℓ mod n < Ji.
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Table 7.1 Weight distribution of C(2,2m−1,δ2+1,0) for odd m
Weight w No. of codewords Aw

0 1
2m−1−2(m−1)/2 (2m−1)(2(m−1)/2 +1)2(m−3)/2

2m−1 (2m−1)(2m−1 +1)
2m−1 +2(m−1)/2 (2m−1)(2(m−1)/2−1)2(m−3)/2

Table 7.2 Weight distribution of C(2,2m−1,δ2+1,0) for even m
Weight w No. of codewords Aw

0 1
2m−1−2(m−2)/2 (2m/2−1)(2m−1 +2(m−2)/2)
2m−1 2m−1
2m−1 +2(m−2)/2 (2m/2−1)(2m−1−2(m−2)/2)

Table 7.3 Weight distribution of C(q,qm−1,δ2+1,0) for odd m
Weight w No. of codewords Aw

0 1
(q−1)qm−1−q(m−1)/2 (q−1)(qm−1)(qm−1 +q(m−1)/2)/2
(q−1)qm−1 (qm−1)(qm−1 +1)
(q−1)qm−1 +q(m−1)/2 (q−1)(qm−1)(qm−1−q(m−1)/2)/2

Table 7.4 Weight distribution of C(q,qm−1,δ2+1,0) for even m
Weight w No. of codewords Aw

0 1
(q−1)qm−1−q(m−2)/2 (q−1)(q(3m−2)/2−q(m−2)/2)
(q−1)qm−1 qm−1
(q−1)(qm−1 +q(m−2)/2) q(m−2)/2(qm−q(m+2)/2 +q−1)

Whence, Ji cannot be a coset leader.
Summarizing all the conclusions above, we deduce that δ2 is the second largest

coset leader for the case that m is even.

Theorem 7.4. The code C(q,qm−1,δ2+1,0) has parameters [n, k̃, d̃], where n = qm−
1, δ2 = (q−1)qm−1−1−qb(m−1)/2c, d̃ ≥ δ2 +1 and

k̃ =
{

2m for odd m,
3m
2 for even m.

(7.2)

In particular,

• when q = 2 and m is odd, d̃ = δ2 +1 and the weight distribution of the code is
given in Table 7.1;
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• when q = 2 and m is even, d̃ = δ2 +1 and the weight distribution of the code is
given in Table 7.2; and
• when q is an odd prime, d̃ = δ2 +1 and C(q,qm−1,δ2+1,0) is a three-weight code

with the weight distribution of Table 7.3 for odd m and Table 7.4 for even m.

Proof. The conclusions on the dimension k̃ follow from Lemmas 7.1 and 7.3. By
the BCH bound, the minimum distance d̃ ≥ δ2 +1.

When q= 2, d̃ = δ2+1 and the weight distribution of the code C(q,qm−1,δ2+1,0)
was determined in Goethals (1979); Gold (1968); Kasami (1969).

We now treat the weight distribution of C(q,qm−1,δ2+1,0) for the case that q is
an odd prime. From now on, we assume that q is an odd prime. Let η′ and η
denote the quadratic characters of GF(qm) and GF(q), respectively. Let χ′1 and
χ1 denote the canonical additive characters of GF(qm) and GF(q), respectively.
We will need the following results regarding Gauss sums [Lidl and Niederreiter
(1997)][Section 5.2]:

G(η,χ1) = ∑
y∈GF(q)∗

η(y)χ1(y) =
{√

q if q≡ 1 (mod 4)
ι√q if q≡ 3 (mod 4)

(7.3)

where ι =
√
−1 and

G(η,χa) = η(a)G(η,χ1) (7.4)

for all a ∈ GF(q)∗, where χa(x) = χ1(ax) for all x ∈ GF(q).
It follows from the definition of C(q,qm−1,δ2+1,0) and Lemmas 7.1 and 7.3 that

the check polynomial of this code is Mβδ1 (x)Mβδ2 (x). Notice that δ1 = n−qm−1

and

δ2 = (q−1)qm−1−1−qb(m−1)/2c = n− (qm−1 +qb(m−1)/2c).

From Delsarte’s Theorem (see Theorem 2.20 for detail), we then deduce that
C(q,qm−1,δ2+1,0) is equivalent to the following code (up to coordinate permutation)

C̃δ2 =

{(
Tr
(

ax1+qb(m−1)/2c+1
+bx

))
x∈GF(qm)∗

: a, b ∈ GF(qm)

}
, (7.5)

herein and hereafter Tr denotes the trace function from GF(qm) to GF(q). In the
definition of the code C̃δ2 , we do not specify the order in which the elements
of GF(qm) are arranged when the codewords are defined, due to the fact that the
codes resulted from different orderings of the elements of GF(qm)∗ are equivalent,
and thus have the same weight distribution.

Define h = b(m−1)/2c+1. For a ∈ GF(qm) and b ∈ GF(qm), let

f (x) = Tr
(

ax1+qh
+bx

)
.
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We now consider the Hamming weight of the codeword

c(a,b) = ( f (x))x∈GF(qm)∗

where a ∈ GF(qm) and b ∈ GF(qm). It is straightforward to deduce that

wt(c(a,b)) = (q−1)qm−1− 1
q ∑

z∈GF(q)∗
∑

x∈GF(qm)

χ′1(z f (x))

= (q−1)qm−1− 1
q ∑

z∈GF(q)∗
∑

x∈GF(qm)

χ′1(zax1+qh
+ zbx). (7.6)

We treat the weight distribution of C̃δ2 according to the parity of m as follows.

Case 1: q is an odd prime and m≥ 3 is odd

In this case, we have the following basic facts that will be employed later:

(a) h = (m+1)/2.
(b) gcd(h,m) = 1.
(c) η′(z) = η(z) for all z ∈ GF(q)∗ (due to the fact that (qm−1)/(q−1) is odd).
(d) χ′1(x) = χ1(Tr(x)) for all x ∈ GF(qm).
(e) F(x) := aqh

xq2h
+ax = aqh

xq +ax is a permutation polynomial on GF(qm) for
each a ∈ GF(qm)∗, as x1+qh

is a planar monomial over GF(qm).

Case 1.1: Let a 6= 0 and b 6= 0

Recall that F(x) = aqh
xq + ax is a permutation polynomial over GF(qm) for any

a ∈ GF(qm)∗. Let x0 be the unique solution of F(x) = aqh
xq +ax =−bqh

for any
a ∈ GF(qm)∗ and b ∈ GF(qm). Put

u = Tr
(

ax1+qh

0

)
.

In this subcase, it follows from Lemma 1.13 that

∑
x∈GF(qm)

χ′1(a f (x)) =

qm/2η′(−za)χ′1(zax1+qh

0 ), if q≡ 1 (mod 4)

ι3mqm/2η′(−za)χ′1(zax1+qh

0 ), if q≡ 3 (mod 4)

=

{
qm/2η′(−a)η(z)χ1(zu), if q≡ 1 (mod 4),
ι3mη′(−a)qm/2η(z)χ1(zu), if q≡ 3 (mod 4),

where ℓ denotes the complex conjugate of the complex number ℓ.
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When u = 0, we have

∑
z∈GF(q)∗

∑
x∈GF(qm)

χ′1(a f (x))

=

{
∑z∈GF(q)∗ qm/2η′(−a)η(z), if q≡ 1 (mod 4)
∑z∈GF(q)∗ ι3mη′(−a)qm/2η(z), if q≡ 3 (mod 4)

= 0.

Consequently, wt(c(a,b)) = (q−1)qm−1.
When u 6= 0, we have

∑
z∈GF(q)∗

∑
x∈GF(qm)

χ′1(a f (x))

=

{
qm/2η′(−a)G(η,χu), if q≡ 1 (mod 4)
ι3mη′(−a)qm/2G(η,χu), if q≡ 3 (mod 4)

=

{
q(m+1)/2η′(−a)η(u), if q≡ 1 (mod 4),
q(m+1)/2ι3m+1η′(−a)η(u), if q≡ 3 (mod 4).

Consequently, wt(c(a,b)) = (q−1)qm−1±q(m−1)/2.

Case 1.2: Let a 6= 0 and b = 0

In this case, it follows from Lemma 1.16 that

∑
x∈GF(qm)

χ′1(a f (x)) = ∑
x∈GF(qm)

χ′1(azx1+qh
)

=

{
qm/2η′(za), if q≡ 1 (mod 4)
ιmqm/2η′(za), if q≡ 3 (mod 4)

=

{
qm/2η′(a)η(z), if q≡ 1 (mod 4),
ιmqm/2η′(a)η(z), if q≡ 3 (mod 4).

As a result, we obtain

∑
z∈GF(q)∗

∑
x∈GF(qm)

χ′1(a f (x)) = 0.

Hence, wt(c(a,b)) = (q−1)qm−1.

Case 1.3: Let a = 0 and b 6= 0

In this case, f (x) = Tr(bx). Obviously, wt(c(0,b)) = (q−1)qm−1.
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Summarizing the conclusions of Cases 1.1, 1.2, and 1.3, we see that the code
C̃δ2 has the following three nonzero weights:

w1 = (q−1)qm−1−q(m−1)/2,

w2 = (q−1)qm−1,

w3 = (q−1)qm−1 +q(m−1)/2.

Let Awi be the total number of codewords with Hamming weight wi in C̃δ2 . It
is straightforward to see that the minimum distance of the dual of C̃δ2 is at least
3. Then the first three Pless power moments described in Section 2.3 yield the
following set of equations:

∑3
i=1 Awi = q2m−1,

∑3
i=1 wiAwi = q2m−1(q−1)(qm−1),

∑3
i=1 w2

i Awi = q2m−2(q−1)(qm+1−qm−q+2).
(7.7)

Solving this system of equations gives the Awi’s in Table 7.3.

Case 2: q is an odd prime and m≥ 4 is even

In this case, we have the following basic facts that will be used subsequently:

(a) h = b(m−1)/2c+1 = m/2.
(b) gcd(h,m) = h = m/2.
(c) η′(z) = 1 for all z ∈ GF(q)∗ (due to the fact that (qm−1)/(q−1) is even).
(d) χ′1(x) = χ1(Tr(x)) for all x ∈ GF(qm).
(e) The equation yqh

+y= 0 has qh solutions y in GF(qm) (it follows from Lemma
1.15).

(f) F(x) := aqh
xq2h

+ax = (aqh
+a)x is a permutation polynomial on GF(qm) for

qm− qm/2− 1 nonzero a ∈ GF(qm), and is not a permutation polynomial on
GF(qm) for qm/2−1 nonzero elements a ∈ GF(qm).

We now consider the Hamming weight wt(c(a,b)) of the codeword c(a,b) case
by case for Case 2.

Case 2.1: Let a 6= 0, aqh
+a 6= 0 and b 6= 0

In this subcase, let x0 =−bqh
/(aqh

+a). Then we have

ax1+qh

0 =
ab1+qh

(aqh
+a)2

.

Put

u = Tr
(

ax1+qh

0

)
= Tr

(
ab1+qh

(aqh
+a)2

)
.
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It then follows from Theorem 1.13 that

∑
x∈GF(qm)

χ′1(a f (x)) =−qm/2χ′1
(

azx1+qh

0

)
=−qm/2χ1 (zu).

We obtain then

∑
z∈GF(q)∗

∑
x∈GF(qm)

χ′1(a f (x)) =
{
−(q−1)qm/2, if u = 0,
qm/2, if u 6= 0.

Consequently,

wt(c(a,b)) =

{
(q−1)

(
qm−1 +q(m−2)/2

)
, if u = 0,

(q−1)qm−1−q(m−2)/2, if u 6= 0.

Case 2.2: Let a 6= 0, aqh
+a = 0 and b 6= 0

In this subcase F(x) = −bqh
has no solution x ∈ GF(qm). It then follows from

Theorem 1.14 that

∑
x∈GF(qm)

χ′1(a f (x)) = 0.

As a result, we have

∑
z∈GF(q)∗

∑
x∈GF(qm)

χ′1(a f (x)) = 0.

It then follows from (7.6) that wt(c(a,b)) = (q−1)qm−1.

Case 2.3: Let a 6= 0 and b = 0

In this case, it follows from Theorem 1.16 that

∑
x∈GF(qm)

χ′1(a f (x)) =

{
−qm/2 if aqh

+a 6= 0,
qm if aqh

+a = 0.

Hence,

∑
z∈GF(q)∗

∑
x∈GF(qm)

χ′1(a f (x)) =

{
−(q−1)qm/2 if aqh

+a 6= 0,
(q−1)qm if aqh

+a = 0.

We then deduce that

wt(c(a,b)) =

{
(q−1)

(
qm−1 +qm/2

)
if aqh

+a 6= 0,
0 if aqh

+a = 0.



November 17, 2021 14:14 ws-book9x6 Designs from Linear Codes designscodes page 215

Weights in Some BCH Codes over GF(q) 215

Case 2.4: Let a = 0 and b 6= 0

In this subcase, we have f (x) = Tr(bx). Obviously, wt(c(a,b)) = (q−1)qm−1.
Summarizing the conclusions of Cases 2.1, 2.2, 2.3, and 2.4, we conclude that

C̃δ2 has the following three nonzero weights:

w1 = (q−1)qm−1−q(m−2)/2,

w2 = (q−1)qm−1,

w3 = (q−1)
(

qm−1 +q(m−2)/2
)
.

Let Awi be the total number of codewords with Hamming weight wi in C̃δ2 . It
is straightforward to see that the minimum distance of the dual of C̃δ2 is at least
3. Then the first three Pless power moments documented in Section 2.3 yield the
following set of equations:

∑3
i=1 Awi = q3m/2−1,

∑3
i=1 wiAwi = q(3m−2)/2(q−1)(qm−1),

∑3
i=1 w2

i Awi = q(3m−4)/2(q−1)(qm−1)(qm+1−qm−q+2).
(7.8)

Solving this system of equations gives the Awi ’s in Table 7.4. This completes the
proof of this theorem.

Note that the proof of Theorem 7.4 actually characterizes all the codewords in
C̃δ2 with the minimum Hamming weight. Specifically, we have the following.

Theorem 7.5. Let q be an odd prime, and let m ≥ 4. When m is odd, all the
codewords of C̃δ2 with minimum weight d̃ = δ2 +1 are those c(a,b) such that

• ab 6= 0 and η′(−a)η
(

Tr
(

ax1+q(m+1)/2

0

))
= 1 if q≡ 1 (mod 4), where x0 is the

unique solution of aq(m+1)/2
xq +ax+bq(m+1)/2

= 0; and

• ab 6= 0 and ι3m+1η′(−a)η
(

Tr
(

ax1+q(m+1)/2

0

))
= 1 if q≡ 3 (mod 4), where x0

is the unique solution of aq(m+1)/2
xq +ax+bq(m+1)/2

= 0.

When m is even, all the codewords of C̃δ2 with minimum weight d̃ = δ2 + 1 are

those c(a,b) such that aqm/2
+a 6= 0, b 6= 0 and

Tr

(
ab1+qm/2

(aqm/2
+a)2

)
6= 0.

Examples of the code C(q,qm−1,δ2+1,0) are summarized in Table 7.5. They
either are optimal, or have the same parameters as the best linear codes known.

The following theorem is proved in Gold (1968); Kasami (1969).
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Table 7.5 Examples of C(q,qm−1,δ2+1,0) of Theorem 7.4
n k d = δ2 +1 m q Optimality

15 6 6 4 2 Optimal
31 10 12 5 2 Optimal
63 9 28 6 2 Optimal

127 14 56 7 2 Optimal
256 12 120 8 2 Best known

26 6 15 3 3 Optimal
80 6 51 4 3 Optimal

242 10 153 5 3 Best known

Theorem 7.6. The minimum distance d̃⊥ of the dual of C(2,2m−1,δ2+1,0) is equal
to 5 when m≥ 5 is odd, and 3 when m≥ 4 is even.

Theorem 7.7. The code C(q,qm−1,δ2,1) has parameters [n, k, d], where n = qm−1,
δ2 = (q−1)qm−1−1−qb(m−1)/2c, d ≥ δ2 and

k =
{

2m+1 for odd m,
3m
2 +1 for even m.

(7.9)

Furthermore, d = δ2 if q is a prime.

Proof. The conclusions on the dimension k follow from Lemmas 7.1 and 7.3. By
the BCH bound, the minimum distance d ≥ δ2.

It follows from the definition of C(q,qm−1,δ2,1) and Lemmas 7.1 and 7.3 that
the check polynomial of this code is (x− 1)Mβδ1 (x)Mβδ2 (x). Notice that δ1 =

n−qm−1 and

δ2 = (q−1)qm−1−1−qb(m−1)/2c = n− (qm−1 +qb(m−1)/2c).

From Delsarte’s Theorem (i.e., Theorem 2.20), we deduce that C(q,qm−1,δ2,1) is
equivalent to the following code

Cδ2 =

(Tr
(

ax+bx1+qb(m−1)/2c+1
)
+ c
)

x∈GF(qm)∗
:

a ∈ GF(qm)

b ∈ GF(qm)

c ∈ GF(q)

 .

(7.10)

To prove that d = δ2 for the case that q is a prime, one can refine the proof of
Theorem 7.4 with the quadratic expression of (7.10) to obtain the weight distribu-
tion of the code. We leave the details to the reader.

Examples of the code C(q,qm−1,δ2,1) are summarized in Table 7.6. They are
sometimes optimal, and sometimes have the same parameters as the best linear



November 17, 2021 14:14 ws-book9x6 Designs from Linear Codes designscodes page 217

Weights in Some BCH Codes over GF(q) 217

Table 7.6 Examples of C(q,qm−1,δ2,1) of Theorem 7.7
n k d = δ2 m q Optimality

15 7 5 4 2 Yes
31 11 11 5 2 Yes
63 10 27 6 2 Best known

127 15 55 7 2 Best known
255 13 119 8 2 Best known

26 7 14 3 3 Optimal
80 7 50 4 3 Optimal

242 11 152 5 3 Best known

codes known. When (q,m) = (2,6), C(q,qm−1,δ2,1) has parameters [63,10,27],
which are the best possible parameters according to Ding (2015a)[p. 258]. When
(q,m) = (3,3), C(q,qm−1,δ2,1) has parameters [26,7,14], which are the best possi-
ble parameters according to Ding (2015a)[p. 300].

Table 7.7 Weight distribution of C(2,2m−1,δ2,1) for odd m
Weight w No. of codewords Aw

0 1
2m−1−2(m−1)/2−1 (2m−1)(2(m−1)/2−1)2(m−3)/2

2m−1−2(m−1)/2 (2m−1)(2(m−1)/2 +1)2(m−3)/2

2m−1−1 (2m−1)(2m−1 +1)
2m−1 (2m−1)(2m−1 +1)
2m−1 +2(m−1)/2−1 (2m−1)(2(m−1)/2 +1)2(m−3)/2

2m−1 +2(m−1)/2 (2m−1)(2(m−1)/2−1)2(m−3)/2

2m−1 1

Table 7.8 Weight distribution of C(2,2m−1,δ2 ,1) for even m
Weight w No. of codewords Aw

0 1
2m−1−2(m−2)/2−1 (2m/2−1)(2m−1−2(m−2)/2)

2m−1−2(m−2)/2 (2m/2−1)(2m−1 +2(m−2)/2)

2m−1−1 2m−1
2m−1 2m−1
2m−1 +2(m−2)/2−1 (2m/2−1)(2m−1 +2(m−2)/2)

2m−1 +2(m−2)/2 (2m/2−1)(2m−1−2(m−2)/2)

2m−1 1

Theorem 7.8. The binary code C(2,2m−1,δ2,1) has parameters [n, k, d], where n =

2m−1, δ2 = 2m−1−1−2b(m−1)/2c, d = δ2 and

k =
{

2m+1 for odd m,
3m
2 +1 for even m.

(7.11)
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Table 7.9 Weight distribution of C(q,qm−1,δ2,1) for odd m
Weight w Frequency Aw

0 1
(q−1)qm−1−1−q(m−1)/2 (q−1)(qm−1)(qm−qm−1−q(m−1)/2)/2
(q−1)qm−1−q(m−1)/2 (q−1)(qm−1)(qm−1 +q(m−1)/2)/2
(q−1)qm−1−1 (q−1)(qm−1)(qm−1 +1)
(q−1)qm−1 (qm−1)(qm−1 +1)
(q−1)qm−1−1+q(m−1)/2 (q−1)(qm−1)(qm−qm−1 +q(m−1)/2)/2
(q−1)qm−1 +q(m−1)/2 (q−1)(qm−1)(qm−1−q(m−1)/2)/2
qm−1 q−1

Table 7.10 Weight distribution of C(q,qm−1,δ2 ,1) for even m
Weight w Frequency Aw

0 1
(q−1)qm−1−1−q

m
2 −1 q

m
2 −1(qm+2−2qm+1 +qm−q

m
2 +2 +q

m
2 +1 +q−1)

(q−1)qm−1−q
m
2 −1 (q−1)(q

3m
2 −1−q

m
2 −1)

(q−1)qm−1−1 (q−1)(qm−1)
(q−1)qm−1 qm−1
(q−1)(qm−1 +q

m
2 −1)−1 (q−1)(q

3m
2 −1−q

m
2 −1)

(q−1)(qm−1 +q
m
2 −1) q

m
2 −1(qm−q

m
2 +1 +q−1)

qm−1 q−1

Furthermore, the weight distribution of this code is given in Table 7.7 for odd m,
and in Table 7.8 for even m.

Proof. It follows from Theorem 7.4 directly.

Theorem 7.9 (Li, Wu, Liu (2019)). Let q be an odd prime and m ≥ 3 an odd
integer. Then C(q,qm−1,δ2,1) is a [qm− 1,2m+ 1,qm− qm−1− 1− q(m−1)/2] seven-
weight code with the weight distribution of Table 7.9.

Theorem 7.10 (Li, Wu, Liu (2019)). Let q be an odd prime and m ≥ 4 an even
integer. Then C(q,qm−1,δ2,1) is a [qm − 1, 3m

2 + 1,qm − qm−1 − 1− q
m
2 −1] seven-

weight code with the weight distribution of Table 7.10.

The weight distribution of the extended code of C(q,qm−1,δ2,1) was also settled
in Li, Wu, Liu (2019).
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7.4 The Parameters of the Codes C(q,qm−1,δ3,1) and C(q,qm−1,δ3+1,0),
where δ3 = (q−1)qm−1−1−qb(m+1)/2c

In this section, we determine the parameters of the codes C(q,qm−1,δ3,1) and
C(q,qm−1,δ3+1,0), where δ3 = (q− 1)qm−1− 1− qb(m+1)/2c. The results presented
in this section are taken from Ding, Fan and Zhou (2017). To determine the pa-
rameters of the two codes, we need the following lemma.

Lemma 7.11. Let m≥ 4. Then the third largest q-cyclotomic coset leader modulo
n is δ3 = (q−1)qm−1−1−qb(m+1)/2c. In addition, |Cδ3 |= m.

Proof. The proof is divided into the following two cases according to the parity
of m.

Case I, i.e., m is odd:

In this case, we have

δ3 = (q−1)qm−1−1−q(m+1)/2 = n−
(

q(m−3)/2 +1
)

q(m+1)/2.

It can be verified that

Cδ3 =

{
n−
(

q(m+3)/2 +1
)

qi : i = 0,1, . . . ,
m−5

2

}
∪{

n−
(

q(m−3)/2 +1
)

qi : i = 0,1, . . . ,
m+1

2

}
.

Therefore, δ3 is the smallest integer in Cδ3 and is thus the coset leader. Clearly,
we have |Cδ3 |= m.

Let t = (m−1)/2. By definition,

δ2 = (q−1)qm−1−1−q(m−1)/2

= (q−2)qm−1 +(q−1)qm−2 +(q−1)qm−3 + · · ·+(q−1)qt+1 +

(q−2)qt +(q−1)qt−1 +(q−1)qt−2 + · · ·+(q−1)q+(q−1).

Observe that δ2−δ3 = (q−1)qt . We need to prove that Ji := δ2− i is not a coset
leader for all i with 1≤ i≤ (q−1)qt −1.

Notice that

(q−1)qt −1 = (q−2)qt +(q−1)qt−1 +(q−1)qt−2 + · · ·+(q−1)q+q−1.

The q-adic expansion of i must be of the form

i = itqt + it−1qt−1 + · · ·+ i1q+ i0,
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where iℓ satisfies 0≤ iℓ ≤ q−1 for all 0≤ ℓ≤ t−1 and 0≤ it ≤ q−2, but at least
one of the iℓ’s is nonzero. It then follows that the q-adic expansion of Ji is given
by

Ji = (q−2)qm−1 +(q−1)qm−2 +(q−1)qm−3 + · · ·+(q−1)qt+1 +

(q−2− it)qt +(q−1− it−1)qt−1 +(q−1− it−2)qt−2 + · · ·+
(q−1− i1)q+q−1− i0.

Subcase I.1, i.e., q = 2:

In this subcase, we have it = 0 and

Ji = 2m−2 +2m−3 + · · ·+2t+1 +(1− it−1)2t−1 + · · ·+(1− i1)2+1− i0.

If i0 = 1, then Ji/2 < Ji. But Ji/2 and Ji are in the same 2-cyclotomic coset
modulo n. Hence, Ji cannot be a coset leader.

We now assume that i0 = 0. Since i 6= 0, one of the iℓ’s must be nonzero. Let
ℓ denote the largest one such that iℓ = 1. One can then verify that

Ji2m−1−ℓ mod n < Ji.

Whence, Ji cannot be a coset leader.

Subcase I.2, i.e., q > 2:

If it ≥ 1, then Jiqm−1−t mod n < Ji. In this case, Ji cannot be a coset leader.
If iℓ ≥ 2 for some ℓ with 0≤ ℓ≤ t−1, then Jiqm−1−ℓ mod n < Ji. In this case,

Ji cannot be a coset leader.
We now assume that all iℓ ∈ {0,1} for all 0≤ ℓ≤ t−1 and it = 0. Since i≥ 1,

at least one of the iℓ’s must be 1. Let ℓ denote the largest one such that iℓ = 1. One
can then verify that

Jiqm−1−ℓ mod n < Ji.

Whence, Ji cannot be a coset leader.
Summarizing all the conclusions above, we deduce that δ3 is the third largest

coset leader for the case that m is odd.

Case II, i.e., m is even

In this case, we have

δ3 = (q−1)qm−1−1−q(m+2)/2 = n−
(

q(m−4)/2 +1
)

q(m+2)/2.
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It is easily seen that

Cδ3 =

{
n−
(

q(m−4)/2 +1
)

qi : i = 0,1, . . . ,
m+2

2

}
∪{

n−
(

q(m+4)/2 +1
)

qi : i = 0,1, . . . ,
m−6

2

}
.

Therefore, δ3 is the smallest integer in Cδ3 and is the coset leader. Obviously,
|Cδ3 |= m.

Similarly as in the case that m is odd, one can prove that δ3 is the third largest
coset leader for the case that m is even. Details are omitted here.

Table 7.11 The weight distribution of C(2,2m−1,δ3+1,0) for odd m
Weight w No. of codewords Aw

0 1
2m−1−2(m+1)/2 (2m−1) ·2(m−5)/2 · (2(m−3)/2 +1) · (2m−1−1)/3
2m−1−2(m−1)/2 (2m−1) ·2(m−3)/2 · (2(m−1)/2 +1) · (5 ·2m−1 +4)/3
2m−1 (2m−1) · (9 ·22m−4 +3 ·2m−3 +1)
2m−1 +2(m−1)/2 (2m−1) ·2(m−3)/2 · (2(m−1)/2−1) · (5 ·2m−1 +4)/3
2m−1 +2(m+1)/2 (2m−1) ·2(m−5)/2 · (2(m−3)/2−1) · (2m−1−1)/3

Table 7.12 The weight distribution of C(2,2m−1,δ3+1,0) for even m
Weight w No. of codewords Aw

0 1
2m−1−2m/2 (2m/2−1)(2m−3 +2(m−4)/2)(2m+1 +2m/2−1)/3
2m−1−2(m−2)/2 (2m/2−1)(2m−1 +2(m−2)/2)(2m +2(m+2)/2 +4)/3
2m−1 (2m/2−1)(22m−1 +2(3m−4)/2−2m−2 +2m/2 +1)
2m−1 +2(m−2)/2 (2m/2−1)(2m−1−2(m−2)/2)(2m +2(m+2)/2 +4)/3
2m−1 +2m/2 (2m/2−1)(2m−3−2(m−4)/2)(2m+1 +2m/2−1)/3

Theorem 7.12. Let m ≥ 4. The code C(q,qm−1,δ3+1,0) has parameters [n, k̃, d̃],
where n = qm−1, δ3 = (q−1)qm−1−1−qb(m+1)/2c, d̃ ≥ δ3 +1 = (q−1)qm−1−
qb(m+1)/2c and

k̃ =
{

3m for odd m,
5m
2 for even m.

(7.12)

Furthermore,

• when q = 2 and m is odd, the binary code C(q,qm−1,δ3+1,0) has minimum dis-
tance d̃ = δ3 +1 and its weight distribution is given in Table 7.11;
• when q = 2 and m is even, the binary code C(q,qm−1,δ3+1,0) has minimum dis-

tance d̃ = δ3 +1 and its weight distribution is given in Table 7.12;
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• when q is an odd prime and m ≥ 4 is even, the code C(q,qm−1,δ3+1,0) has min-
imum distance d̃ = δ3 + 1 and its weight distribution is given in Table 7.13;
and
• when q is an odd prime and m ≥ 5 is odd, the code C(q,qm−1,δ3+1,0) has mini-

mum distance d̃ = δ3 +1 and its weight distribution is given in Table 7.14.

Proof. The conclusions on the dimension k̃ follow from Lemmas 7.1, 7.3 and
7.11. By the BCH bound, the minimum distance d̃ ≥ δ3 +1.

It follows from the definition of C(q,qm−1,δ3+1,0) and Lemmas 7.1, 7.3 and 7.11
that the check polynomial of this code is Mβδ1 (x)Mβδ2 (x)Mβδ3 (x). Notice that

δ3 = (q−1)qm−1−1−qb(m+1)/2c = n− (qm−1 +qb(m+1)/2c).

From Delsarte’s Theorem (i.e., Theorem 2.20), we deduce that C(q,qm−1,δ3+1,0) is
equivalent to the following code

C̃δ3 =

(Tr
(

ax+bx1+qh
+ cx1+qh+1

))
x∈GF(qm)∗

:
a ∈ GF(qm)

b ∈ GF(qm)

c ∈ GF(qm)

 ,

where h = b(m−1)/2c+1.
When q = 2, the binary code C̃δ3 has minimum distance d̃ = δ3 + 1 and its

weight distribution was settled in Kasami (1969).
When q is an odd prime and m≥ 4 is even, the code C̃δ3 has minimum distance

d̃ = δ3 +1 and its weight distribution in Table 7.13 is a special case of Table 2 in
Zeng, Li and Hu (2008).

When q is an odd prime and m≥ 5 is odd, we have h = (m+1)/2 and h+1 =

(m+3)/2. It is easy to see that gcd(m,h) = 1 and

1+q3h ≡ 1+qh+1 (mod n).

It then follows that

C̃δ3 =

(Tr
(

ax+bx1+qh
+ cx1+q3h

))
x∈GF(qm)∗

:
a ∈ GF(qm)

b ∈ GF(qm)

c ∈ GF(qm)

 .

In this case, the weight distribution of C̃δ3 is a special case of Theorem 2 in Zeng,
Hu, Jiang, Yue and Cao (2010).

The following theorem is proved in Kasami (1969).

Theorem 7.13. The minimum distance d̃⊥ of the dual of C(2,2m−1,δ3+1,0) is equal
to 7 when m≥ 5 is odd, and 5 when m≥ 6 is even.
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Table 7.13 The weight distribution of C(q,qm−1,δ3+1,0) for even m and odd q
Weight w No. of codewords Aw

0 1

(q−1)qm−1−q
m
2

(qm−1)((q2−1)(q
3m−6

2 +qm−2)+2(q
m−2

2 −1)(qm−3+q
m−4

2 ))
2(q+1)

(q−1)(qm−1−q
m−2

2 ) q(q
m
2 +1)(qm−1)(qm−1+(q−1)q

m−2
2 )

2(q+1)

(q−1)qm−1−q
m−2

2
(qm+1−2qm+q)(q

m
2 −1)(qm−1+q

m−2
2 )

2
(q−1)qm−1 (qm−1)(1+q

3m−2
2 −q

3m−4
2 +2q

3m−6
2 −qm−2)

(q−1)qm−1 +q
m−2

2
q(q

m
2 +1)(qm−1)(q−1)(qm−1−q

m−2
2 )

2(q+1)

(q−1)(qm−1 +q
m−2

2 ) (qm+1−2qm+q)(q
m
2 −1)(qm−1−(q−1)q

m−2
2 )

2(q−1)

(q−1)qm−1 +q
m
2

q
m−2

2 (qm−1)(q−1)(qm−2−q
m−2

2 )
2

(q−1)(qm−1 +q
m
2 ) (q

m−2
2 −1)(qm−1)(qm−3−(q−1)q

m−4
2 )

(q2−1)

Table 7.14 The weight distribution of C(q,qm−1,δ3+1,0) for odd m and odd q
Weight w No. of codewords Aw

0 1

(q−1)qm−1−q
m+1

2
(qm−1)(qm−3+q(m−3)/2)(qm−1−1)

2(q+1)

(q−1)(qm−1−q
m+1

2 ) (qm−1)(qm−1+q(m−1)/2)(qm−2+(q−1)q(m−3)/2)
2

(q−1)qm−1−q
m+1

2
(qm−1)(qm−2+q

m−3
2 )(qm+3−qm+2−qm−1−q

m+3
2 +q

m−1
2 +q3)

2(q+1)

(q−1)qm−1 (qm−1)(1+(q2−q+1)qm−3 +(q−1)q2m−4)+
(qm−1)((q−2)q2m−2 +q2m−1)

(q−1)qm−1 +q
m+1

2
(qm−1)(qm−2−q

m−3
2 )(qm+3−qm+2−qm−1+q

m+3
2 −q

m−1
2 +q3)

2(q+1)

(q−1)(qm−1 +q
m+1

2 ) (qm−1)(qm−1−q
m−1

2 )(qm−2−(q−1)q
m−3

2 )
2

(q−1)qm−1 +q
m+1

2
(qm−1)(qm−3−q

m−3
2 )(qm−1−1)

2(q+1)

Example 7.14. Let (q,m) = (2,4). Then δ3 = 3, and C(2,15,4,0) has parameters
[15,10,4] and weight enumerator 1+105z4 +280z6 +435z8 +168z10 +35z12.

Example 7.15. Let (q,m) = (2,5). Then δ3 = 7, and C(2,31,8,0) has parameters
[31,15,8] and weight enumerator 1 + 465z8 + 8680z12 + 18259z16 + 5208z20 +

155z24.

Example 7.16. Let (q,m) = (3,4). Then δ3 = 44, and the ternary code C(3,80,45,0)
has parameters [80,10,45] and weight enumerator

1+3040z45 +9900z48 +10080z51 +16640z54 +

14400z57 +3528z60 +1440z63 +20z72.

Example 7.17. Let (q,m) = (3,5). Then δ3 = 134, and the ternary code
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Table 7.15 Examples of C(q,qm−1,δ3+1,0) of Theorem 7.12
n k d = δ3 +1 m q Optimality

15 10 4 4 2 Yes
31 15 8 5 2 Yes
63 15 24 6 2 Yes

127 21 48 7 2 Best known
255 20 112 8 2 Best known

26 10 9 3 3 No
80 10 45 4 3 Best known

242 15 135 5 3 No

C(3,242,135,0) has parameters [242,15,135] and weight enumerator

1+29040z135 +359370z144 +3855060z153 +6719372z162 +

3188592z171 +182952z180 +14520z189.

The optimality of the code C(q,qm−1,δ3+1,0) is indicated in Table 7.15, where
further examples of the code is documented. As shown in this table, the code
C(q,qm−1,δ3+1,0) is sometimes optimal, and sometimes has the same parameters as
the best linear code known.

Theorem 7.18. Let m ≥ 4. The code C(q,qm−1,δ3,1) has parameters [n, k, δ3],
where n = qm−1, δ3 = (q−1)qm−1−1−qb(m+1)/2c and

k =
{

3m+1 for odd m,
5m
2 +1 for even m.

(7.13)

Proof. The conclusions on the dimension k follow from Lemmas 7.1, 7.3 and
7.11. By the BCH bound, the minimum distance d ≥ δ3.

It follows from the definition of C(q,qm−1,δ3,1) and Lemmas 7.1, 7.3 and 7.11
that the check polynomial of this code is (x−1)Mβδ1 (x)Mβδ2 (x)Mβδ3 (x). Notice
that

δ3 = (q−1)qm−1−1−qb(m+1)/2c = n− (qm−1 +qb(m+1)/2c).

From Delsarte’s Theorem (i.e., Theorem 2.20), we then deduce that C(q,qm−1,δ3,1)
is equal to the following code

Cδ3 =

{(
Tr
(

ax+bx1+qb(m−1)/2c+1
+ cx1+qb(m+1)/2c+1

)
+ e
)

x∈GF(qm)∗
:

a ∈ GF(qm), b ∈ GF(qm), c ∈ GF(qm), e ∈ GF(q)

}
.

Similarly, the weights and their frequencies of the codewords in C(q,qm−1,δ3,1)
are determined by the affine and quadratic functions

Tr
(

ax+bx1+qb(m−1)/2c+1
+ cx1+qb(m+1)/2c+1

)
+ e.



November 17, 2021 14:14 ws-book9x6 Designs from Linear Codes designscodes page 225

Weights in Some BCH Codes over GF(q) 225

One can refine the proofs in Kasami (1969), Zeng, Li and Hu (2008), Zeng, Hu,
Jiang, Yue and Cao (2010) and Zhou and Tang (2011), to prove that d = δ3. We
omit the lengthy details here.

Table 7.16 Examples of C(q,qm−1,δ3,1) of Theorem 7.18
n k d = δ3 m q Optimality

15 11 3 4 2 Yes
31 16 7 5 2 No (optimal d = 8)
63 16 23 6 2 Best known

127 22 47 7 2 Best known
255 21 111 8 2 Best known

26 11 8 3 3 No (best d = 9)
81 11 44 4 3 No (best d = 45)

242 16 134 5 3 No (best d = 135)

Examples of the code C(q,qm−1,δ3,1) are listed in Table 7.16. Some of them
are optimal, and some have the same parameters as the best codes known. When
(q,m) = (3,3), the code C(q,qm−1,δ3,1) has parameters [26,11,8], which are the
best possible according to Ding (2015a)[p. 300].

Theorem 7.19. Let q > 2. Then C(q,q3−1,q3−q2−q−1,0) and C(q,q3−1,q3−q2−q−2,1)
have parameters

[q3−1, 7, d̃ ≥ q3−q2−q−1] and [q3−1, 8, d ≥ q3−q2−q−2],

respectively.

Proof. When m = 3, one can similarly prove that the third largest coset leader
δ3 = δ2−1 = q3−q2−q−2 and |Cδ3 |= 1. The conclusions on the dimensions of
C(q,q3−1,q3−q2−q−1,0) and C(q,q3−1,q3−q2−q−2,1) follow from Lemmas 7.1 and 7.3.
The conclusions on the minimum distances follow from the BCH bound.

The following theorem follows from Theorem 7.13, as C⊥(2,2m−1,δ3+1,0) is the

even-weight subcode of C⊥(2,2m−1,δ3,1)
.

Theorem 7.20. The minimum distance d⊥ of the dual of C(2,2m−1,δ3+1,0) is equal
to 8 when m≥ 5 is odd, and 6 when m≥ 6 is even.

Theorem 7.21. Let m ≥ 4. The binary code C(2,2m−1,δ3,1) has parameters
[n, k, δ3], where n = 2m−1, δ3 = 2m−1−1−2b(m+1)/2c and

k =
{

3m+1 for odd m,
5m
2 +1 for even m.

(7.14)
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Table 7.17 The weight distribution of C(2,2m−1,δ3 ,1) for odd m
Weight w No. of codewords Aw

0 1
2m−1−2(m+1)/2−1 (2m−1) ·2(m−5)/2 · (2(m−3)/2−1) · (2m−1−1)/3
2m−1−2(m+1)/2 (2m−1) ·2(m−5)/2 · (2(m−3)/2 +1) · (2m−1−1)/3
2m−1−2(m−1)/2−1 (2m−1) ·2(m−3)/2 · (2(m−1)/2−1) · (5 ·2m−1 +4)/3
2m−1−2(m−1)/2 (2m−1) ·2(m−3)/2 · (2(m−1)/2 +1) · (5 ·2m−1 +4)/3
2m−1−1 (2m−1) · (9 ·22m−4 +3 ·2m−3 +1)
2m−1 (2m−1) · (9 ·22m−4 +3 ·2m−3 +1)
2m−1 +2(m−1)/2−1 (2m−1) ·2(m−3)/2 · (2(m−1)/2 +1) · (5 ·2m−1 +4)/3
2m−1 +2(m−1)/2 (2m−1) ·2(m−3)/2 · (2(m−1)/2−1) · (5 ·2m−1 +4)/3
2m−1 +2(m+1)/2−1 (2m−1) ·2(m−5)/2 · (2(m−3)/2 +1) · (2m−1−1)/3
2m−1 +2(m+1)/2 (2m−1) ·2(m−5)/2 · (2(m−3)/2−1) · (2m−1−1)/3
2m−1 1

Table 7.18 The weight distribution of C(2,2m−1,δ3 ,1) for even m
Weight w No. of codewords Aw

0 1
2m−1−2m/2−1 (2m/2−1)(2m−3−2(m−4)/2)(2m+1 +2m/2−1)/3
2m−1−2m/2 (2m/2−1)(2m−3 +2(m−4)/2)(2m+1 +2m/2−1)/3
2m−1−2(m−2)/2−1 (2m/2−1)(2m−1−2(m−2)/2)(2m +2(m+2)/2 +4)/3
2m−1−2(m−2)/2 (2m/2−1)(2m−1 +2(m−2)/2)(2m +2(m+2)/2 +4)/3
2m−1−1 (2m/2−1)(22m−1 +2(3m−4)/2−2m−2 +2m/2 +1)
2m−1 (2m/2−1)(22m−1 +2(3m−4)/2−2m−2 +2m/2 +1)
2m−1 +2(m−2)/2−1 (2m/2−1)(2m−1 +2(m−2)/2)(2m +2(m+2)/2 +4)/3
2m−1 +2(m−2)/2 (2m/2−1)(2m−1−2(m−2)/2)(2m +2(m+2)/2 +4)/3
2m−1 +2m/2−1 (2m/2−1)(2m−3 +2(m−4)/2)(2m+1 +2m/2−1)/3
2m−1 +2m/2 (2m/2−1)(2m−3−2(m−4)/2)(2m+1 +2m/2−1)/3
2m−1 1

Furthermore, the weight distribution of this code is given in Table 7.17 for odd m,
and Table 7.18 for even m.

Proof. It follows from Theorem 7.12 directly.

Theorem 7.22 (Li, Wu, Liu (2019)). Let q be an odd prime and m ≥ 5 an odd
integer. Then C(q,qm−1,δ3,1) is a [qm−1,3m+1,qm−qm−1−1−q(m+1)/2] fifteen-
weight code with the weight distribution of Table 7.19.

Theorem 7.23 (Li, Wu, Liu (2019)). Let q be an odd prime and m ≥ 4 an even
integer. Then C(q,qm−1,δ3,1) is a [qm− 1, 5m

2 + 1,qm− qm−1− 1− q
m
2 ] seventeen-

weight code with the weight distribution of Table 7.20.

The weight distribution of the extended code of C(q,qm−1,δ3,1) was also settled
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Table 7.19 Weight distribution of C(q,qm−1,δ3 ,1) for odd m
Weight w; Frequency Aw

0; 1
(q−1)qm−1−1−q(m+1)/2; (qm−1−1)(qm−1)((q−1)qm−3−q(m−3)/2)/2(q+1)
(q−1)qm−1−q(m+1)/2; (qm−1−1)(qm−1)(qm−3 +q(m−3)/2)/2(q+1)
(q−1)(qm−1−q(m−1)/2)−1; (q−1)(qm−1)(qm−1 +q(m−1)/2)(qm−2−q(m−3)/2)/2
(q−1)(qm−1−q(m−1)/2); (qm−1)(qm−1 +q(m−1)/2)(qm−2 +(q−1)q(m−3)/2)/2

(q−1)qm−1−1−q(m−1)/2; (qm−1)((q−1)qm−2−q
m−3

2 )(qm+3−qm+2−qm−1−q
m+3

2 +q
m−1

2 +q3)
2(q+1)

(q−1)qm−1−q(m−1)/2; (qm−1)(qm−2+q
m−3

2 )(qm+3−qm+2−qm−1−q
m+3

2 +q
m−1

2 +q3)
2(q+1)

(q−1)qm−1−1; (q−1)(qm−1)((q−1)(2q2m−2 +q2m−4 +qm−2)+qm−3 +1)
(q−1)qm−1; (qm−1)((q−1)(2q2m−2 +q2m−4 +qm−2)+qm−3 +1)

(q−1)qm−1−1+q(m−1)/2; (qm−1)((q−1)qm−2+q
m−3

2 )(qm+3−qm+2−qm−1+q
m+3

2 −q
m−1

2 +q3)
2(q+1)

(q−1)qm−1 +q(m−1)/2; (qm−1)(qm−2−q
m−3

2 )(qm+3−qm+2−qm−1+q
m+3

2 −q
m−1

2 +q3)
2(q+1)

(q−1)(qm−1 +q(m−1)/2)−1; (q−1)(qm−1)(qm−1−q(m−1)/2)(qm−2 +q(m−3)/2)/2
(q−1)(qm−1 +q(m−1)/2); (qm−1)(qm−1−q(m−1)/2)(qm−2− (q−1)q(m−3)/2)/2
(q−1)qm−1−1+q(m+1)/2; (qm−1−1)(qm−1)((q−1)qm−3 +q(m−3)/2)/2(q+1)
(q−1)qm−1 +q(m+1)/2; (qm−1−1)(qm−1)(qm−3−q(m−3)/2)/2(q+1)
qm−1; q−1

in Li, Wu, Liu (2019).

7.5 Weights in C(2,2m−1,δ,1) and Its Dual for δ ∈ {3,5,7}

C⊥(2,2m−1,3,1) is the Simplex code, which is a one-weight code. C(2,2m−1,3,1) is
the binary Hamming code whose weight distribution formula is given in Section
10.5.4.

Theorem 7.24. The code C⊥(2,2m−1,5,1) has dimension 2m, and the weight distribu-
tion of Tables 7.1 and 7.21 for even and odd m, respectively.

Proof. A proof can be found in Kasami (1969) and Schoof (1995).

The automorphism of the double-error correcting code C(2,2m−1,5,1) and its
dual is the semi-linear group

ΓL1(GF(2m)) = {ax2i
: a ∈ GF(2m), i ∈ {0,1, . . . ,m−1}},

which is proved in Berger (1994).

Theorem 7.25. Let m ≥ 5. When m is odd, C⊥(2,2m−1,7,1) has dimension 3m, and
the weight distribution of Table 7.11.

Proof. A proof can be found in Kasami (1969).
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Table 7.20 Weight distribution of C(q,qm−1,δ3 ,1) for even m
Weight w; Frequency Aw

0; 1

(q−1)qm−1−1−q
m
2 ; q

m
2 −2

(qm−1)(q
m
2 −q

m
2 −1−1)[q

m
2 (q2−1)+2(q

m
2 −1−1)]

2(q+1)

(q−1)qm−1−q
m
2 ; (qm−1)[q

m
2 −1

(q2−1)(qm−2+q
m
2 −1

)+2(q
m
2 −1−1)(qm−3+q

m
2 −2

)]
2(q+1)

(q−1)(qm−1−q
m
2 −1)−1; q(q−1)(q

m
2 +1)(qm−1)(qm−1−q

m
2 −1

)
2(q+1)

(q−1)(qm−1−q
m
2 −1); q(q

m
2 +1)(qm−1)(qm−1+(q−1)q

m
2 −1

)
2(q+1)

(q−1)qm−1−q
m
2 −1−1; (qm+1−2qm +q)(q

m
2 −1)(qm−qm−1−q

m
2 −1)/2

(q−1)qm−1−q
m
2 −1; (qm+1−2qm +q)(q

m
2 −1)(qm−1 +q

m
2 −1)/2

(q−1)qm−1−1; (q−1)(qm−1)(1+q
3m
2 −1−q

3m
2 −2 +2q

3m
2 −3−qm−2)

(q−1)qm−1; (qm−1)(1+q
3m
2 −1−q

3m
2 −2 +2q

3m
2 −3−qm−2)

(q−1)qm−1 +q
m
2 −1−1; q(q−1)(q

m
2 +1)(qm−1)(qm−qm−1+q

m
2 −1

)
2(q+1)

(q−1)qm−1 +q
m
2 −1; q(q−1)(q

m
2 +1)(qm−1)(qm−1−q

m
2 −1

)
2(q+1)

(q−1)(qm−1 +q
m
2 −1)−1; (qm+1−2qm +q)(q

m
2 −1)(qm−1 +q

m
2 −1)/2

(q−1)(qm−1 +q
m
2 −1); (qm+1−2qm+q)(q

m
2 −1)(qm−1−(q−1)q

m
2 −1

)
2(q−1)

(q−1)qm−1−1+q
m
2 ; qm−2(q−1)(qm−1)(q

m
2 −q

m
2 −1 +1)/2

(q−1)qm−1 +q
m
2 ; q

m
2 −1(q−1)(qm−1)(qm−2−q

m
2 −1)/2

(q−1)(qm−1 +q
m
2 )−1; (q−1)(q

m
2 −1−1)(qm−1)(qm−3+q

m
2 −2

)

q2−1

(q−1)(qm−1 +q
m
2 ); (q

m
2 −1−1)(qm−1)(qm−3−(q−1)q

m
2 −2

)

q2−1
qm−1; q−1

Table 7.21 The weight distribution of C⊥(2,2m−1,5,1) for even m

Weight w No. of codewords Aw

0 1
2m−1−2m/2 (2m−1)(2m−3 +2(m−4)/2)/3
2m−1−2(m−2)/2 (2m−1)(2m +2m/2)/3
2m−1 (2m−1)(2m−2 +1)
2m−1 +2(m−2)/2 (2m−1)(2m−2m/2)/3
2m−1 +2m/2 (2m−1)(2m−3−2(m−4)/2)/3

7.6 Notes

Recently, the weight distribution of the narrow-sense primitive BCH code
C(q,qm−1,δ2,1) for general q and even m was settled in Heng, Wang and Ding (2020)
in a different way and some 2-designs were obtained there. Some related work was
done in Li (2017).
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Chapter 8

Designs from Four Types of Linear Codes

In this chapter, we will present many infinite families of 2-designs and 3-designs,
which are derived from three types of binary codes and a type of ternary codes
whose weight distributions are of special forms. We do not need the description
of the codes, but only their weight distributions. In this case, we have to make
full use of the Assmus-Mattson Theorem (i.e., Theorem 4.24 and Corollary 4.26),
as the automorphism groups of such codes could not be determined with only the
knowledge of the weight distribution. The materials presented in this chapter are
from Ding (2018c) and Ding and Li (2017).

8.1 Designs from a Type of Binary Codes with Three Weights

In this section, we construct many infinite families of 2-designs and 3-designs
with a type of binary linear codes with the weight distribution in Table 8.1 and
their related codes. The existence of such codes will be demonstrated at the end
of this section.

Table 8.1 Weight distribution for odd m
Weight w Number of codewords Aw in the code
0 1
2m−1−2

m−1
2 (2m−1)(2

m−1
2 +1)2

m−3
2

2m−1 (2m−1)(2m−1 +1)
2m−1 +2

m−1
2 (2m−1)(2

m−1
2 −1)2

m−3
2

Lemma 8.1. Let m ≥ 5 be odd. Let Cm be a binary linear code of length 2m− 1
such that its dual code C⊥m has the weight distribution of Table 8.1. Then the

229
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weight distribution of Cm is given by

22mAk =∑
0≤i≤2m−1−2

m−1
2

0≤ j≤2m−1+2
m−1

2 −1
i+ j=k

(−1)ia
(

2m−1−2
m−1

2

i

)(
2m−1 +2

m−1
2 −1

j

)

+

(
2m−1

k

)
+ ∑

0≤i≤2m−1

0≤ j≤2m−1−1
i+ j=k

(−1)ib
(

2m−1

i

)(
2m−1−1

j

)
+

∑
0≤i≤2m−1+2

m−1
2

0≤ j≤2m−1−2
m−1

2 −1
i+ j=k

(−1)ic
(

2m−1 +2
m−1

2

i

)(
2m−1−2

m−1
2 −1

j

)

for 0≤ k ≤ 2m−1, where

a = (2m−1)(2
m−1

2 +1)2
m−3

2 ,

b = (2m−1)(2m−1 +1),

c = (2m−1)(2
m−1

2 −1)2
m−3

2 .

In addition, Cm has parameters [2m−1,2m−1−2m,5].

Proof. By assumption, the weight enumerator of C⊥m is given by

A⊥(z) = 1+az2m−1−2
m−1

2 +bz2m−1
+ cz2m−1+2

m−1
2 .

It then follows from Theorem 2.4 that the weight enumerator of Cm is given by

A(z) =
1

22m (1+ z)2m−1

1+a
(

1− z
1+ z

)2m−1−2
m−1

2
+

1
22m (1+ z)2m−1

b
(

1− z
1+ z

)2m−1

+ c
(

1− z
1+ z

)2m−1+2
m−1

2


=
1

22m

[
(1+ z)2m−1 +a(1− z)2m−1−2

m−1
2 (1+ z)2m−1+2

m−1
2 −1 +

b(1− z)2m−1
(1+ z)2m−1−1 +

c(1− z)2m−1+2
m−1

2 (1+ z)2m−1−2
m−1

2 −1

]
.
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Obviously, we have

(1+ z)2m−1 =
2m−1

∑
k=0

(
2m−1

k

)
zk.

It is easily seen that

(1− z)2m−1−2
m−1

2 (1+ z)2m−1+2
m−1

2 −1

=
2m−1

∑
k=0

 ∑
0≤i≤2m−1−2

m−1
2

0≤ j≤2m−1+2
m−1

2 −1
i+ j=k

(−1)i
(

2m−1−2
m−1

2

i

)(
2m−1 +2

m−1
2 −1

j

)


zk

and

(1− z)2m−1+2
m−1

2 (1+ z)2m−1−2
m−1

2 −1

=
2m−1

∑
k=0

 ∑
0≤i≤2m−1+2

m−1
2

0≤ j≤2m−1−2
m−1

2 −1
i+ j=k

(−1)i
(

2m−1 +2
m−1

2

i

)(
2m−1−2

m−1
2 −1

j

)


zk.

Similarly, we have

(1− z)2m−1
(1+ z)2m−1−1 =

2m−1

∑
k=0

 ∑
0≤i≤2m−1

0≤ j≤2m−1−1
i+ j=k

(−1)i
(

2m−1

i

)(
2m−1−1

j

)
zk.

Combining these formulas above yields the weight distribution formula for Ak.
The weight distribution in Table 8.1 tells us that the dimension of C⊥m is 2m.

Therefore, the dimension of Cm is equal to 2m−1−2m. Finally, we prove that the
minimum distance d of Cm equals 5.

After tedious computations with the formula of Ak given in Lemma 8.1, one
can verify that A1 = A2 = A3 = A4 = 0 and

A5 =
4×23m−5−22×22m−4 +26×2m−3−2

15
. (8.1)

When m≥ 5, we have

4×23m−5 = 4×2m−122m−4 ≥ 64×22m−4 > 22×22m−4
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and

26×2m−3−2 > 0.

Consequently, A5 > 0 for all odd m. This proves that d = 5.

Theorem 8.2. Let m≥ 5 be odd. Let Cm be a binary linear code of length 2m−1
such that its dual code C⊥m has the weight distribution of Table 8.1. Let P =

{0,1,2, . . . ,2m− 2}, and let B be the set of the supports of the codewords of Cm

with weight k, where Ak 6= 0. Then (P ,B) is a 2-(2m−1,k,λ) design, where

λ =
k(k−1)Ak

(2m−1)(2m−2)
,

and Ak is given in Lemma 8.1.
Let P = {0,1,2, . . . ,2m − 2}, and let B⊥ be the set of the supports of the

codewords of C⊥m with weight k and A⊥k 6= 0. Then (P ,B⊥) is a 2-(2m− 1,k,λ)
design, where

λ =
k(k−1)A⊥k

(2m−1)(2m−2)
,

and A⊥k is given in Lemma 8.1.

Proof. The weight distribution of Cm is given in Lemma 8.1 and that of C⊥m is
given in Table 8.1. By Lemma 8.1, the minimum distance d of Cm is equal to 5.
Put t = 2. The number of i with A⊥i 6= 0 and 1 ≤ i ≤ 2m− 1− t is s = 3. Hence,
s = d− t. The desired conclusions then follow from Corollary 4.26 and the fact
that two binary vectors have the same support if and only if they are equal.

Corollary 8.3. Let m≥ 5 be odd. Then C⊥m gives three 2-designs with the follow-
ing parameters:

• (v, k, λ) =
(

2m−1, 2m−1−2
m−1

2 , 2m−3(2m−1−2
m−1

2 −1)
)
.

• (v, k, λ) =
(

2m−1, 2m−1 +2
m−1

2 , 2m−3(2m−1 +2
m−1

2 −1)
)
.

• (v, k, λ) =
(
2m−1, 2m−1, (2m−1)(2m−1 +1)

)
.

Corollary 8.4. Let m≥ 5 be odd. Then the supports of all codewords of weight 5
in Cm give a 2-(2m−1, 5, (2m−1−4)/3) design.

Proof. By Lemma 8.1,

A5 =
(2m−1−1)(2m−1−4)(2m−1)

30
.

The desired value for λ then follows from Theorem 8.2.
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Corollary 8.5. Let m≥ 5 be odd. Then the supports of all codewords of weight 6
in Cm give a 2-(2m−1, 6, λ) design, where

λ =
(2m−2−2)(2m−1−3)

3
.

Proof. By Lemma 8.1,

A6 =
(2m−1−1)(2m−1−4)(2m−1−3)(2m−1)

90
.

The desired value for λ then follows from Theorem 8.2.

Corollary 8.6. Let m≥ 5 be odd. Then the supports of all codewords of weight 7
in Cm give a 2-(2m−1, 7, λ) design, where

λ =
2×23(m−1)−25×22(m−1)+123×2m−1−190

30
.

Proof. By Lemma 8.1,

A7 =
(2m−1−1)(2m−1)(2×23(m−1)−25×22(m−1)+123×2m−1−190)

630
.

The desired value for λ then follows from Theorem 8.2.

Corollary 8.7. Let m≥ 5 be odd. Then the supports of all codewords of weight 8
in Cm give a 2-(2m−1, 8, λ) design, where

λ =
(2m−2−2)(2×23(m−1)−25×22(m−1)+123×2m−1−190)

45
.

Proof. By Lemma 8.1,

A8 =
(2h−1)(2h−4)(2m−1)(2×23(m−1)−25×22h +123×2h−190)

8×315
,

where h = m−1. The desired value for λ then follows from Theorem 8.2.

Lemma 8.8. Let m ≥ 5 be odd. Let Cm be a linear code of length 2m− 1 such
that its dual code C⊥m has the weight distribution of Table 8.1. Denote by C m

the extended code of Cm and let C
⊥
m denote the dual of C m. Then the weight

distribution of C m is given by

22m+1Ak = (1+(−1)k)

(
2m

k

)
+

1+(−1)k

2
(−1)bk/2c

(
2m−1

bk/2c

)
v+

u ∑
0≤i≤2m−1−2

m−1
2

0≤ j≤2m−1+2
m−1

2
i+ j=k

[(−1)i +(−1) j]

(
2m−1−2

m−1
2

i

)(
2m−1 +2

m−1
2

j

)
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for 0≤ k ≤ 2m, where

u = 22m−1−2m−1 and v = 22m +2m−2.

In addition, C m has parameters [2m,2m−1−2m,6].
The code C

⊥
m has weight enumerator

A⊥(z) = 1+uz2m−1−2
m−1

2 + vz2m−1
+uz2m−1+2

m−1
2 + z2m

, (8.2)

and parameters [2m, 2m+1, 2m−1−2
m−1

2 ].

Proof. It was proved in Lemma 8.1 that Cm has parameters [2m − 1,2m − 1−
2m,5]. By definition, the extended code C m has parameters [2m,2m− 1− 2m,6].
By Table 8.1, all weights of C⊥m are even. Note that C⊥m has length 2m− 1 and
dimension 2m, while C

⊥
m has length 2m and dimension 2m+1. By definition, C m

has only even weights. Therefore, the all-one vector must be a codeword in C
⊥
m .

It can be shown that the weights in C
⊥
m are the following:

0, w1, w2, w3, 2m−w1, 2m−w2, 2m−w3, 2m,

where w1,w2 and w3 are the three nonzero weights in C⊥m . Consequently, C
⊥
m has

the following four weights

2m−1−2
m−1

2 , 2m−1, 2m−1 +2
m−1

2 , 2m.

Recall that C m has minimum distance 6. Employing the first few Pless Moments,
one can prove that the weight enumerator of C

⊥
m is the one given in (8.2).

By Theorem 2.4, the weight enumerator of C m is given by

22m+1A(z) = (1+ z)2m

1+u
(

1− z
1+ z

)2m−1−2
m−1

2

+ v
(

1− z
1+ z

)2m−1
+

(1+ z)2m

u
(

1− z
1+ z

)2m−1+2
m−1

2

+

(
1− z
1+ z

)2m


= (1+ z)2m
+(1− z)2m

+ v(1− z2)2m−1
+

u(1− z)2m−1−2
m−1

2 (1+ z)2m−1+2
m−1

2 +

u(1− z)2m−1+2
m−1

2 (1+ z)2m−1−2
m−1

2 . (8.3)

We now treat the terms in (8.3) one by one. We first have

(1+ z)2m
+(1− z)2m

=
2m

∑
k=0

(
1+(−1)k

)(2m

k

)
. (8.4)
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One can easily see that

(1− z2)2m−1
=

2m

∑
k=0

1+(−1)k

2
(−1)bk/2c

(
2m−1

bk/2c

)
zk. (8.5)

Notice that

(1− z)2m−1−2
m−1

2 =
2m−1−2

m−1
2

∑
i=0

(
2m−1−2

m−1
2

i

)
(−1)izi

and

(1+ z)2m−1+2
m−1

2 =
2m−1+2

m−1
2

∑
i=0

(
2m−1 +2

m−1
2

i

)
zi.

We have then

(1− z)2m−1−2
m−1

2 (1+ z)2m−1+2
m−1

2 =

2m

∑
k=0

 ∑
0≤i≤2m−1−2

m−1
2

0≤ j≤2m−1+2
m−1

2
i+ j=k

(−1)i
(

2m−1−2
m−1

2

i

)(
2m−1 +2

m−1
2

j

)


zk. (8.6)

Similarly, we have

(1− z)2m−1+2
m−1

2 (1+ z)2m−1−2
m−1

2 =

2m

∑
k=0

 ∑
0≤i≤2m−1+2

m−1
2

0≤ j≤2m−1−2
m−1

2
i+ j=k

(−1)i
(

2m−1 +2
m−1

2

i

)(
2m−1−2

m−1
2

j

)


zk. (8.7)

Plugging (8.4), (8.5), (8.6), and (8.7) into (8.3) proves the desired conclusion of
this lemma.

Theorem 8.9. Let m ≥ 5 be odd. Let Cm be a linear code of length 2m− 1 such
that its dual code C⊥m has the weight distribution of Table 8.1. Denote by C m the
extended code of Cm and let C

⊥
m denote the dual of C m. Let P = {0,1,2, . . . ,2m−

1}, and let B be the set of the supports of the codewords of C m with weight k,
where Ak 6= 0. Then (P ,B) is a 3-(2m,k,λ) design, where

λ =
Ak
(k

3

)(2m

3

) ,
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and Ak is given in Lemma 8.8.
Let P = {0,1,2, . . . ,2m − 1}, and let B

⊥
be the set of the supports of the

codewords of C
⊥
m with weight k and A⊥k 6= 0. Then (P ,B

⊥
) is a 3-(2m,k,λ) design,

where

λ =
A⊥k
(k

3

)(2m

3

) ,

and A⊥k is given in Lemma 8.8.

Proof. The weight distributions of C m and C
⊥
m were described in Lemma 8.8.

Notice that the minimum distance d of C m is equal to 6. Put t = 3. The number
of i with A⊥i 6= 0 and 1 ≤ i ≤ 2m− t is s = 3. Hence, s = d − t. The desired
conclusions then follow from Corollary 4.26 and the fact that two binary vectors
have the same support if and only if they are identical.

Corollary 8.10. Let m ≥ 5 be odd. Then the code C
⊥
m holds three 3-designs with

the following parameters:

• (v, k, λ) =
(

2m, 2m−1−2
m−1

2 , (2m−3−2
m−3

2 )(2m−1−2
m−1

2 −1)
)
.

• (v, k, λ) =
(

2m, 2m−1 +2
m−1

2 , (2m−3 +2
m−3

2 )(2m−1−2
m−1

2 −1)
)
.

• (v, k, λ) =
(
2m, 2m−1, (2m−1 +1)(2m−2−1)

)
.

Corollary 8.11. Let m≥ 5 be odd. Then the supports of all codewords of weight
6 in C m give a 3-(2m, 6, λ) design, where

λ =
2m−1−4

3
.

Proof. By Lemma 8.8,

A6 =
2m−1(2m−1−1)(2m−1−4)(2m−1)

90
.

The desired value for λ then follows from Theorem 8.9.

Corollary 8.12. Let m≥ 5 be odd. Then the supports of all codewords of weight
8 in C m give a 3-(2m, 8, λ) design, where

λ =
2×23(m−1)−25×22(m−1)+123×2m−1−190

30
.

Proof. By Lemma 8.8,

A8 =
2h(2h−1)(2h+1−1)(2×23h−25×22h +123×2h−190)

8×315
,

where h = m−1. The desired value for λ then follows from Theorem 8.9.
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Corollary 8.13. Let m≥ 5 be odd. Then the supports of all codewords of weight
10 in C m give a 3-(2m, 10, λ) design, where

λ =
(2h−4)(2×24h−34×23h +235×22h−931×2h +1358)

315
,

and h = m−1.

Proof. By Lemma 8.8,

A10 =
2h(2h−1)(2h−4)(2×24h−34×23h +235×22h−931×2h +1358)

4×14175
,

where h = m−1. The desired value for λ then follows from Theorem 8.9.

To show the existence of the 2-designs and 3-designs presented in Theorems
8.2 and 8.9, respectively, we describe a list of binary codes that have the weight
distribution of Table 8.1 below.

Let α be a generator of GF(2m)∗. Let gs(x) =Mα(x)Mαs(x), where Mαi(x) is
the minimal polynomial of αi over GF(2). Let Cm denote the cyclic code of length
v = 2m−1 over GF(2) with generator polynomial gs(x). It is known that C⊥m has
dimension 2m and the weight distribution of Table 8.1 when m is odd and s takes
on the following values [Ding, Li, Li and Zhou (2016)]:

• s = 2h +1, where gcd(h,m) = 1 and h is a positive integer.
• s = 22h−2h +1, where h is a positive integer.
• s = 2

m−1
2 +3.

• s = 2
m−1

2 +2
m−1

4 −1, where m≡ 1 (mod 4).
• s = 2

m−1
2 +2

3m−1
4 −1, where m≡ 3 (mod 4).

In all these cases, Cm has parameters [2m−1,2m−1−2m,5] and is optimal.
It was shown in Theorem 7.4 the binary narrow-sense primitive BCH code

with designed distance 2m−1− 2(m−1)/2 has also the weight distribution of Table
8.1.

These codes and their extended codes give 2-designs and 3-designs when they
are plugged into Theorems 8.2 and 8.9.

It is known that Cm has parameters [2m− 1,2m− 1− 2m,5] if and only if xe

is an APN monomial over GF(2m). However, even if xe is APN, the dual code
C⊥m may have many weights, and thus the code Cm and its dual C⊥m may not give
2-designs. One of such examples is the inverse APN monomial.
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8.2 An Extended Construction from Almost Bent Functions

In the preceding section, we employed almost bent functions to construct cyclic
codes whose extended codes and their duals hold 3-designs. In this section, we
give a trace representation of these codes and extend the construction of the pre-
ceding section.

For a function g from GF(2m) to GF(2m), we define

λg(a,b) = ∑
x∈GF(2m)

(−1)Tr2m/2(ag(x)+bx), a, b ∈ GF(2m).

A function g from GF(2m) to GF(2m) is called almost bent if λg(a,b) = 0, or ±
2(m+1)/2 for every pair (a,b) with a 6= 0. By definition, almost bent functions over
GF(2m) exist only for odd m.

For any given function g from GF(2m) to GF(2m) with g(0) = 0, we define the
following linear code

Cg = {
(
Tr2m/2(ag(x)+bx)+h

)
x∈GF(2m)

, a, b ∈ GF(2m),h ∈ GF(2)}. (8.8)

Let m≥ 5. It follows from the definition of almost bent function that the code Cg

of (8.8) has parameters [2m,2m+ 1,2m−1− 2(m−1)/2] and the weight enumerator
of (8.2). Hence, Cg and its dual hold 3-designs. Note that the construction of this
section works for all almost bent functions, including almost bent monomials.
There are almost bent functions which are not monomials.

8.3 Designs from a Type of Binary Codes with Five Weights

In this section, we present many infinite families of 2-designs and 3-designs,
which are derived from a type of binary linear codes with five weights and their
related codes. The constructions of such designs are quite general, as they depend
only on the weight distribution of the underlying binary linear code.

8.3.1 The Codes with Five Weights and Their Related Codes

We first assume the existence of a binary linear code Cm of length n = 2m− 1
with the weight distribution of Table 8.2, and then analyze its dual code C⊥m , the

extended code C⊥m , and the dual C⊥m
⊥

. Such codes will be employed to construct
t-designs in Sections 8.3.2 and 8.3.3. Examples of such codes will be given in
Section 8.3.4.

Theorem 8.14. Let m≥ 5 be an odd integer and let Cm be a binary code with the
weight distribution of Table 8.2. Then the dual code C⊥m has parameters [2m−



November 17, 2021 14:14 ws-book9x6 Designs from Linear Codes designscodes page 239

Designs from Four Types of Linear Codes 239

Table 8.2 The weight distribution for odd m
Weight w Number of codewords Aw in the code
0 1
2m−1−2

m+1
2 (2m−1) ·2 m−5

2 · (2 m−3
2 +1) · (2m−1−1)/3

2m−1−2
m−1

2 (2m−1) ·2 m−3
2 · (2 m−1

2 +1) · (5 ·2m−1 +4)/3
2m−1 (2m−1) · (9 ·22m−4 +3 ·2m−3 +1)
2m−1 +2

m−1
2 (2m−1) ·2 m−3

2 · (2 m−1
2 −1) · (5 ·2m−1 +4)/3

2m−1 +2
m+1

2 (2m−1) ·2 m−5
2 · (2 m−3

2 −1) · (2m−1−1)/3

1,2m−1−3m,7], and its weight distribution is given by

23mA⊥k =

(
2m−1

k

)
+aUa(k)+bUb(k)+ cUc(k)+dUd(k)+ eUe(k),

where 0≤ k ≤ 2m−1,

a = (2m−1)2
m−5

2 (2
m−3

2 +1)(2m−1−1)/3,

b = (2m−1)2
m−3

2 (2
m−1

2 +1)(5×2m−1 +4)/3,

c = (2m−1)(9×22m−4 +3×2m−3 +1),

d = (2m−1)2
m−3

2 (2
m−1

2 −1)(5×2m−1 +4)/3,

e = (2m−1)2
m−5

2 (2
m−3

2 −1)(2m−1−1)/3,

and

Ua(k) = ∑
0≤i≤2m−1−2

m+1
2

0≤ j≤2m−1+2
m+1

2 −1
i+ j=k

(−1)i
(

2m−1−2
m+1

2

i

)(
2m−1 +2

m+1
2 −1

j

)
,

Ub(k) = ∑
0≤i≤2m−1−2

m−1
2

0≤ j≤2m−1+2
m−1

2 −1
i+ j=k

(−1)i
(

2m−1−2
m−1

2

i

)(
2m−1 +2

m−1
2 −1

j

)
,

Uc(k) = ∑
0≤i≤2m−1

0≤ j≤2m−1−1
i+ j=k

(−1)i
(

2m−1

i

)(
2m−1−1

j

)
,

Ud(k) = ∑
0≤i≤2m−1+2

m−1
2

0≤ j≤2m−1−2
m−1

2 −1
i+ j=k

(−1)i
(

2m−1 +2
m−1

2

i

)(
2m−1−2

m−1
2 −1

j

)
,
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Ue(k) = ∑
0≤i≤2m−1+2

m+1
2

0≤ j≤2m−1−2
m+1

2 −1
i+ j=k

(−1)i
(

2m−1 +2
m+1

2

i

)(
2m−1−2

m+1
2 −1

j

)
.

Proof. By assumption, the weight enumerator of Cm is given by

A(z) = 1+az2m−1−2
m+1

2 +bz2m−1−2
m−1

2 +

cz2m−1
+dz2m−1+2

m−1
2 + ez2m−1+2

m+1
2 .

It then follows from Theorem 2.4 that the weight enumerator of C⊥m is given by

23mA⊥(z) =

(1+ z)2m−1

a
(

1− z
1+ z

)2m−1−2
m+1

2

+b
(

1− z
1+ z

)2m−1−2
m−1

2
+

(1+ z)2m−1

c
(

1− z
1+ z

)2m−1

+d
(

1− z
1+ z

)2m−1+2
m−1

2
+

(1+ z)2m−1

e
(

1− z
1+ z

)2m−1+2
m+1

2

+1

 .
Hence, we have

23mA⊥(z) = (1+ z)2m−1 +

a(1− z)2m−1−2
m+1

2 (1+ z)2m−1+2
m+1

2 −1 +

b(1− z)2m−1−2
m−1

2 (1+ z)2m−1+2
m−1

2 −1 +

c(1− z)2m−1
(1+ z)2m−1−1 +

d(1− z)2m−1+2
m−1

2 (1+ z)2m−1−2
m−1

2 −1 +

e(1− z)2m−1+2
m+1

2 (1+ z)2m−1−2
m+1

2 −1.

Obviously, we have

(1+ z)2m−1 =
2m−1

∑
k=0

(
2m−1

k

)
zk.

It is easily seen that

(1− z)2m−1−2
m+1

2 (1+ z)2m−1+2
m+1

2 −1 =
2m−1

∑
k=0

Ua(k)zk
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and

(1− z)2m−1−2
m−1

2 (1+ z)2m−1+2
m−1

2 −1 =
2m−1

∑
k=0

Ub(k)zk.

Similarly,

(1− z)2m−1+2
m−1

2 (1+ z)2m−1−2
m−1

2 −1 =
2m−1

∑
k=0

Ud(k)zk

and

(1− z)2m−1+2
m+1

2 (1+ z)2m−1−2
m+1

2 −1 =
2m−1

∑
k=0

Ue(k)zk.

Finally, we have

(1− z)2m−1
(1+ z)2m−1−1 =

2m−1

∑
k=0

Uc(k)zk.

Combining these formulas above yields the weight distribution formula for A⊥k .
The weight distribution in Table 8.2 tells us that the dimension of Cm is 3m.

Therefore, the dimension of C⊥m is equal to 2m− 1− 3m. Finally, we prove that
the minimum distance of C⊥m equals 7.

We now prove that A⊥k = 0 for all k with 1≤ k≤ 6. Let x = 2(m−1)/2. With the
weight distribution formula for C⊥m obtained before, we have(

2m−1
1

)
= 2x2−1,

aUa(1) =
1
3

x7 +
7

12
x6− 2

3
x5− 7

8
x4 +

5
12

x3 +
7

24
x2− 1

12
x,

bUb(1) =
10
3

x7 +
5
3

x6− 2
3

x5 +
1
2

x4− 11
6

x3− 2
3

x2 +
2
3

x,

cUc(1) = −
9
2

x6 +
3
4

x4− 5
4

x2 +1,

dUd(1) = −
10
3

x7 +
5
3

x6 +
2
3

x5 +
1
2

x4 +
11
6

x3− 2
3

x2− 2
3

x,

eUe(1) = −
1
3

x7 +
7

12
x6 +

2
3

x5− 7
8

x4− 5
12

x3 +
7
24

x2 +
1

12
x.

Consequently,

23mA⊥1 =

(
2m−1

1

)
+aUa(1)+bUb(1)+ cUc(1)+dUd(1)+ eUe(1) = 0.
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Plugging k = 2 into the weight distribution formula above for C⊥m , we get that(
2m−1

2

)
= 2x4−3x2 +1,

aUa(2) =
7
12

x8 +
5
6

x7− 35
24

x6− 13
12

x5 +
7
6

x4 +
1
6

x3− 7
24

x2 +
1

12
x,

bUb(2) =
5
3

x8− 5
3

x7− 7
6

x6 +
7
6

x5− 7
6

x4 +
7
6

x3 +
2
3

x2− 2
3

x,

cUc(2) = −
9
2

x8 +
21
4

x6−2x4 +
9
4

x2−1,

dUd(2) =
5
3

x8 +
5
3

x7− 7
6

x6− 7
6

x5− 7
6

x4− 7
6

x3 +
2
3

x2 +
2
3

x,

eUe(2) =
7
12

x8− 5
6

x7− 35
24

x6 +
13
12

x5 +
7
6

x4− 1
6

x3− 7
24

x2− 1
12

x.

As a result,

23mA⊥2 =

(
2m−1

2

)
+aUa(2)+bUb(2)+ cUc(2)+dUd(2)+ eUe(2) = 0.

Putting k = 3 into the weight distribution formula above for C⊥m , we obtain
that (

2m−1
3

)
=

4
3

x6−4x4 +
11
3

x2−1,

aUa(3) =
5
9

x9 +
19
36

x8− 14
9

x7 +
1

72
x6 +

43
36

x5− 17
18

x4− 1
9

x3 +
29
72

x2− 1
12

x,

bUb(3) =−
10
9

x9− 25
9

x8 +
22
9

x7 +
35
18

x6− 7
18

x5 +
35
18

x4− 29
18

x3− 10
9

x2 +
2
3

x,

cUc(3) =
9
2

x8− 21
4

x6 +2x4− 9
4

x2 +1,

dUd(3) =
10
9

x9− 25
9

x8− 22
9

x7 +
35
18

x6 +
7
18

x5 +
35
18

x4 +
29
18

x3− 10
9

x2− 2
3

x,

eUe(3) =−
5
9

x9 +
19
36

x8 +
14
9

x7 +
1

72
x6− 43

36
x5− 17

18
x4 +

1
9

x3 +
29
72

x2 +
1

12
x.

Hence,

23mA⊥3 =

(
2m−1

3

)
+aUa(3)+bUb(3)+ cUc(3)+dUd(3)+ eUe(3) = 0.

Plugging k = 4 into the weight distribution formula above for C⊥m , we get that(
2m−1

4

)
=

2
3

x8− 10
3

x6 +
35
6

x4− 25
6

x2 +1,
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aUa(4) =
19
72

x10− 1
36

x9− 25
48

x8 +
113
72

x7− 35
72

x6−

77
36

x5 +
55
48

x4 +
37
72

x3− 29
72

x2 +
1
12

x,

bUb(4) = −
25
18

x10− 5
18

x9 +
15
4

x8− 53
36

x7− 35
36

x6 +

49
36

x5− 5
2

x4 +
19
18

x3 +
10
9

x2− 2
3

x,

cUc(4) =
9
4

x10− 57
8

x8 +
25
4

x6− 25
8

x4 +
11
4

x2−1,

dUd(4) = −
25
18

x10 +
5

18
x9 +

15
4

x8 +
53
36

x7− 35
36

x6−

49
36

x5− 5
2

x4− 19
18

x3 +
10
9

x2 +
2
3

x,

eUe(4) =
19
72

x10 +
1

36
x9− 25

48
x8− 113

72
x7− 35

72
x6 +

77
36

x5 +
55
48

x4− 37
72

x3− 29
72

x2− 1
12

x.

Consequently,

23mA⊥4 =

(
2m−1

4

)
+aUa(4)+bUb(4)+ cUc(4)+dUd(4)+ eUe(4) = 0.

Putting k = 5 into the weight distribution formula above for C⊥m , we obtain
that (

2m−1
5

)
=

4
15

x10−2x8 +
17
3

x6− 15
2

x4 +
137
30

x2−1,

aUa(5) = −
1
90

x11− 103
360

x10 +
59
90

x9 +
1279
720

x8− 97
40

x7− 49
40

x6 +

211
90

x5− 529
720

x4− 173
360

x3 +
169
360

x2− 1
12

x,

bUb(5) = −
1
9

x11 +
23
18

x10− 14
45

x9− 781
180

x8 +
121
60

x7 +
91
60

x6−

169
180

x5 +
263
90

x4− 119
90

x3− 62
45

x2 +
2
3

x,

cUc(5) = −
9
4

x10 +
57
8

x8− 25
4

x6 +
25
8

x4− 11
4

x2 +1,
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dUd(5) =
1
9

x11 +
23
18

x10 +
14
45

x9− 781
180

x8− 121
60

x7 +
91
60

x6 +

169
180

x5 +
263
90

x4 +
119
90

x3− 62
45

x2− 2
3

x,

eUe(5) =
1
90

x11− 103
360

x10− 59
90

x9 +
1279
720

x8 +
97
40

x7− 49
40

x6−

211
90

x5− 529
720

x4 +
173
360

x3 +
169
360

x2 +
1

12
x.

Consequently,

23mA⊥5 =

(
2m−1

5

)
+aUa(5)+bUb(5)+ cUc(5)+dUd(5)+ eUe(5) = 0.

Plugging k = 6 into the weight distribution formula above for C⊥m , we arrive at
that (

2m−1
6

)
=

4
45

x12− 14
15

x10 +
35
9

x8− 49
6

x6 +
406
45

x4− 49
10

x2 +1,

aUa(6) = −
103
1080

x12− 97
540

x11 +
1897
2160

x10 +
571

1080
x9− 1573

720
x8 +

193
120

x7 +

2117
2160

x6− 3061
1080

x5 +
385
432

x4 +
857
1080

x3− 169
360

x2 +
1

12
x,

bUb(6) =
23
54

x12 +
29
54

x11− 1471
540

x10− 613
540

x9 +
218
45

x8− 68
45

x7−

293
540

x6 +
1033
540

x5− 913
270

x4 +
233
270

x3 +
62
45

x2− 2
3

x,

cUc(6) = −
3
4

x12 +
37
8

x10− 221
24

x8 +
175
24

x6− 97
24

x4 +
37
12

x2−1,

dUd(6) =
23
54

x12− 29
54

x11− 1471
540

x10 +
613
540

x9 +
218
45

x8 +
68
45

x7−

293
540

x6− 1033
540

x5− 913
270

x4− 233
270

x3 +
62
45

x2 +
2
3

x,

eUe(6) = −
103
1080

x12 +
97
540

x11 +
1897
2160

x10− 571
1080

x9− 1573
720

x8− 193
120

x7 +

2117
2160

x6 +
3061
1080

x5 +
385
432

x4− 857
1080

x3− 169
360

x2− 1
12

x.

As a result,

23mA⊥6 =

(
2m−1

6

)
+aUa(6)+bUb(6)+ cUc(6)+dUd(6)+ eUe(6) = 0.
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Plugging k = 7 into the weight distribution formula above for C⊥m , we obtain(
2m−1

7

)
=

8
315

x14− 16
45

x12 +
92
45

x10− 56
9

x8 +
967
90

x6− 469
45

x4 +
363
70

x2−1

and

aUa(7) = −
97

1890
x13− 11

1512
x12 +

125
378

x11− 8711
15120

x10− 523
7560

x9 +
15643
5040

x8−

18281
7560

x7− 39307
15120

x6 +
23141
7560

x5− 6619
15120

x4− 5818
7560

x3 +
1303
2520

x2− 1
12

x,

bUb(7) =
29
189

x13− 103
378

x12− 814
945

x11 +
9071
3780

x10 +
2659
3780

x9− 554
105

x8 +
3889
1890

x7 +

4117
3780

x6− 6299
3780

x5 +
6857
1890

x4− 1991
1890

x3− 494
315

x2 +
2
3

x,

cUc(7) =
3
4

x12− 37
8

x10 +
221
24

x8− 175
24

x6 +
97
24

x4− 37
12

x2 +1,

dUd(7) = −
29
189

x13− 103
378

x12 +
814
945

x11 +
9071
3780

x10− 2659
3780

x9− 554
105

x8−

3889
1890

x7 +
4117
3780

x6 +
6299
3780

x5 +
6857
1890

x4 +
1991
1890

x3− 494
315

x2− 2
3

x,

eUe(7) =
97

1890
x13− 11

1512
x12− 125

378
x11− 8711

15120
x10 +

523
7560

x9 +
15643
5040

x8 +

18281
7560

x7− 39307
15120

x6− 23141
7560

x5− 6619
15120

x4 +
5819
7560

x3 +
1303
2520

x2 +
1

12
x.

It then follows that

A⊥7 = 2−3m
((

2m−1
7

)
+aUa(7)+bUb(7)+ cUc(7)+dUd(7)+ eUe(7)

)
=

(x2−1)(2x2−1)(x4−5x2 +34)
630

.

Notice that x4− 5x2 + 34 = (x2− 5/2)2 + 34− 25/4 > 0. We have A⊥7 > 0 for
all odd m ≥ 5. This proves the desired conclusion on the minimum distance of
C⊥m .

Theorem 8.15. Let m≥ 5 be an odd integer and let Cm be a binary code with the

weight distribution of Table 8.2. The code C⊥m
⊥

has parameters[
2m, 3m+1, 2m−1−2

m+1
2

]
,
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and its weight enumerator is given by

A⊥
⊥
(z) = 1+uz2m−1−2

m+1
2 + vz2m−1−2

m−1
2 +

wz2m−1
+ vz2m−1+2

m−1
2 +uz2m−1+2

m+1
2 + z2m

, (8.9)

where

u =
23m−4−3×22m−4 +2m−3

3
,

v =
5×23m−2 +3×22m−2−2m+1

3
,

w = 2(2m−1)(9×22m−4 +3×2m−3 +1).

Proof. It follows from Theorem 2.10 that the code has all the weights given in
(8.9). It remains to determine the frequencies of these weights. The weight dis-
tribution of the code Cm given in Table 8.2 and the generator matrix of the code

C⊥m
⊥

documented in the proof of Theorem 2.10 show that

A⊥
⊥
2m−1 = 2c = w,

where c was defined in Theorem 8.14.
We now determine u and v. Recall that C⊥m has minimum distance 7. It then

follows from Theorem 2.10 that C⊥m has minimum distance 8. The first and third
Pless power moments say that{

∑2m

i=0 A⊥
⊥
i = 23m+1,

∑2m

i=0 i2A⊥
⊥
i = 23m−12m(2m +1).

These two equations become

1+u+ v+ c = 23m,

(22m−2 +2m+1)u+(22m−2 +2m−1)v+22m−2c+22m−1 = 24m−2(2m +1).

Solving this system of two equations proves the desired conclusion on the weight
enumerator of this code.

Finally, we settle the weight distribution of the code C⊥m .

Theorem 8.16. Let m≥ 5 be an odd integer and let Cm be a binary code with the
weight distribution of Table 8.2. The code C⊥m has parameters [2m,2m−1−3m,8],
and its weight distribution is given by

23m+1A⊥k =
(

1+(−1)k
)(2m

k

)
+wE0(k)+uE1(k)+ vE2(k), (8.10)
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where w,u,v are defined in Theorem 8.15, and

E0(k) =
1+(−1)k

2
(−1)bk/2c

(
2m−1

bk/2c

)
,

E1(k) = ∑
0≤i≤2m−1−2

m+1
2

0≤ j≤2m−1+2
m+1

2
i+ j=k

[(−1)i +(−1) j]

(
2m−1−2

m+1
2

i

)(
2m−1 +2

m+1
2

j

)
,

E2(k) = ∑
0≤i≤2m−1−2

m−1
2

0≤ j≤2m−1+2
m−1

2
i+ j=k

[(−1)i +(−1) j]

(
2m−1−2

m−1
2

i

)(
2m−1 +2

m−1
2

j

)
,

and 0≤ k ≤ 2m.

Proof. By definition,

dim
(

C⊥m

)
= dim

(
C⊥m

)
= 2m−1−3m.

It has been showed in the proof of Theorem 8.14 that the minimum distance of
C⊥m is equal to 8. We now prove the conclusion on the weight distribution of this
code.

By Theorems 2.4 and 8.15, the weight enumerator of C⊥m is given by

23m+1A⊥(z)

= (1+ z)2m

[
1+
(

1− z
1+ z

)2m

+w
(

1− z
1+ z

)2m−1]
+

(1+ z)2m

u
(

1− z
1+ z

)2m−1−2
m+1

2

+ v
(

1− z
1+ z

)2m−1−2
m−1

2
+

(1+ z)2m

v
(

1− z
1+ z

)2m−1+2
m−1

2

+u
(

1− z
1+ z

)2m−1+2
m+1

2
 . (8.11)

Consequently, we have

23m+1A⊥(z) = (1+ z)2m
+(1− z)2m

+w(1− z2)2m−1
+

u(1− z)2m−1−2
m+1

2 (1+ z)2m−1+2
m+1

2 +

v(1− z)2m−1−2
m−1

2 (1+ z)2m−1+2
m−1

2 +

v(1− z)2m−1+2
m−1

2 (1+ z)2m−1−2
m−1

2 +

u(1− z)2m−1+2
m+1

2 (1+ z)2m−1−2
m+1

2 . (8.12)
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We now treat the terms in (8.12) one by one. We first have

(1+ z)2m
+(1− z)2m

=
2m

∑
k=0

(
1+(−1)k

)(2m

k

)
. (8.13)

One can easily see that

(1− z2)2m−1
=

2m−1

∑
i=0

(−1)i
(

2m−1

i

)
z2i

=
2m

∑
k=0

1+(−1)k

2
(−1)bk/2c

(
2m−1

bk/2c

)
zk. (8.14)

Notice that

(1− z)2m−1−2
m+1

2 =
2m−1−2

m+1
2

∑
i=0

(
2m−1−2

m+1
2

i

)
(−1)izi

and

(1+ z)2m−1+2
m+1

2 =
2m−1+2

m+1
2

∑
i=0

(
2m−1 +2

m+1
2

i

)
zi.

We have then

(1− z)2m−1−2
m+1

2 (1+ z)2m−1+2
m+1

2 =
2m

∑
k=0

E1(k)zk. (8.15)

Similarly, we have

(1− z)2m−1−2
m−1

2 (1+ z)2m−1+2
m−1

2 =
2m

∑
k=0

E2(k)zk, (8.16)

(1− z)2m−1+2
m−1

2 (1+ z)2m−1−2
m−1

2 =
2m

∑
k=0

E3(k)zk, (8.17)

(1− z)2m−1+2
m+1

2 (1+ z)2m−1−2
m+1

2 =
2m

∑
k=0

E4(k)zk. (8.18)

Plugging (8.13), (8.14), (8.15), (8.16), (8.17), and (8.18) into (8.12) proves the
desired conclusion.
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8.3.2 Infinite Families of 2-Designs from C⊥m and Cm

Theorem 8.17. Let m≥ 5 be an odd integer and let Cm be a binary code with the
weight distribution of Table 8.2. Let P = {0,1,2, . . . ,2m−2}, and let B be the set
of the supports of the codewords of Cm with weight k, where Ak 6= 0. Then (P ,B)

is a 2-(2m−1,k,λ) design, where

λ =
k(k−1)Ak

(2m−1)(2m−2)
,

and Ak is given in Table 8.2.
Let P = {0,1,2, . . . ,2m − 2}, and let B⊥ be the set of the supports of the

codewords of C⊥m with weight k and A⊥k 6= 0. Then (P ,B⊥) is a 2-(2m− 1,k,λ)
design, where

λ =
k(k−1)A⊥k

(2m−1)(2m−2)
,

where A⊥k is given in Theorem 8.14.

Proof. The weight distribution of C⊥m is given in Theorem 8.14 and that of Cm is
given in Table 8.2. By Theorem 8.14, the minimum distance d⊥ of C⊥m is equal to
7. Put t = 2. The number of i with Ai 6= 0 and 1≤ i≤ 2m−1− t is s = 5. Hence,
s = d⊥− t. The desired conclusions then follow from Corollary 4.26 and the fact
that two binary vectors have the same support if and only if they are equal.

Corollary 8.18. Let m≥ 5 be an odd integer and let Cm be a binary code with the
weight distribution of Table 8.2. Then the BCH code Cm holds five 2-(2m−1,k,λ)
designs with the following pairs (k,λ):

•

2m−1−2
m+1

2 ,
2

m−5
2

(
2

m−3
2 +1

)(
2m−1−2

m+1
2

)(
2m−1−2

m+1
2 −1

)
6

 .

•

2m−1−2
m−1

2 ,
2m−2

(
2m−1−2

m−1
2 −1

)
(5×2m−1+4)

6

 .

•
(

2m−1, 2m−2(9×22m−4 +3×2m−3 +1)
)
.

•

2m−1 +2
m−1

2 ,
2m−2

(
2m−1+2

m−1
2 −1

)
(5×2m−1+4)

6

 .

•

2m−1 +2
m+1

2 ,
2

m−5
2

(
2

m−3
2 −1

)(
2m−1+2

m+1
2

)(
2m−1+2

m+1
2 −1

)
6

 .
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Corollary 8.19. Let m≥ 5 be an odd integer and let Cm be a binary code with the
weight distribution of Table 8.2. Then the supports of all codewords of weight 7
in C⊥m give a 2-(2m−1,7,λ) design, where

λ =
22(m−1)−5×2m−1 +34

30
.

Proof. By Theorem 8.14, we have

A⊥7 =
(2m−1−1)(2m−1)(22(m−1)−5×2m−1 +34)

630
.

The desired conclusion on λ follows from Theorem 8.17.

Corollary 8.20. Let m≥ 5 be an odd integer and let Cm be a binary code with the
weight distribution of Table 8.2. Then the supports of all codewords of weight 8
in C⊥m give a 2-(2m−1,8,λ) design, where

λ =
(2m−1−4)(22(m−1)−5×2m−1 +34)

90
.

Proof. By Theorem 8.14, we have

A⊥8 =
(2m−1−1)(2m−1−4)(2m−1)(22(m−1)−5×2m−1 +34)

2520
.

The desired conclusion on λ follows from Theorem 8.17.

Corollary 8.21. Let m≥ 7 be an odd integer and let Cm be a binary code with the
weight distribution of Table 8.2. Then the supports of all codewords of weight 9
in C⊥m give a 2-(2m−1,9,λ) design, where

λ =
(2m−1−4)(2m−1−16)(22(m−1)−2m−1 +28)

315
.

Proof. By Theorem 8.14, we have

A⊥9 =
(2m−1−1)(2m−1−4)(2m−1−16)(2m−1)(22(m−1)−2m−1 +28)

11340
.

The desired conclusion on λ follows from Theorem 8.17.

8.3.3 Infinite Families of 3-Designs from C⊥m and C⊥m
⊥

Theorem 8.22. Let m≥ 5 be an odd integer and let Cm be a binary code with the

weight distribution of Table 8.2. Let P = {0,1,2, . . . ,2m−1}, and let B⊥
⊥

be the
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set of the supports of the codewords of C⊥m
⊥

with weight k, where A⊥
⊥
k 6= 0. Then

(P ,B⊥
⊥
) is a 3-(2m,k,λ) design, where

λ =
A⊥
⊥
k
(k

3

)(2m

3

) ,

and A⊥
⊥
k is given in Theorem 8.15.

Let P = {0,1,2, . . . ,2m − 1}, and let B⊥ be the set of the supports of the
codewords of C⊥m with weight k and A⊥k 6= 0. Then (P ,B⊥) is a 3-(2m,k,λ)
design, where

λ =
A⊥k

(k
3

)(2m

3

) ,

and A⊥k is given in Theorem 8.16.

Proof. The weight distributions of C⊥m
⊥

and C⊥m are described in Theorems 8.15

and 8.16. Notice that the minimum distance d⊥ of C⊥m
⊥

is equal to 8. Put t = 3.
The number of i with A⊥i 6= 0 and 1 ≤ i ≤ 2m− t is s = 5. Hence, s = d⊥− t.
Clearly, two binary vectors have the same support if and only if they are equal.
The desired conclusions then follow from Corollary 4.26.

Corollary 8.23. Let m≥ 5 be an odd integer and let Cm be a binary code with the

weight distribution of Table 8.2. Then C⊥m
⊥

holds five 3-(2m,k,λ) designs with the
following pairs (k,λ):

•

2m−1−2
m+1

2 ,

(
2m−1−2

m+1
2

)(
2m−1−2

m+1
2 −1

)(
2m−1−2

m+1
2 −2

)
48

 .

•

2m−1−2
m−1

2 ,
2

m−1
2

(
2m−1−2

m−1
2 −1

)(
2

m−1
2 −2

)
(5×2m−3+1)

3

 .

•
(
2m−1, (2m−2−1)(9×22m−4 +3×2m−3 +1)

)
.

•

2m−1 +2
m−1

2 ,
2

m−1
2

(
2m−1+2

m−1
2 −1

)(
2

m−1
2 +2

)
(5×2m−3+1)

3

 .

•

2m−1 +2
m+1

2 ,

(
2m−1+2

m+1
2

)(
2m−1+2

m+1
2 −1

)(
2m−1+2

m+1
2 −2

)
48

 .
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Corollary 8.24. Let m≥ 5 be an odd integer and let Cm be a binary code with the
weight distribution of Table 8.2. Then the supports of all codewords of weight 8
in C⊥m give a 3-(2m,8,λ) design, where

λ =
22(m−1)−5×2m−1 +34

30
.

Proof. By Theorem 8.16, we have

A⊥8 =
2m(2m−1−1)(2m−1)(22(m−1)−5×2m−1 +34)

315
.

The desired value of λ follows from Theorem 8.22.

Corollary 8.25. Let m≥ 7 be an odd integer and let Cm be a binary code with the
weight distribution of Table 8.2. Then the supports of all codewords of weight 10
in C⊥m give a 3-(2m,10,λ) design, where

λ =
(2m−1−4)(2m−1−16)(22(m−1)−2m−1 +28)

315
.

Proof. By Theorem 8.16, we have

A⊥10 =
2m−1(2m−1−1)(2m−1)(2m−1−4)(2m−1−16)(22(m−1)−2m−1 +28)

4×14175
.

The desired value of λ follows from Theorem 8.22.

Corollary 8.26. Let m≥ 5 be an odd integer and let Cm be a binary code with the
weight distribution of Table 8.2. Then the supports of all codewords of weight 12
in C⊥m give a 3-(2m,12,λ) design, where

λ = (2h−2−1)(2×25h−55×24h+647×23h−2727×22h+11541×2h−47208)
2835

and h = m−1.

Proof. By Theorem 8.16, we have

A⊥12 =
ε2(ε2−1)(ε2−4)(2ε2−1)(2ε10−55ε8+647ε6−2727ε4+11541ε2−47208)

8×467775 ,

where ε = 2(m−1)/2. The desired value of λ follows from Theorem 8.22.
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8.3.4 Two Families of Binary Cyclic Codes with the Weight Distribution
of Table 8.2

To justify the existence of the 2-designs in Section 8.3.2 and the 3-designs in
Section 8.3.3, we present two families of binary codes of length 2m− 1 with the
weight distribution of Table 8.2.

Let m ≥ 5 be an odd integer and let δ = 2m−1− 1− 2(m+1)/2. Then the BCH
code C(2,2m−1,δ,0) has length n= 2m−1, dimension 3m, and the weight distribution
in Table 8.2 (see Section 7.4).

Let m≥ 5 be an odd integer. Let Cm be the dual of the narrow-sense primitive
BCH code C(2,2m−1,7,1). Then Cm has the weight distribution of Table 8.2 [Kasami
(1969)].

There are more families of binary cyclic codes with the weight distribution
of Table 8.2. The reader is referred to Herbert and Sarkar (2011) for detailed
information.

8.4 Infinite Families of Designs from a Type of Ternary Codes

In this section, we present infinite families of 2-designs with a type of primitive
ternary cyclic codes.

Table 8.3 Weight distribution of some ternary linear codes
Weight w Number of codewords Aw in the code
0 1
2×3m−1−3(m−1)/2 (3m−1)(3m−1 +3(m−1)/2)
2×3m−1 (3m−1)(3m−1 +1)
2×3m−1 +3(m−1)/2 (3m−1)(3m−1−3(m−1)/2)

Table 8.4 Weight distribution of some ternary linear codes
Weight w Number of codewords Aw in the code
0 1
2×3m−1−3(m−1)/2 32m−3m

2×3m−1 (3m +3)(3m−1)
2×3m−1 +3(m−1)/2 32m−3m

3m 2

Lemma 8.27. Let m ≥ 3 be odd. Assume that Cm is a ternary linear code of
length 3m−1. Denote by C m the extended code of Cm and let C

⊥
m denote the dual

of C m. Assume that C
⊥
m has the weight distribution in Table 8.4. Then we have the

following conclusions.
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• The code C
⊥
m has parameters [3m, 2m+1, 2×3m−1−3(m−1)/2].

• The code C m has parameters [3m,3m−1−2m,5], and its weight distribution is
given by

32m+1Ak = (2k +(−1)k2)
(

3m

k

)
+ v ∑

0≤i≤2×3m−1

0≤ j≤3m−1

i+ j=k

(−1)i
(

2×3m−1

i

)
2 j
(

3m−1

j

)
+

u ∑
0≤i≤2×3m−1−3

m−1
2

0≤ j≤3m−1+3
m−1

2
i+ j=k

(−1)i
(

2×3m−1−3
m−1

2

i

)
2 j
(

3m−1 +3
m−1

2

j

)
+

u ∑
0≤i≤2×3m−1+3

m−1
2

0≤ j≤3m−1−3
m−1

2
i+ j=k

(−1)i
(

2×3m−1 +3
m−1

2

i

)
2 j
(

3m−1−3
m−1

2

j

)

for 0≤ k ≤ 3m, where

u = 32m−3m and v = (3m +3)(3m−1).

Proof. The proof is similar to that of Lemma 8.8 and is omitted here.

Theorem 8.28. Let m ≥ 3 be odd. Let Cm be a linear code of length 3m − 1.
Denote by C m the extended code of Cm and let C

⊥
m denote the dual of C m. Assume

that C
⊥
m has the weight distribution in Table 8.4. Let P = {0,1,2, . . . ,3m− 1},

and let B be the set of the supports of the codewords of C m with weight k, where
5≤ k ≤ 10 and Ak 6= 0. Then (P ,B) is a 2-(3m, k, λ) design for some λ.

Let P = {0,1,2, . . . ,3m − 1}, and let B
⊥

be the set of the supports of the

codewords of C
⊥
m with weight k and A⊥k 6= 0. Then (P ,B

⊥
) is a 2-(3m, k, λ) design

for some λ.

Proof. The weight distributions of the codes C m and C
⊥
m are described in Lemma

8.27. Notice that the minimum distance d of C m is equal to 5. Put t = 2. The
number of i with A⊥i 6= 0 and 1≤ i≤ 3m− t is s = 3. Hence, s = d− t. The desired
conclusions then follow from Theorem 4.24.

Corollary 8.29. Let m ≥ 3 be odd. Let Cm be a linear code of length 3m− 1.
Denote by C m the extended code of Cm and let C

⊥
m denote the dual of C m. Assume

that C
⊥
m has the weight distribution in Table 8.4. Let P = {0,1,2, . . . ,3m−1}, and
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let B
⊥

be the set of the supports of the codewords of C
⊥
m with weight 2×3m−1−

3(m−1)/2. Then (P ,B
⊥
) is a 2-(3m, 2×3m−1−3(m−1)/2, λ) design, where

λ =
(2×3m−1−3(m−1)/2)(2×3m−1−3(m−1)/2−1)

2
.

Proof. It follows from Theorem 8.28 that (P ,B
⊥
) is a 2-design. We now deter-

mine the value of λ. Note that C
⊥
m has minimum weight 2×3m−1−3(m−1)/2. Any

two codewords of minimum weight 2×3m−1−3(m−1)/2 have the same support if
and only if one is a scalar multiple of the other. Consequently,∣∣∣B⊥∣∣∣= 32m−3m

2
.

It then follows that

λ =
32m−3m

2

(2×3m−1−3(m−1)/2

2

)(3m

2

)
=

(2×3m−1−3(m−1)/2)(2×3m−1−3(m−1)/2−1)
2

.

Corollary 8.30. Let m ≥ 3 be odd. Let Cm be a linear code of length 3m− 1.
Denote by C m the extended code of Cm and let C

⊥
m denote the dual of C m. Assume

that C
⊥
m has the weight distribution in Table 8.4. Let P = {0,1,2, . . . ,3m−1}, and

let B be the set of the supports of the codewords of C m with weight 5. Then (P ,B)

is a 2-(3m, 5, λ) design, where

λ =
5(3m−1−1)

2
.

Proof. It follows from Theorem 8.28 that (P ,B) is a 2-design. We now determine
the value of λ. Using the weight distribution formula in Lemma 8.27, we obtain
that

A5 =
33m−1−4×32m−1 +3m

4
.

Recall that C m has minimum weight 5. Any two codewords of minimum weight
5 have the same support if and only if one is a scalar multiple of the other. As a
result, ∣∣∣B⊥∣∣∣= A5

2
.

It then follows that

λ =
A5

2

(5
2

)(3m

2

) = 5(3m−1−1)
2

.



November 17, 2021 14:14 ws-book9x6 Designs from Linear Codes designscodes page 256

256 Designs from Linear Codes

Theorem 8.28 gives more 2-designs. However, determining the corresponding
value λ may be hard, as the number of blocks in the design may be difficult to
derive from Ak or A⊥k .

It would be interesting to settle the following open problems.

Problem 8.31. Determine the value of λ of the 2-(3m, k, λ) design for 6≤ k≤ 10,
which are described in Theorem 8.28.

Problem 8.32. Determine the values of λ of the 2-(3m, 3m−1, λ) design and the
2-(3m, 2×3m−1−3(m−1)/2, λ) design, which are described in Theorem 8.28.

To demonstrate the existence of the 2-designs presented in Theorem 8.28, we
present the following lemma.

Lemma 8.33. Let m≥ 3 be an odd integer and n = 3m−1. Let α be a generator
of GF(3m)∗. Define gs(x) =Mαn−1(x)Mαn−(3s+1)(x), where Mαi(x) is the minimal
polynomial of αi over GF(3) and s ≥ 0 is an integer. Let C (m,n,s) denote the
cyclic code of length n = 3m− 1 over GF(3) with generator polynomial gs(x).

Then C (m,n,s)
⊥

has the weight distribution of Table 8.4.

Proof. It is known that C (m,n,s)⊥ has dimension 2m and the weight distribution
of Table 8.3 [Yuan, Carlet and Ding (2006)]. With the help of Theorem 2.11, one
can similarly prove that C (m,n,s)

⊥
has the weight distribution of Table 8.4.

More classes of such ternary codes may be found in Ding, Li, Li and Zhou
(2016). They give also 2-designs via Theorem 8.28.

8.5 Infinite Families of Designs from Another Type of Ternary Codes

8.5.1 Conjectured Infinite Families of 2-Designs

Let m ≥ 3 be an odd integer and let α be a primitive element of GF(3m). Put
n = (3m−1)/2. Let C1 and C2 be linear codes defined by

C1 =

{(
Tr3m/3

(
aα4i +bα2i)) 3m−1

2 −1
i=0 : a,b ∈ GF(3m)

}
, (8.19)

and

C2 =


(

Tr3m/3

(
aα

(
3

m−3
2 +1

)
i
+bα

(
3

m−1
2 +1

)
i
)) 3m−1

2 −1

i=0

: a,b ∈ GF(3m)

 ,

(8.20)
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where Tr3m/3(·) is the trace function from GF(3m) to GF(3). Then the codes

Ci (i = 1,2) have parameters [n,2m,3m−1− 3
m−1

2 ], and their weight distributions
are given in Table 8.5 [Li, Ding, Xiong and Ge (2017); Ding and Li (2017)].
Moreover, the dual codes C⊥i of Ci (i = 1,2) have parameters [n,n−2m,4].

Table 8.5 The weight distribution of C1 and C2
Weight Frequency

0 1

3m−1−3
m−1

2 1
2 ·
(

3m−1 +3
m−1

2

)
(3m−1)

3m−1 (2 ·3m−1 +1)(3m−1)

3m−1 +3
m−1

2 1
2 ·
(

3m−1−3
m−1

2

)
(3m−1)

Let (Ak(Ci))
n
k=0 and

(
Ak(C

⊥
i )
)n

k=0 denote the weight distributions of Ci and
C⊥i , respectively. Denote by Bk(Ci) the set of supports of the codewords of weight
k in Ci. Let P (Ci) denote the set of the coordinates of the codewords in Ci. The
following conjectures about 2-designs from the two linear codes Ci were made by
Ding and Li (2017).

Conjecture 8.34. Let Ci be the ternary code in (8.19) or (8.20). Let k be an integer
satisfying Ak(Ci)> 1. Then (P (Ci),Bk(Ci)) is a 2-design.

Conjecture 8.35. Let Ci be the ternary code in (8.19) or (8.20). Then(
P (C⊥i ),B4(C⊥i )

)
is a Steiner system S(2,4, 3m−1

2 ).

Conjecture 8.36. Let Ci be the ternary code in (8.19) or (8.20). Let k be an integer
satisfying Ak(C

⊥
i )> 1. Then

(
P (C⊥i ),Bk(C

⊥
i )
)

is a 2-design.

It will be shown that the minimum distance of the dual code C⊥i is only 4.
Hence, the Assmus-Mattson theorem guarantees only 1-designs supported by Ci.
When m = 5 and 7, Magma experimental results showed that Ci is not 2-transitive
or 2-homogeneous. Thus, in general, Ci is not 2-transitive or 2-homogeneous.
Consequently, the degree of transitivity or homogeneity of their automorphism
groups cannot be employed to prove that the two codes Ci support 2-designs.

Conjectures 8.34, 8.35 were confirmed and Conjecture 8.36 was settled for
k ∈ {4,5,6,7} by Tang, Ding and Xiong (2019). Furthermore, a large class of
ternary cyclic codes containing the codes C1 and C2 was constructed and proved
to support 2-designs by Tang, Ding and Xiong (2019). The objective of Section
8.5 is to introduce the work of Tang, Ding and Xiong (2019).
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8.5.2 A Class of Ternary Cyclic Codes of Length 3m−1
2

In this section, we introduce a class of ternary cyclic codes of length 3m−1
2 , and

determine the parameters of these codes and their dual codes.
Let m be a positive integer, α be a generator of GF(3m)∗ and β = α2. Then

β is a primitive 3m−1
2 -th root of unity in GF(3m). Let l be a positive integer and

E = {ki : 0 ≤ i ≤ l} a set of integers with 0 ≤ k0 < k1 < · · · < kl ≤ m
2 . A ternary

cyclic code C (E) of length n = 3m−1
2 is defined by

C (E) = {c(a) : a = (a0, . . . ,al) ∈ GF(3m)l+1}, (8.21)

where c(a) =
(

Tr3m/3

(
∑l

j=0 a jα
(

3k j+1
)

i
))n−1

i=0
. We also write C (k0,k1, . . . ,kl)

for C (E). By Delsarte’s theorem, the dual code C (E)⊥ of C (E) can be given by

C (E)⊥ =

{
(w0, . . . ,wn−1) ∈ GF(3)n :

n−1

∑
i=0

wiui = 0

}
,

where ui =

(
αi
(

3k j+1
))l

j=0
∈ GF(3m)l+1. Note that for the linear codes defined

in (8.19) and (8.20), C1 = C (0,1) and C2 = C (m−3
2 , m−1

2 ).
To determine the parameters of C (E) and its dual, we need some results on

irreducible polynomials. For an integer e, let Mα−e(x) ∈ GF(3)[x] be the minimal
polynomial of α−e over GF(3). We have the following lemma on Mα−e(x).

Lemma 8.37. Let k and k′ be two integers such that 0≤ k,k′ ≤ m
2 . Then

(i) deg
(
M

α−(3k+1)(x)
)
=

{
m, if k < m

2 ,
m
2 , if m is even and k = m

2 .

(ii) M
α−(3k+1)(x) =M

α−(3k′+1)(x) if and only if k = k′.

Proof. (i) Note that deg
(
M

α−(3k+1)(x)
)

is the least positive integer d ≤ m such

that

(3k +1)3d ≡ (3k +1) (mod 3m−1). (8.22)

It suffices to prove that Equation (8.22) holds if and only if d = k = m
2 or d = m. If

d = k = m
2 or d = m, we can easily verify that Equation (8.22) holds. Conversely,

suppose that (3k + 1)3d ≡ (3k + 1) (mod 3m− 1) and d < m. If k+ d < m, then
3k+d + 3d = 3k + 1 and d = 0, which leads to a contradiction with d > 0. If
k+d≥m, then (3k+1)3d ≡ 3k+d−m+3d (mod 3m−1). From 0≤ k+d−m≤ m

2 ,
we have 3k+d−m +3d = 3k +1, i.e., d = k, k+d−m = 0, and d = k = m

2 . Part (i)
follows.
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(ii) Suppose M
α−(3k+1)(x) = M

α−(3k′+1)(x). This holds if and only if there

exists a positive integer d ≤ m such that (3k + 1)3d ≡ 3k′ + 1 (mod 3m− 1). If
d = m, then k = k′. If d < m and k + d < m, then we have 3k+d + 3d = 3k′ +

1, which contradicts the fact that d ≥ 1. If d < m and k + d ≥ m, then we get
3k+d−m+3d ≡ 3k′+1 (mod 3m−1). Hence k′= d and k =m−d. From k,k′≤ m

2 ,
one obtains k′ = k = d = m

2 . Part (ii) follows.

As a consequence of Lemma 8.37, we have the following proposition on some
parameters of C (E).

Proposition 8.38. The linear code C (E) defined by (8.21) is a ternary cyclic code
of length 3m−1

2 and dimension

dim(C (E)) =
{
(l +1)m, if kl <

m
2 ,

2l+1
2 m, if m is even and kl =

m
2 .

In particular, the linear code C
(
0,1,2, . . . ,

⌊m
2

⌋)
is a cyclic code with dimension

m(m+1)
2 , where

⌊m
2

⌋
is the greatest integer less than or equal to m

2 .

In the following, we will determine the parameters of the codes
C
(
0,1,2, . . . ,

⌊m
2

⌋)
and C

(
0,1, . . . ,bm

2 c
)⊥.

Let {α0, . . . ,αm−1} be a basis of GF(3m) over GF(3). Let ρ be the linear
transformation from GF(3m) to GF(3)m defined by

ρ(x) = (x0,x1, . . . ,xm−1) ∈ GF(3)m,

where x = ∑m−1
i=0 xiαi ∈ GF(3m). From this isomorphism ρ, a function f :

GF(3m) → GF(3) induces a function F : GF(3)m → GF(3). In particular, the
function

fa0,...,abm
2 c
(x) = Tr3m/3

(bm
2 c

∑
i=0

aix3i+1

)
with ai ∈ GF(3m) induces a quadratic form

Fa0,...,abm
2 c
(x0, . . . ,xm−1)

= Tr3m/3

bm
2 c

∑
t=0

at

(
m−1

∑
i=0

xiαi

)3t+1


= Tr3m/3

(bm
2 c

∑
t=0

at

(
m−1

∑
i=0

xiα3t

i

)(
m−1

∑
j=0

x jα j

))

=
m−1

∑
i, j=0

Tr3m/3

(bm
2 c

∑
t=0

atα3t

i α j

)
xix j ∈ PP(1,m−1,3), (8.23)
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where PP(1,m− 1,3) was defined in Section 4.6.2. From the definition of
Fa0,...,abm

2 c
, we have Fa0,...,abm

2 c
(ρ(x)) = fa0,...,abm

2 c
(x) for any x ∈ GF(3m).

Note that the set of all projective points of PG(m−1,GF(3)) is{
ρ
(
αi) : i = 0, . . . ,

3m−1
2
−1
}
,

where α is a generator of GF(3m)∗. Hence, we can choose xi = ρ
(
αi
)

in the
definition of PRM(1,m−1,3) and PRM∗(1,m−1,3) (see Section 4.6.2). A map
π from C

(
0,1, . . . ,bm

2 c
)

to PRM∗(1,m−1,3) can be defined by

π : C
(

0,1, . . . ,bm
2
c
)
−→ PRM∗(1,m−1,3)(

fa0,...,abm
2 c

(
αi)) 3m−1

2 −1

i=0
7−→

(
Fa0,...,abm

2 c

(
ρ(αi)

)) 3m−1
2 −1

i=0
,

where fa0,...,abm
2 c
(x) = Tr3m/3

(
∑
bm

2 c
i=0 aix3i+1

)
with ai ∈GF(3m) and Fa0,...,abm

2 c
was

defined in (8.23). Since Fa0,...,abm
2 c
(ρ(αi)) = fa0,...,abm

2 c
(αi) and π is an inclusion

map, we have

C
(

0,1, . . . ,bm
2
c
)
⊆ PRM∗(1,m−1,3).

On the other hand, from Theorem 4.42 and Proposition 8.38, we deduce that

dim
(

C
(

0,1, . . . ,bm
2
c
))

= dim(PRM∗(1,m−1,3)) =
m(m+1)

2
.

Using Theorem 4.42 again, we have

C
(

0,1, . . . ,bm
2
c
)
= CGF(3) (PG1(m−1,GF(3)))⊥ = PRM∗(1,m−1,3).

Note that PG1(m−1,GF(3)) is a Steiner system S(2,4, 3m−1
2 ) with (3m−1)(3m−1−1)

16
blocks. From the previous discussion and Theorem 4.42, we have the following
theorem.

Theorem 8.39. Let m≥ 3 be an integer.
(i) C

(
0,1, . . . ,bm

2 c
)
= PRM∗(1,m− 1,3), that is, C

(
0,1, . . . ,bm

2 c
)

is the
even-like subcode of the first order projective generalized Reed-Muller code
PRM(1,m−1,3).

(ii) C
(
0,1, . . . ,bm

2 c
)⊥ is the code CGF(3) (PG1(m−1,GF(3))) of the Steiner

system PG1(m−1,GF(3)) .
(iii) C

(
0,1, . . . ,bm

2 c
)⊥ has minimum distance 4 and the minimum-weight

codewords are the multiples of the characteristic vectors of the blocks of the 2-
design PG1(m−1,GF(3)) .

(iv) The number A⊥4 of codewords with Hamming weight 4 in the code

C
(
0,1, . . . ,bm

2 c
)⊥ is (3m−1)(3m−1−1)

8 .
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By definition, the Steiner system PG1(m−1,GF(3)) is also equivalent to the
Steiner system (P ,B), where

P = {a2 : a ∈ GF(3m)∗}

and

B =
{
{a2,b2,(a+b)2,(a−b)2} : a,b ∈ GF(3m)∗ and a 6=±b

}
.

The minimum distance of the code C
(
0,1, . . . ,bm

2 c
)

is described in the next
theorem.

Theorem 8.40. Let m be an integer with m ≥ 3. Then the set C
(
0,1, . . . ,bm

2 c
)

is

a [ 3m−1
2 , m(m+1)

2 ,2 ·3m−2] cyclic code.

Proof. By Part (i) of Theorem 8.39, for any nonzero codeword c = (c0, . . . ,cn−1),
there is a unique quadratic form F ∈ PP(1,m−1,3) such that ci =F(ρ(αi)), where
n = 3m−1

2 . Then,

wt(c) =
3m−N(F = 0)

2
,

where F was defined in (1.3) and wt(c) is the Hamming weight of c. Suppose
that F is equivalent to the diagonal form a0x2

0 + · · ·+ as−2x2
s−2 + as−1x2

s−1 with
ai ∈ GF(3)∗. Using (1.3), one gets

wt(c) =
{

3m−1, if s≡ 1 (mod 2),
3m−1±3m−1− s

2 , if s≡ 0 (mod 2).

Since F 6= 0, then s ≥ 1. Thus, wt(c) ≥ 3m−1− 3m−1−1 = 2 · 3m−2. In addition,
choose F = x2

0 − x2
1 and c =

(
F(ρ(αi))

)n−1
i=0 . Then, wt(c) = 2 · 3m−2. Hence,

the minimum weight of C
(
0,1, . . . ,bm

2 c
)

is 2 ·3m−2. From Proposition 8.38, this
theorem follows.

8.5.3 Shortened Codes and Punctured Codes from C (E)

In this subsection, we present some ternary codes by shortening and puncturing
some subcodes of C

(
0,1, . . . ,bm

2 c
)

with the weight distribution in Table 8.5, and
determine their weight distributions.

Let C be an [n,k,d] code and T a set of t coordinate positions in C . We use C T

to denote the code obtained by puncturing C on T , which is called the punctured
code of C on T . Let C (T ) be the subcode of C , which is the set of codewords
which are 0 on T . We now puncture C (T ) on T , and obtain a linear code CT ,
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which is called the shortened code of C on T . We have the following result on the
punctured code and shortened code of a code C (see Theorem 2.8):

(CT )
⊥ =

(
C⊥
)T

. (8.24)

To determine the weight distributions of shortened codes from C (E), we will
need the following lemma.

Lemma 8.41. Let C be an [n,k,d] code over GF(q) and d⊥ the minimum distance
of C⊥. Let i1, . . . , is be s positive integers and T a set of t coordinate positions
of C , where i1 < · · · < is ≤ n and t < d⊥. Suppose that Ai(C ) = 0 for any i 6∈
{0, i1, . . . , is} and A1(

(
C⊥
)T

), . . . , As−1(
(
C⊥
)T

) are independent of the elements
of T . Then, the code CT has dimension k−t. Furthermore, the weight distributions
of CT and

(
C⊥
)T are independent of the elements of T and can be determined from

the first s equations in (2.6).

Proof. By Theorem 2.8, CT has dimension k− t, and (CT )
⊥ =

(
C⊥
)T . Then the

desired conclusions of this lemma follow from Theorem 2.6.

The next lemma will be useful in the sequel.

Lemma 8.42. Let m≥ 3 be odd. Let C be a subcode of C
(
0,1, . . . ,bm

2 c
)

with the
weight distribution in Table 8.5. Then, the weight distribution A⊥1 , . . . ,A

⊥
(3m−1)/2

of C⊥ is given by

32mA⊥k =
k

∑
i=0

(−1)i2k−ia
(

3m−1−3(m−1)/2

i

)( 3m−1+2·3(m−1)/2−1
2

k− i

)

+

( 3m−1
2
k

)
2k +

k

∑
i=0

(−1)i2k−ib
(

3m−1

i

)( 3m−1−1
2

k− i

)

+
k

∑
i=0

(−1)i2k−ic
(

3m−1 +3(m−1)/2

i

)( 3m−1−2·3(m−1)/2−1
2

k− i

)
for 0≤ k ≤ 3m−1

2 , where

a =
1
2
·
(

3m−1 +3
m−1

2

)
(3m−1) ,

b =(3m−3m−1 +1)(3m−1),

c =
1
2
·
(

3m−1−3
m−1

2

)
(3m−1) .

In addition, C⊥ has parameters [ 3m−1
2 , 3m−1

2 −2m,4] and A⊥4 = (3m−1)(3m−1−1)
8 .
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Proof. Note that the weight enumerator of C⊥m is

1+az3m−1−3(m−1)/2
+bz3m−1

+ cz3m−1+3(m−1)/2
.

The proof of this theorem is similar to that of Lemma 8.1 and is omitted.

Let Wi(C ) denote the set of codewords of weight i in a code C .

Lemma 8.43. Let m≥ 3 be odd and C be a subcode of C
(
0,1, . . . ,bm

2 c
)

with the
weight distribution in Table 8.5. Let T be a set of t coordinate positions in C .

(i) If t = 1, then A1

((
C⊥
)T
)
= A2

((
C⊥
)T
)
= 0.

(ii) If t = 2, then A1

((
C⊥
)T
)
= 0 and A2

((
C⊥
)T
)
= 2.

(iii) W4
(
C⊥
)
=W4

(
C
(
0,1, . . . ,bm

2 c
)⊥).

Proof. By Lemma 8.42, the minimum weight of C⊥ is 4. Thus, A1

((
C⊥
)T
)
=

A2

((
C⊥
)T
)
= 0 for t = 1 and A1

((
C⊥
)T
)
= 0 for t = 2.

Notice that C ⊆ C
(
0,1, . . . ,bm

2 c
)
. We have C

(
0,1, . . . ,bm

2 c
)⊥ ⊆ C⊥ and

W4

(
C
(
0,1, . . . ,bm

2 c
)⊥) ⊆W4

(
C⊥
)
. Combining Part (iv) of Theorem 8.39 and

Lemma 8.42, one obtains |W4

(
C
(
0,1, . . . ,bm

2 c
)⊥) |= |W4

(
C⊥
)
|. As a result,

W4

(
C
(

0,1, . . . ,bm
2
c
)⊥)

=W4

(
C⊥
)
.

By Part (iii) of Theorem 8.39, W4
(
C⊥
)

is the set of the multiples of the charac-
teristic vectors of the blocks of PG1(m−1,GF(3)). Since PG1(m−1,GF(3)) is a
Steiner system S(2,4, 3m−1

2 ), A2

((
C⊥
)T
)
= 2. This completes the proof.

For T = {t} and T = {t1, t2}, we determine the weight distribution of the
shortened code CT of some subcodes of C

(
0,1, . . . ,bm

2 c
)
.

Theorem 8.44. Let t be an integer and m≥ 3 odd, where 0≤ t ≤ 3m−1
2 −1. Let C

be a subcode of C
(
0,1, . . . ,bm

2 c
)

with the weight distribution in Table 8.5. Then,
the shortened code C{t} is a ternary linear code of length 3m−1

2 −1 and dimension
2m−1, and has the weight distribution in Table 8.6.

Proof. It follows from Lemma 8.42 that d(C⊥) = 4. By Lemma 8.41, C{t} has
length n = 3m−1

2 −1 and dimension k = 2m−1. Note that Ai = Ai
(
C{t}

)
= 0 for

i 6∈ {0, i1, i2, i3}, where i1 = 3m−1− 3
m−1

2 , i2 = 3m−1 and i3 = 3m−1 + 3
m−1

2 . It
follows from (8.24) and Lemma 8.43 that

A1(
(
C{t}

)⊥
) = A2(

(
C{t}

)⊥
) = 0.
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Table 8.6 The weight distribution of the shortened code C{t}
Weight Frequency

0 1

3m−1−3
m−1

2 1
2 ·
(

3m−1 +2 ·3 m−1
2 −1

)(
3m−1 +3

m−1
2

)
3m−1 (

2 ·3m−1 +1
)(

3m−1−1
)

3m−1 +3
m−1

2 1
2 ·
(

3m−1−2 ·3 m−1
2 −1

)(
3m−1−3

m−1
2

)

The first three Pless power moments in (2.6) give
Ai1 +Ai2 +Ai3 = 32m−1−1,
i1Ai1 + i2Ai2 + i3Ai3 = 2 ·32m−1−1n,
i21Ai1 + i22Ai2 + i23Ai3 = 2 ·32m−1−2n(2n+1).

Solving this system of equations yields the weight distribution in Table 8.6.

Example 8.45. Let m = 5, E = {0,1}, 0≤ t ≤ 3m−1
2 −1 and C = C (E). Then C

has the weight distribution in Table 8.5. Furthermore, the shortened code C{t} has
parameters [120,9,72] and weight enumerator 1+4410z72 +13040z81 +2232z90.
This code has the same parameters as the best ternary linear code known in the
database maintained by Markus Grassl.

Magma experiments showed that all the shortened codes C{t} have the same
weight distribution and are pairwise equivalent.

Theorem 8.46. Let t1 and t2 be two integers and m≥ 3 odd, where 0≤ t1 < t2 ≤
3m−1

2 − 1. Let C be a subcode of C
(
0,1, . . . ,bm

2 c
)

with the weight distribution
in Table 8.5. Then, the shortened code C{t1,t2} is a ternary linear code of length
3m−1

2 −2 and dimension 2m−2, and has the weight distribution in Table 8.7.

Table 8.7 The weight distribution of the shortened code C{t1 ,t2}
Weight Frequency

0 1

3m−1−3
m−1

2 1
6 ·
(

3m−1 +2 ·3 m−1
2 −1

)(
3m−1 +3

m+1
2

)
3m−1 (

2 ·3m−1 +1
)(

3m−2−1
)

3m−1 +3
m−1

2 1
6 ·
(

3m−1−2 ·3 m−1
2 −1

)(
3m−1−3

m+1
2

)

Proof. By Lemma 8.42, d(C⊥) = 4. It follows from Lemma 8.41 that C{t1,t2} has
length n = 3m−1

2 − 2 and dimension k = 2m− 2. Note that Ai = Ai
(
C{t1,t2}

)
= 0

for i 6∈ {0, i1, i2, i3}, where i1 = 3m−1− 3
m−1

2 , i2 = 3m−1 and i3 = 3m−1 + 3
m−1

2 .
Combining (8.24) and Lemma 8.43, we deduce that A1(

(
C{t1,t2}

)⊥
) = 0 and
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A2(
(
C{t1,t2}

)⊥
) = 2. The first three Pless power moments in (2.6) give

Ai1 +Ai2 +Ai3 = 32m−2−1,
i1Ai1 + i2Ai2 + i3Ai3 = 2 ·32m−2−1n,
i21Ai1 + i22Ai2 + i23Ai3 = 32m−2−2 [n(4n+2)+4] .

Solving this system of equations, we get the weight distribution in Table 8.7.

Example 8.47. Let m = 5, E = {0,1}, 0 ≤ t1 < t2 ≤ 3m−1
2 − 1 and C = C (E).

Then C has the weight distribution in Table 8.5. Furthermore, the shortened code
C{t1,t2} has parameters [119,8,72] and weight enumerator 1+1764z72+4238z81+

558z90. This code has the same parameters as the best ternary linear code known
in the database maintained by Markus Grassl.

Magma experiments showed that all the shortened codes C{t1,t2} have the same
weight distribution. However, for many pairs of (t1, t2) and (t ′1, t

′
2), the codes

C{t1,t2} and C{t ′1,t ′2} are not equivalent. Therefore, the automorphism group of the
code C is in general not 2-homogeneous and 2-transitive.

To determine the weight distributions of some punctured codes from C (E),
we need the next lemma.

Lemma 8.48. Let C be an [n,k,d] code over GF(q) and let d⊥ denote the mini-
mum distance of C⊥. Let t be a positive integer and T a subset of the coordinate
positions of C , where t < d⊥ and |T | ≤ t. Suppose that Ai(CT ) is independent of
the elements of T and depends only on the size of T . Define

Wi(C ,T ) =
{

c = (c0, . . . ,cn−1) ∈ C : wt(c) = i,c j 6= 0 for all j ∈ T
}
.

Then, |Wi(C ,T )| is independent of the elements of T and depends only on the size
of T . Moreover,

|Wi(C ,T )|= Ai(C )−
|T |

∑
j=1

(−1) j−1
(
|T |

j

)
Ai(C{0,1,..., j−1}).

Proof. By the inclusion-exclusion principle, one has

|Wi(C ,T )|= Ai(C )−
|T |

∑
j=1

(−1) j−1 ∑
J⊆T,|J|= j

Ai(C (J)).

By assumption, Ai(C (J)) = Ai(CJ) = Ai(C{0,1,...,|J|−1}). The desired conclusions
then follow.
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For T = {t} and T = {t1, t2}, we determine the weight distribution of the
punctured code C T from some subcodes of C

(
0,1, . . . ,bm

2 c
)
.

Theorem 8.49. Let t be an integer and m≥ 3 odd, where 0≤ t ≤ 3m−1
2 −1. Let C

be a subcode of C
(
0,1, . . . ,bm

2 c
)

with the weight distribution in Table 8.5. Then,
the punctured code C {t} is a ternary linear code of length 3m−1

2 −1 and dimension
2m, and has the weight distribution in Table 8.8.

Table 8.8 The weight distribution of the punctured code C {t}

Weight Frequency
0 1

3m−1−3
m−1

2 1
2 ·
(

3m−1 +2 ·3 m−1
2 −1

)(
3m−1 +3

m−1
2

)
3m−1−3

m−1
2 −1 3m−1(3m−1−1)

3m−1 (
2 ·3m−1 +1

)(
3m−1−1

)
3m−1−1 2 ·3m−1 (2 ·3m−1 +1

)
3m−1 +3

m−1
2 1

2 ·
(

3m−1−2 ·3 m−1
2 −1

)(
3m−1−3

m−1
2

)
3m−1 +3

m−1
2 −1 3m−1(3m−1−1)

Proof. It follows from Lemma 8.42 that d(C⊥) = 4. According to Theorem
2.8, C {t} has length n = 3m−1

2 − 1 and dimension k = 2m. For i ∈ {3m−1 −
3

m−1
2 ,3m−1,3m−1 +3

m−1
2 }, by the definition of C {t}, we have

Ai(C
{t}) = Ai(C{t})

and

Ai−1(C
{t}) = Ai(C )−Ai(C{t}).

The desired conclusions then follow from Theorem 8.44.

Example 8.50. Let m = 5, E = {0,1}, 0 ≤ t ≤ 3m−1
2 − 1 and C = C (E). Then

the punctured code C {t} has parameters [120,10,71] and weight enumerator 1+
6480z71+4410z72+26406z80+13040z81+6480z89+2232z90. This code has the
same parameters as the best ternary linear code known in the database maintained
by Markus Grassl.

All the punctured codes C {t} are equivalent, as the automorphism group of the
code C is transitive.

Theorem 8.51. Let t1 and t2 be two integers and m ≥ 3 be odd, where 0 ≤ t1 <

t2 ≤ 3m−1
2 −1. Let C be a subcode of C

(
0,1, . . . ,bm

2 c
)

with the weight distribution
in Table 8.5. Then, the punctured code C {t1,t2} is a ternary linear code of length
3m−1

2 −2 and dimension 2m, and has the weight distribution in Table 8.9.
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Table 8.9 The weight distribution of the punctured code C {t1 ,t2}

Weight Frequency
0 1

3m−1−3
m−1

2 1
6 ·
(

3m−1 +2 ·3 m−1
2 −1

)(
3m−1 +3

m+1
2

)
3m−1−3

m−1
2 −1 2 ·3m−2

(
3m−1 +2 ·3 m−1

2 −1
)

3m−1−3
m−1

2 −2 2 ·3m−2
(

3m−1−3
m−1

2 −1
)

3m−1 (
2 ·3m−1 +1

)(
3m−2−1

)
3m−1−1 4 ·3m−2 (2 ·3m−1 +1

)
3m−1−2 4 ·3m−2 (2 ·3m−1 +1

)
3m−1 +3

m−1
2 1

6 ·
(

3m−1−2 ·3 m−1
2 −1

)(
3m−1−3

m+1
2

)
3m−1 +3

m−1
2 −1 2 ·3m−2

(
3m−1−2 ·3 m−1

2 −1
)

3m−1 +3
m−1

2 −2 2 ·3m−2
(

3m−1 +3
m−1

2 −1
)

Proof. By Lemma 8.42, d(C⊥) = 4. According to Theorem 2.8, C {t1,t2} has
length n = 3m−1

2 −2 and dimension k = 2m. For i ∈ {3m−1−3
m−1

2 ,3m−1,3m−1 +

3
m−1

2 }, using the definition of C {t1,t2}, we deduce that
Ai(C {t1,t2}) = Ai(C{t1,t2}),

Ai−1(C {t1,t2}) = Ai(C )−Ai(C{t1,t2})−|Wi(C ,{t1, t2})|,
Ai−2(C {t1,t2}) = |Wi(C ,{t1, t2})|.

It then follows from Lemma 8.48 that

|Wi(C ,{t1, t2})|= Ai(C )−2Ai(C{0})+Ai(C{0,1}).

The desired conclusions then follow from Theorems 8.44 and 8.46.

Example 8.52. Let m= 5, E = {0,1}, 0≤ t1 < t2≤ 3m−1
2 −1 and C =C (E). Then

the punctured code C {t1,t2} has parameters [119,10,70] and weight enumerator
1+ 3834z70 + 5292z71 + 1764z72 + 17604z79 + 17604z80 + 4238z81 + 4806z88 +

3348z89 + 558z90. This code has the same parameters as the best ternary linear
code known in the database maintained by Markus Grassl.

Our Magma experiments showed that for many different pairs of {t1, t2} and
{t ′1, t ′2}, the punctured codes C {t1,t2} and C {t

′
1,t
′
2} are not equivalent. Therefore,

the automorphism group of the code C is in general not 2-homogeneous and 2-
transitive.

8.5.4 Steiner Systems and 2-Designs from C (E)

In this section, we confirm Conjectures 1 and 2, and Conjecture 3 for k ∈
{4,5,6,7}. In addition, we construct more 2-designs from subcodes of
C
(
0,1, . . . ,bm

2 c
)
.
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Let C be an [n,k,d] linear code. Define

Wi(C ) = {c ∈ C : wt(c) = i}, 0≤ i≤ n.

Theorem 8.53. Let m ≥ 3 be a positive integer and C a subcode of
C
(
0,1, . . . ,bm

2 c
)

such that A4(C⊥) =
(3m−1)(3m−1−1)

8 . Then (P (C⊥),B4(C⊥)) is
the Steiner system PG1(m−1,GF(3)) with parameters S(2,4, 3m−1

2 ).

Proof. It is easily seen that C
(
0,1, . . . ,bm

2 c
)⊥ ⊆ C⊥. Hence,

W4

(
C
(

0,1, . . . ,bm
2
c
)⊥)

⊆W4

(
C⊥
)
.

From Part (iv) of Theorem 8.39 and A4(C⊥) = (3m−1)(3m−1−1)
8 , we have

W4

(
C
(
0,1, . . . ,bm

2 c
)⊥)

= W4
(
C⊥
)

and B4
(
C⊥
)
= B4

(
C
(
0,1, . . . ,bm

2 c
)⊥).

The conclusions of this theorem finally follow from Part (iii) of Theorem 8.39.

Corollary 8.54. Let m≥ 3 be an odd integer and C a subcode of C
(
0,1, . . . ,bm

2 c
)

with the weight distribution in Table 8.5. If C ′ is a linear code such that C ⊆
C ′ ⊆ C

(
0,1, . . . ,bm

2 c
)
, then (P (C ′⊥),B4(C ′⊥)) is the Steiner system PG1(m−

1,GF(3)) with parameters S(2,4, 3m−1
2 ).

Proof. Note that W4

(
C
(
0,1, . . . ,bm

2 c
)⊥)⊆W4

(
C ′⊥
)
⊆W4

(
C⊥
)
. From Part (iv)

of Theorem 8.39 and Lemma 8.42, we then deduce that A4(C ′⊥) =
(3m−1)(3m−1−1)

8 .
From Theorem 8.53, this corollary follows.

Corollary 8.54 confirmed Conjecture 8.35, and proved that the Steiner system
PG1(m−1,GF(3)) is supported by many ternary linear codes. It is an interesting
problem to find a linear code that supports a given design [Assmus (1995); Jung-
nickel, Magliveras, Tonchev and Wassermann (2017); Jungnickel and Tonchev
(2018, 2019)]. This is in general a hard problem. In addition, Corollary 8.54 says
that the duals of many subcodes of C

(
0,1, . . . ,bm

2 c
)

do not support a new Steiner
system, but the geometric Steiner system PG1(m− 1,GF(3)) It is known that an
S(2,4,v) exists if and only if v≡ 1,4 (mod 12) [Hanani (1975)]. It is open if the
geometric Steiner system PG1(m− 1,GF(3)) was discovered before the work of
Hanani (1975).

Let D be a t-(v,k,λ) design. For a majority decoding of the code Cq(D)⊥,
Tonchev introduced the dimension of D over GF(q), which is defined to be the
minimum dimension of all linear codes of length v over GF(q) that contain the
blocks of D as the supports of codewords of weight k [Tonchecv (1999)]. When
q = 2, the dimension of D over GF(q) is the same as the rank of D over GF(q).
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When q > 2, the rank of D over GF(q) is an upper bound of the dimension of D
over GF(q). Since C

(
0,1, . . . ,bm

2 c
)

has dimension m(m+ 1)/2, its dual has di-
mension (3m−1−m(m+1))/2. As a result, the dimension of PG1(m−1,GF(3))
over GF(3) is upper bounded by (3m−1−m(m+1))/2. Then the following open
problem arises.

Problem 8.55. Is the dimension of the Steiner system PG1(m− 1,GF(3)) over
GF(3) equal to (3m−1−m(m+1))/2.

The p-rank of the design PG1(m−1,GF(p)) was computed in Hamada (1973),
and was also given in Theorem 4.42. In particular, the 3-rank of the Steiner system
PG1(m−1,GF(3)) is (3m−3)/2. Hence, the upper bound (3m−1−m(m+1))/2
on the dimension of PG1(m−1,GF(3)) over GF(3) is much better than the upper
bound from the 3-rank of PG1(m− 1,GF(3)). This shows another interesting
aspect of Theorem 8.53 and Corollary 8.54.

To determine the parameters of some t-designs, we will need the following
lemma which is a special case of Lemma 4.25.

Lemma 8.56. Let C be a linear code over GF(3) with minimum weight d. Let
c and c′ be two codewords of weight i and Supp(c) = Supp(c′), where d ≤ i ≤
2d−1. Then c′ = c or c′ =−c.

Theorem 8.57. Let m ≥ 5 be an odd integer and let C be a subcode of
C
(
0,1, . . . ,bm

2 c
)

with the weight distribution in Table 8.5. Let k be an ele-

ment of the set
{

3m−1−3
m−1

2 ,3m−1,3m−1 +3
m−1

2

}
. Then (P (C ),Bk(C )) is a 2-

( 3m−1
2 ,k,λ) design, where

λ =
Ak(C )+Ak

(
C{0,1}

)
2

−Ak
(
C{0}

)
.

Proof. Let k ∈
{

3m−1−3
m−1

2 ,3m−1,3m−1 +3
m−1

2

}
and assume that 0 ≤ i < j ≤

3m−1
2 −1. Define

Bk (C ,{i, j}) = {Supp(c) : c ∈Wk (C ,{i, j})} ,
where Wk (C ,{i, j}) was defined in Lemma 8.48. Since m ≥ 5, we have k ≤ 2 ·(

3m−1−3
m−1

2

)
−1. From Lemma 8.56, we get

|Bk (C ,{i, j}) |= 1
2
|Wk (C ,{i, j}) |.

Using Theorems 8.44 , 8.46 and Lemma 8.48, we obtain

|Bk (C ,{i, j}) |=
Ak(C )+Ak

(
C{0,1}

)
2

−Ak
(
C{0}

)
.
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Therefore, |Bk (C ,{i, j}) | is independent of i and j. Consequently, the codewords
of weight k hold a 2-design. This completes the proof.

Corollary 8.58. Let m≥ 5 be an odd integer and C a subcode of C
(
0,1, . . . ,bm

2 c
)

with the weight distribution in Table 8.5. Then C holds three 2-( 3m−1
2 ,k,λ) designs

with the following pairs (k,λ):

•
(

3m−1−3
m−1

2 ,3m−2
(

3m−1−3
m−1

2 −1
))

.

•
(
3m−1,2 ·3m−2

(
2 ·3m−1 +1

))
.

•
(

3m−1 +3
m−1

2 ,3m−2
(

3m−1 +3
m−1

2 −1
))

.

Proof. From Theorems 8.44 , 8.46, and 8.57, this corollary follows. Alternatively,
the conclusions of this corollary follow from Theorem 8.57 and Lemma 8.56.

Remark 8.59. Theorem 8.57 confirmed Conjecture 8.34, and extends Conjecture
8.34 if more subcodes of C

(
0,1, . . . ,bm

2 c
)

with the weight distribution in Table
8.5 exist.

Lemma 8.60. Let m ≥ 3 be an odd integer and C a subcode of C
(
0,1, . . . ,bm

2 c
)

with the weight distribution in Table 8.5. Let A = (3m− 1)(3m− 3) and λ⊥k =
2k(k−1)Ak(C⊥)
(3m−1)(3m−3) with 0≤ k≤ 3m−1

2 −1. Then,
(
Ak
(
C⊥
)
,λ⊥k
)

is given in Table 8.10,
where k ∈ {4,5,6,7}.

Table 8.10 Ak
(
C⊥
)

and λ⊥k for 4≤ k ≤ 7
k λ⊥k Ak

(
C⊥
)

4 1 1
8 A

5 3m−1−9 1
40 Aλ⊥5

6 3
4

(
32m−2−38 ·3m−2 +53

) 1
60 Aλ⊥6

7 1
20

(
33m−2−5 ·32m +1006 ·3m−2−1000

) 1
84 Aλ⊥7

Proof. The desired conclusions follow from Lemma 8.42.

Theorem 8.61. Let m≥ 5 be an odd integer and C a subcode of C
(
0,1, . . . ,bm

2 c
)

with the weight distribution in Table 8.5. Let k ∈ {4,5,6,7}. Then the incidence
structure

(
P (C⊥),Bk(C

⊥)
)

is a 2-( 3m−1
2 ,k,λ⊥k ) design, where λ⊥k is given in Table

8.10.

Proof. Let 4≤ k ≤ 7 and 0≤ i < j ≤ 3m−1
2 −1. Define

Bk

(
C⊥,{i, j}

)
=
{

Supp(c) : c ∈Wk

(
C⊥,{i, j}

)}
,
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where Wk
(
C⊥,{i, j}

)
was defined in Lemma 8.48. It follows from Lemma 8.42

that d(C⊥) = 4 and k ≤ 2d(C⊥)−1. From Lemma 8.56, we get∣∣∣Bk

(
C⊥,{i, j}

)∣∣∣=1
2

∣∣∣Wk

(
C⊥,{i, j}

)∣∣∣ .
Using the inclusion-exclusion principle, one has∣∣∣Wk

(
C⊥,{i, j}

)∣∣∣
= Ak

(
C⊥
)
−Ak

((
C⊥
)
{i}

)
−Ak

((
C⊥
)
{ j}

)
+Ak

((
C⊥
)
{i, j}

)
. (8.25)

From Theorems 8.49 and 8.51, for any 0≤ i≤ 3m−1
2 −1, one has

Ai

(
C { j0}

)
= Ai

(
C {0}

)
, Ai

(
C { j0, j1}

)
= Ai

(
C {0,1}

)
.

Using the MacWilliams Identity, one gets

Ai

((
C { j0}

)⊥)
= Ai

((
C {0}

)⊥)
, Ai

((
C { j0, j1}

)⊥)
= Ai

((
C {0,1}

)⊥)
,

where 0 ≤ i ≤ 3m−1
2 − 1. From (8.24),

(
C⊥
)
{T} =

(
C T
)⊥ for any T ⊆

{0,1, . . . , 3m−1
2 −1}. Thus,

Ai

((
C⊥
)
{ j0}

)
= Ai

((
C⊥
)
{0}

)
, Ai

((
C⊥
)
{ j0, j1}

)
= Ai

((
C⊥
)
{0,1}

)
,

where 0≤ i≤ 3m−1
2 −1. From (8.25), one obtains∣∣∣Wk

(
C⊥,{i, j}

)∣∣∣= Ak

(
C⊥
)
−2Ak

((
C⊥
)
{0}

)
+Ak

((
C⊥
)
{0,1}

)
.

Then, ∣∣∣Bk

(
C⊥,{ j0, j1}

)∣∣∣=Ak
(
C⊥
)
+Ak

((
C⊥
)
{0,1}

)
2

−Ak

((
C⊥
)
{0}

)
.

Therefore, |Bk
(
C⊥,{ j0, j1}

)
| is independent of j0 and j1. Hence, the codewords

of weight k hold a 2-( 2m−1
3 ,k,λ⊥k ) design with Ak

(
C⊥
)

blocks. Thus,

λ⊥k =
2k(k−1)Ak

(
C⊥
)

(3m−1)(3m−3)
.

The desired conclusions finally follow from Lemma 8.60.

Remark 8.62. Theorem 8.61 confirmed Conjecture 8.36 for k = 4,5,6 and 7.

8.6 Notes

All the results of Section 8.5 come from Tang, Ding and Xiong (2019), and are
one of the major motivations of the development of a generalized Assmus-Mattson
theorem documented in Theorem 16.28 of Chapter 16. The ideas and tools of
this section are useful for understanding the theory in Chapter 16. Recent works
related to some topics in this chapter were reported in Ding and Tang (2020).
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Chapter 9

Designs from BCH Codes

In this chapter, we first introduce a general theorem about 2-designs from narrow-
sense primitive BCH codes and then determine the parameters of 2-designs from
some classes of binary primitive BCH codes. It should be noted that the Assmus-
Mattson Theorem does not apply to most of the codes in this chapter. We have
to use the automorphism groups of these BCH codes, in order to prove that they
hold designs. In the last section of this chapter, we present several families of con-
jectured designs from extended narrow-sense BCH codes. Most of the materials
presented in this chapter are from Ding and Zhou (2017).

9.1 A General Theorem on Designs from Primitive BCH Codes

Let b denote the number of blocks in a t-(v,k,λ) design. Recall that

b = λ
(v

t

)(k
t

) . (9.1)

Let C be a [v,κ,d] code over GF(q). For each integer k with Ak 6= 0, let
Bk denote the set of the supports of all codewords with Hamming weight k in
C , where the coordinates of a codeword are indexed by (0,1,2, . . . ,v− 1). Let
P = {0,1,2, . . . ,v− 1}. The pair (P ,Bk) may be a t-(v,k,λ) design for some
positive integer λ. Such a design is called a support t-design of the code C . In this
case, we say that C holds a t-(v,k,λ) design.

Recall the binary primitive BCH code C(2,n,δ,h) defined in Section 7.1, where
n = 2m−1, 2 ≤ δ ≤ n and h could be any integer. We first develop some general
results on the automorphism group of the binary primitive BCH code C(2,n,δ,h).
Since the code is binary, we have

PAut(C(2,n,δ,h)) = MAut(C(2,n,δ,h)) = Aut(C(2,n,δ,h)).

Theorem 9.1. Let qm−1≥ δ≥ 2. The supports of all codewords of each weight
in the extended narrow-sense primitive BCH code C(q,qm−1,δ,1) form a 2-design.

273
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Proof. The desired conclusion follows from Corollary 6.12 and Theorem 4.30.

Theorem 9.2. Let δ≥ 2. The supports of all codewords of each weight in the dual
code C(2,2m−1,δ,1)

⊥
form a 2-design.

Proof. It follows from Corollary 6.12 and Theorem 2.14 that the permutation
automorphism group PAut(C(2,2m−1,δ,1)

⊥
) is doubly transitive. The desired con-

clusion then follows from Theorem 4.30.

9.2 Designs from the Primitive BCH Codes C(2,2m−1,δ2,1)

With the help of Theorem 9.1, we now describe several families of 2-designs from
the narrow-sense primitive binary codes C(2,2m−1,δ2,1), where δ2 = 2m−1− 1−
2b(m−1)/2c.

Table 9.1 The weight distribution of the code
C(2,2m−1,δ2 ,1) for odd m

Weight w No. of codewords Aw

0 1
2m−1−2(m−1)/2 (2m−1)2m−1

2m−1 2(2m−1)(2m−1 +1)
2m−1 +2(m−1)/2 (2m−1)2m−1

2m 1

Table 9.2 The weight distribution of the code
C(2,2m−1,δ2 ,1) for even m

Weight w No. of codewords Aw

0 1
2m−1−2(m−2)/2 (2m/2−1)2m

2m−1 2(2m−1)
2m−1 +2(m−2)/2 (2m/2−1)2m

2m 1

Theorem 9.3. Let m≥ 3 be an integer. Let C(2,2m−1,δ2,1) denote the extended code
of C(2,2m−1,δ2,1). Then for odd m, C(2,2m−1,δ2,1) holds 2-(2m,k,λ) designs with the
following pairs of (k,λ):

• (k,λ) =
(

2m−1−2(m−1)/2, (2m−2−2(m−3)/2)(2m−1−2(m−1)/2−1)
)

.

• (k,λ) =
(

2m−1, 22(m−1)−1
)

.
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• (k,λ) =
(

2m−1 +2(m−1)/2, (2m−2 +2(m−3)/2)(2m−1 +2(m−1)/2−1)
)

.

For even m, it holds 2-(2m,k,λ) designs with the following pairs of (k,λ):

• (k,λ) =
(

2m−1−2(m−2)/2, (2m−1−2(m−2)/2)(2(m−2)/2−1)
)

.

• (k,λ) =
(
2m−1,2m−1−1

)
.

• (k,λ) =
(

2m−1 +2(m−2)/2, 2(m−2)/2(2m−1 +2(m−2)/2−1)
)

.

Proof. Recall that the weight distribution of C(2,2m−1,δ2,1) is given in Tables 7.6
and 7.7 for odd and even m, respectively. We first determine the parameters of
the code C(2,2m−1,δ2,1). It follows from the definition of the extended code and
Theorem 7.8 that the length of the code is 2m, the dimension k is given by

k =
{

2m+1 for odd m,
3m
2 +1 for even m,

(9.2)

and the weight distribution is given in Tables 9.1 and 9.2 for odd m and even m,
respectively. The desired conclusions then follow from the weight distribution of
the code, Theorem 9.1 and (9.1).

Theorem 9.2 tells us that the code C(2,2m−1,δ2,1)
⊥ holds also 2-designs for both

even and odd m. We will prove that the support designs of the code C(2,2m−1,δ2,1)
⊥

are in fact 3-designs.

Theorem 9.4. Let m ≥ 5 be an odd integer. Then C(2,2m−1,δ2,1)
⊥

has parameters

[2m,2m− 2m− 1,6]. Let A⊥i denote the number of codewords with weight i in
C(2,2m−1,δ2,1)

⊥
for all 0 ≤ i ≤ 2m. Then for every i with A⊥i 6= 0, the supports of

the codewords with weight i in this code form a 3-(2m, i,λ) design with

λ =
A⊥i
( i

3

)(2m

3

) ,

where these A⊥i are given in Lemma 8.8.

Proof. Let d
⊥

denote the minimum weight in C(2,2m−1,δ2,1)
⊥. It then follows from

Lemma 8.8 that d
⊥
= 6. Then the desired conclusions follow from Corollary 4.26

(i.e., the Assmus-Mattson Theorem), Table 9.1 and (9.1).

Notice that the parameters of examples of the 3-designs documented in Theo-
rem 9.4 are given in Section 8.1.

To determine the parameters of some of the 2-designs held in C(2,2m−1,δ2,1)
⊥

for even m, we need to determine the weight distribution of the code for even m.
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Lemma 9.5. Let m≥ 4 be even. Then the weight distribution of C(2,2m−1,δ2,1)
⊥

is
given by

2(3m+2)/2A⊥k =

(1+(−1)k)

(
2m

k

)
+

1+(−1)k

2
(−1)bk/2c

(
2m−1

bk/2c

)
v+

u ∑
0≤i≤2m−1−2(m−2)/2

0≤ j≤2m−1+2(m−2)/2

i+ j=k

((−1)i +(−1) j)

(
2m−1−2

m−2
2

i

)(
2m−1 +2

m−2
2

j

)

for 0≤ k ≤ 2m, where

u = (2m/2−1)2m and v = 2m+1−2.

In addition, C(2,2m−1,δ2,1)
⊥

has parameters [2m,2m−1−3m/2,4].

Proof. With the weight distribution of C(2,2m−1,δ2,1) given in Table 9.2, one can
prove the desired conclusions by slightly modifying the proof of Lemma 8.8. The
details are left to the reader.

Theorem 9.6. Let m ≥ 4 be an even integer. Let A⊥i denote the number of code-
words with weight i in C(2,2m−1,δ2,1)

⊥
for all 0 ≤ i ≤ 2m. Then for every i with

A⊥i 6= 0, the supports of the codewords with weight i in this code form a 2-(2m, i,λ)
design with

λ =
A⊥i
( i

2

)(2m

2

) ,

where these A⊥i are given in Lemma 9.5.

Proof. The desired conclusions follow from Theorem 9.2 and (9.1).

Corollary 9.7. Let m≥ 4 be an even integer. Then the supports of all codewords
of weight 4 in C(2,2m−1,δ2,1)

⊥
give a 2-(2m, 4, 2(m−2)/2−1) design.

Proof. By Lemma 9.5, we have

A⊥4 =
2m−2(2(m−2)/2−1)(2m−1)

3
.

The desired conclusions then follow from Theorem 9.6.
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Corollary 9.8. Let m≥ 4 be an even integer. Then the supports of all codewords
of weight 6 in C(2,2m−1,δ2,1)

⊥
give a 2-(2m, 6, λ) design, where

λ =
(2m−1−2)(2(3m−4)/2−5×2(m−2)/2 +4)

3
.

Proof. By Lemma 9.5, we have

A⊥6 =
2m(2m−1)(2m−2−1)(2(3m−4)/2−5×2(m−2)/2 +4)

45
.

The desired conclusions then follow from Theorem 9.6.

Corollary 9.9. Let m≥ 4 be an even integer. Then the supports of all codewords
of weight 8 in C(2,2m−1,δ2,1)

⊥
give a 2-(2m,8,λ) design, where

λ =
(h2−1)(32h7−184h5 +406h3−132h2−308h+213)

45

and h = 2(m−2)/2.

Proof. By Lemma 9.5, we have

A⊥8 =
h2(h2−1)(4h2−1)(32h7−184h5 +406h3−132h2−308h+213)

630
,

where h = 2(m−2)/2. The desired conclusions follow from Theorem 9.6.

It would be interesting to settle the following problem.

Problem 9.10. Determine the weight distribution of the code C(q,qm−1,δ2,1) and
the parameters of the 2-designs held in this code, where q = 2s with s≥ 2.

9.3 Designs from the Primitive BCH Codes C(q,qm−1,δ2,1) for Odd
Prime q

With the help of Theorem 9.1, we now describe several families of 2-designs
from the narrow-sense primitive nonbinary codes C(q,qm−1,δ2,1), where δ2 = (q−
1)qm−1−1−qb(m−1)/2c and q is an odd prime.

Theorem 9.11. Let m ≥ 2 be an integer and let q be an odd prime. Let
C(q,qm−1,δ2,1) denote the extended code of C(q,qm−1,δ2,1). Then for odd m,
C(q,qm−1,δ2,1) holds 2-(qm,k,λ) designs with the following pairs of (k,λ):

• (k,λ) =
(
(q−1)qm−1−q

m−1
2 , ((q−1)qm−1−q

m−1
2 )((q−1)qm−1−q

m−1
2 −1)

2

)
.

• (k,λ) =
(
(q−1)qm−1, (qm−1 +1)((q−1)qm−1−1)

)
.



November 17, 2021 14:14 ws-book9x6 Designs from Linear Codes designscodes page 278

278 Designs from Linear Codes

Table 9.3 Weight distribution of C(q,qm−1,δ2 ,1) for
odd m≥ 3 and odd q

Weight w No. of codewords Aw

0 1
(q−1)qm−1−q(m−1)/2 (q−1)qm(qm−1)/2
(q−1)qm−1 (qm +q)(qm−1)
(q−1)qm−1 +q(m−1)/2 (q−1)qm(qm−1)/2
qm q−1

Table 9.4 Weight distribution of C(q,qm−1,δ2 ,1) for even
m≥ 2 and odd q

Weight w No. of codewords Aw

0 1
(q−1)qm−1−q(m−2)/2 (q−1)(q3m/2−qm)
(q−1)qm−1 qm+1−q
(q−1)qm−1 +(q−1)q(m−2)/2 q3m/2−qm

qm q−1

• (k,λ) =
(
(q−1)qm−1 +q

m−1
2 , ((q−1)qm−1+q

m−1
2 )((q−1)qm−1+q

m−1
2 −1)

2

)
.

For even m≥ 2, it holds 2-(qm,k,λ) designs with the following pairs of (k,λ):

• (k,λ) =
(
(q−1)qm−1−q

m−2
2 , ((q−1)qm−1−q

m−2
2 )(q

m
2 −q

m−2
2 −1)

)
.

• (k,λ) =
(
(q−1)qm−1,(q−1)qm−1−1

)
.

• (k,λ) =
(
(q−1)(qm−1 +q

m−2
2 ), q

m−2
2

(
(q−1)(qm−1 +q

m−2
2 )−1

))
.

Proof. We sketch a proof below. The details of the proof are left to the reader. By
refining the analysis in Section 7.3, one can determine the weight distribution of
the code C(q,qm−1,δ2,1), which contains C(q,qm−1,δ2+1,0) as a subcode. With the de-
rived weight distribution of C(q,qm−1,δ2,1), one can prove that the code C(q,qm−1,δ2,1)
has the weight distribution in Tables 9.3 and 9.4 for odd and even m, respectively.

With the help of Lemma 4.25, one can then prove that in the code C(q,qm−1,δ2,1)
the number of supports of all codewords with weight k 6= 0 is equal to Ak/(q−1)
for each k, where Ak denotes the total number of codewords with weight k in
C(q,qm−1,δ2,1). Then the desired conclusions follow from the weight distribution of
the code, Theorem 9.1 and (9.1).

Experimental data indicates that the code C(q,qm−1,δ2,1)
⊥ holds also 2-designs

for both even and odd m. However, the Assmus-Mattson Theorem may not give a
proof of the 2-design property, as C(q,qm−1,δ2,1)

⊥ has minimum distance 4 in some
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cases. To settle this problem in general, we need find out the automorphism group
of the code C(q,qm−1,δ2,1)

⊥.

Problem 9.12. Determine the automorphism group Aut(C(q,qm−1,δ2,1)
⊥
). Prove or

disprove that Aut(C(q,qm−1,δ2,1)
⊥
) is doubly transitive.

9.4 Designs from the Primitive BCH Codes C(2,2m−1,δ3,1)

With the help of Theorem 9.1, we now describe several families of 2-designs
from the narrow-sense primitive binary code C(2,2m−1,δ3,1), where δ3 = 2m−1−
1−2b(m+1)/2c.

Table 9.5 The weight distribution of C(2,2m−1,δ3 ,1) for odd m
Weight w No. of codewords Aw

0 1
2m−1−2(m+1)/2 (2m−1)2m−3(2m−1−1)/3
2m−1−2(m−1)/2 (2m−1)2m−1(5 ·2m−1 +4)/3
2m−1 2(2m−1)(9 ·22m−4 +3 ·2m−3 +1)
2m−1 +2(m−1)/2 (2m−1)2m−1(5 ·2m−1 +4)/3
2m−1 +2(m+1)/2 (2m−1)2m−3(2m−1−1)/3
2m 1

Table 9.6 The weight distribution of C(2,2m−1,δ3 ,1) for even m
Weight w No. of codewords Aw

0 1
2m−1−2m/2 (2m/2−1)2m−2(2m+1 +2m/2−1)/3
2m−1−2(m−2)/2 (2m/2−1)2m(2m +2(m+2)/2 +4)/3
2m−1 2(2m/2−1)(22m−1 +2(3m−4)/2−2m−2 +2m/2 +1)
2m−1 +2(m−2)/2 (2m/2−1)2m(2m +2(m+2)/2 +4)/3
2m−1 +2m/2 (2m/2−1)2m−2(2m+1 +2m/2−1)/3
2m 1

Theorem 9.13. Let m ≥ 4 be an integer. Let C(2,2m−1,δ3,1) denote the extended
code of C(2,2m−1,δ3,1). Then for odd m, C(2,2m−1,δ3,1) holds 2-(2m,k,λ) designs
with the following pairs of (k,λ):

•
(

2m−1−2
m+1

2 , (2m−1−1)(2m−4−2
m−5

2 )(2m−1−2
m+1

2 −1)/3
)

.

•
(

2m−1−2
m−1

2 , (5 ·2m−1 +4)(2m−2−2
m−3

2 )(2m−1−2
m−1

2 −1)/3
)

.

•
(
2m−1, (2m−1−1)(9 ·22m−4 +3 ·2m−3 +1)

)
.
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•
(

2m−1 +2
m−1

2 , (5 ·2m−1 +4)(2m−2 +2
m−3

2 )(2m−1 +2
m−1

2 −1)/3
)

.

•
(

2m−1 +2
m+1

2 , (2m−1−1)(2m−4 +2
m−5

2 )(2m−1 +2
m+1

2 −1)/3
)

.

For even m, it holds 2-(2m,k,λ) designs with the following pairs of (k,λ):

•
(

2m−1−2
m
2 , (2

m+2
2 −1)(2m−3−2

m−4
2 )(2m−1−2

m
2 −1)/3

)
.

•
(

2m−1−2
m−2

2 , (2m +2
m+2

2 +4)(2m−1−2
m−2

2 )(2
m−2

2 −1)/3
)

.

•
(

2m−1, ((2
m+2

2 −1)2m−2 +1)(2m−1−1)
)

.

•
(

2m−1 +2
m−2

2 , (2m +2
m+2

2 +4)(2m−1 +2
m−2

2 −1)2
m−2

2 /3
)

.

•
(

2m−1 +2
m
2 , (2

m+2
2 −1)(2m−3 +2

m−4
2 )(2m−1 +2

m
2 −1)/3

)
.

Proof. We first determine the parameters of the code C(2,2m−1,δ3,1). It follows
from the definition of the extended code and Theorem 7.21 that the length of the
code is 2m, the dimension k is given by

k =
{

3m+1 for odd m,
5m
2 +1 for even m,

(9.3)

and the weight distribution is given in Tables 9.5 and 9.6 for odd m and even m,
respectively. The desired conclusions then follow from the weight distribution of
the code, Theorem 9.1 and (9.1).

If m is odd, C(2,2m−1,δ3,1)
⊥ has the same parameters and weight distribution

as the code C⊥m in Theorem 8.16. Hence, C(2,2m−1,δ3,1)
⊥ and C⊥m hold the same

3-designs, which are documented in Theorem 8.9.
If m is even, C(2,2m−1,δ3,1)

⊥ does not hold 3-designs. Below we determine the

parameters of some of the 2-designs held in C(2,2m−1,δ3,1)
⊥. To this end, we need

the following lemma.

Lemma 9.14. Let m ≥ 6 be even. Then the weight distribution of C(2,2m−1,δ3,1)
⊥

is given by

2(5m+2)/2A⊥k =
(

1+(−1)k
)(2m

k

)
+wE0(k)+uE1(k)+ vE2(k),

where

u = (2m/2−1)2m−2(2m+1 +2m/2−1)/3,

v = (2m/2−1)2m(2m +2(m+2)/2 +4)/3,

w = 2(2m/2−1)(22m−1 +2(3m−4)/2−2m−2 +2m/2 +1),
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and

E0(k) =
1+(−1)k

2
(−1)bk/2c

(
2m−1

bk/2c

)
,

E1(k) = ∑
0≤i≤2m−1−2m/2

0≤ j≤2m−1+2m/2

i+ j=k

[(−1)i +(−1) j]

(
2m−1−2m/2

i

)(
2m−1 +2m/2

j

)
,

E2(k) = ∑
0≤i≤2m−1−2

m−2
2

0≤ j≤2m−1+2
m−2

2
i+ j=k

[(−1)i +(−1) j]

(
2m−1−2

m−2
2

i

)(
2m−1 +2

m−2
2

j

)
,

and 0≤ k ≤ 2m.
In addition, C(2,2m−1,δ3,1)

⊥
has parameters [2m,2m−1−5m/2,6].

Proof. With the weight distribution of C(2,2m−1,δ3,1) given in Table 9.6, one can
prove the desired conclusions by slightly modifying the proof of Theorem 8.16.

Theorem 9.15. Let m≥ 4 be an even integer. Let A⊥i denote the number of code-
words with weight i in C(2,2m−1,δ3,1)

⊥
for all 0 ≤ i ≤ 2m. Then for every i with

A⊥i 6= 0, the supports of the codewords with weight i in this code form a 2-(2m, i,λ)
design with

λ =
A⊥i
( i

2

)(2m

2

) ,

where these A⊥i are given in Lemma 9.14.

Proof. The desired conclusions follow from Theorem 9.2 and (9.1).

Corollary 9.16. Let m≥ 4 be an even integer. Then the supports of all codewords
of weight 6 in C(2,2m−1,δ3,1)

⊥
give a 2-(2m,6,λ) design, where

λ =
(2(m−2)/2−2)(2m−2−1)

3
.

Proof. By Lemma 9.14, we have

A⊥6 =
2m−1(2(m−2)/2−2)(2m−2−1)(2m−1)

45
.

The desired conclusions then follow from Theorem 9.15.
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Corollary 9.17. Let m≥ 4 be an even integer. Then the supports of all codewords
of weight 8 in C(2,2m−1,δ3,1)

⊥
give a 2-(2m,8,λ) design, where

λ =
(h2−1)(8h5−46h3 +50h2 +56h−95)

45

and h = 2(m−2)/2.

Proof. By Lemma 9.14, we have

A⊥8 =
h2(h2−1)(4h2−1)(8h5−46h3 +50h2 +56h−95)

630
,

where h = 2(m−2)/2. The desired conclusions then follow from Theorem 9.15.

9.5 Designs from the Primitive BCH Codes C(q,qm−1,δ3,1) for Odd q

In order to determine the parameters of of the 2-designs held in C(q,qm−1,δ3,1), we
need settle the following problem.

Problem 9.18. Determine the weight distribution of the code C(q,qm−1,δ3,1) and
the parameters of the 2-designs held in this case, for q > 2.

This problem could be settled, as the weight distribution of C(q,qm−1,δ3+1,0)
was settled in Section 7.4. By defining and extending the analysis of Section 7.4,
one may be able to find the weight distributions of C(q,qm−1,δ3,1) and C(q,qm−1,δ3,1)
for m≥ 4.

However, the case m = 3 is special, as in this case the third largest coset leader
δ3 6= (q− 1)qm−1 − q(m+1)/2. In this case, δ3 = q3 − q2 − q− 2. The weight
distribution of C(q,q3−1,δ3,1) was conjectured in Yan (2018). Table 9.7 describes
the conjectured weight distribution of C(q,qm−1,δ3,1).

Table 9.7 The conjectured weight distribution
of C(q,q3−1,δ3 ,1), where q is an odd prime

Weight w No. of codewords Aw

0 1
q3−q2−q−1 q4(q−1)2(q2−q−1)/2
q3−q2−q q3(q−1)(q3−1)/2
q3−q2−1 q3(q−1)(q3−1)
q3−q2 q(q2 +1)(q3−1)
q3−q2 +q−1 q4(q−1)(q3−1)/2
q3−q2 +q q3(q−1)(q3−1)/2
q3−1 q3(q−1)
qm q−1
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The following conjecture is based on the conjectured weight distribution of
C(q,q3−1,q3−q2−q−2,1) given in Table 9.7.

Conjecture 9.19. Let q be an odd prime. Then the code C(q,q3−1,q3−q2−q−2,1)

holds 2-(q3,k,λ) designs for the following pairs:

• (k,λ) =
(
q3−q2−q−1, q(q−2)(q2−q−1)(q3−q2−q−1)/2

)
.

• (k,λ) =
(
q3−q2−q, (q3−q2−q)(q3−q2−q−1)/2

)
.

• (k,λ) =
(
q3−q2−1, (q3−q2−1)(q3−q2−2)

)
.

• (k,λ) =
(
q3−q2, (q2 +1)(q3−q2−1)

)
.

• (k,λ) =
(
q3−q2 +q−1, q(q3−q2 +q−1)(q3−q2 +q−2)/2

)
.

• (k,λ) =
(
q3−q2 +q, (q3−q2 +q)(q3−q2 +q−1)/2

)
.

It would be good if this conjecture could be settled. The reader is warmly
invited to attack this conjecture.

9.6 Designs from C(2,2m−1,5,1) and C(2,2m−1,5,1)
⊥ for Even m≥ 4

In this section, we will determine the parameters of some of the 2-designs held in
both C(2,2m−1,5,1) and C(2,2m−1,5,1)

⊥ for even m≥ 4. Before doing this, we need to
settle the weight distribution of of the two codes.

Table 9.8 The weight distribution of the code
C(2,2m−1,5,1)

⊥ for even m≥ 4

Weight w No. of codewords A⊥w
0 1
2m−1−2m/2 (2m−1)2m−2/3
2m−1−2(m−2)/2 (2m−1)2m+1/3
2m−1 (2m−1)(2m−1 +2)
2m−1 +2(m−2)/2 (2m−1)2m+1/3
2m−1 +2m/2 (2m−1)2m−2/3
2m 1

Lemma 9.20. Let m ≥ 4 be even. The code C(2,2m−1,5,1)
⊥

has length 2m, dimen-
sion 2m+1 and the weight distribution in Table 9.8.

Proof. The conclusion on the dimension of the code follows from Theorem 7.21.
The desired conclusion on the weight distribution of C(2,2m−1,5,1)

⊥ follows from
Theorem 2.10 and the weight distribution of C⊥(2,2m−1,5,1) in Table 7.21.



November 17, 2021 14:14 ws-book9x6 Designs from Linear Codes designscodes page 284

284 Designs from Linear Codes

Theorem 9.21. Let m ≥ 4 be an integer. Then C(2,2m−1,5,1)
⊥

holds 2-(2m,k,λ)
designs with the following pairs of (k,λ):

•
(

2m−1−2
m
2 , (2m−3−2(m−4)/2)(2m−1−2m/2−1)/3

)
.

•
(

2m−1−2
m−2

2 , (2m−2m/2)(2m−1−2(m−2)/2−1)/3
)

.

•
(
2m−1, (2m−2 +1)(2m−1−1)

)
.

•
(

2m−1 +2
m−2

2 , (2m +2m/2)(2m−1 +2(m−2)/2−1)/3
)

.

•
(

2m−1 +2
m
2 , (2m−3 +2(m−4)/2)(2m−1 +2m/2−1)

)
/3.

Proof. The desired conclusions then follow from the weight distribution of the
code in Table 9.8, Theorem 9.1 and (9.1).

Lemma 9.22. Let m ≥ 4 be even. Then the weight distribution of C(2,2m−1,5,1) is
given by

22m+1Ak =
(

1+(−1)k
)(2m

k

)
+wE0(k)+uE1(k)+ vE2(k),

where

u = (2m−1)2m−2/3,

v = (2m−1)2m+1/3,

w = (2m−1)(2m−1 +2),

and

E0(k) =
1+(−1)k

2
(−1)bk/2c

(
2m−1

bk/2c

)
,

E1(k) = ∑
0≤i≤2m−1−2m/2

0≤ j≤2m−1+2m/2

i+ j=k

[(−1)i +(−1) j]

(
2m−1−2m/2

i

)(
2m−1 +2m/2

j

)
,

E2(k) = ∑
0≤i≤2m−1−2

m−2
2

0≤ j≤2m−1+2
m−2

2
i+ j=k

[(−1)i +(−1) j]

(
2m−1−2

m−2
2

i

)(
2m−1 +2

m−2
2

j

)
,

and 0≤ k ≤ 2m.
In addition, C(2,2m−1,5,1) has parameters [2m,2m−1−2m,6].
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Proof. With the weight distribution of C(2,2m−1,5,1)
⊥ given in Table 9.8, one can

prove the desired conclusions by slightly modifying the proof of Theorem 8.16.

Theorem 9.23. Let m ≥ 4 be an even integer. Let Ai denote the number of code-
words with weight i in C(2,2m−1,5,1) for all 0≤ i≤ 2m. Then for every i with Ai 6= 0,
the supports of the codewords with weight i in this code form a 2-(2m, i,λ) design
with

λ =
Ai
( i

2

)(2m

2

) ,
where these Ai are given in Lemma 9.22.

Proof. The desired conclusions follow from Theorem 9.2 and (9.1).

Corollary 9.24. Let m≥ 4 be an even integer. Then the supports of all codewords
of weight 6 in C(2,2m−1,5,1) give a 2-(2m,6,λ) design, where

λ =
2× (2m−2−1)2

3
.

Proof. By Lemma 9.22, we have

A6 =
2m(2m−1)(2m−2−1)2

45
.

The desired conclusions then follow from Theorem 9.23.

Corollary 9.25. Let m≥ 4 be an even integer. Then the supports of all codewords
of weight 8 in C(2,2m−1,5,1) give a 2-(2m,8,λ) design, where

λ =
(h2−1)(16h6−92h4 +162h2−95)

630
,

where h = 2(m−2)/2.

Proof. By Lemma 9.22, we have

A8 =
h2(h2−1)(4h2−1)(16h6−92h4 +162h2−95)

630
.

The desired conclusions then follow from Theorem 9.23.

Corollary 9.26. Let m≥ 4 be an even integer. Then the supports of all codewords
of weight 10 in C(2,2m−1,5,1) give a 2-(2m,10,λ) design, where

λ =
2(h2−1)(16h10−160h8 +666h6−1401h4 +1498h2−679)

315
,

where h = 2(m−2)/2.
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Proof. By Lemma 9.22, we have

A10 =
4h2(4h2−1)(h2−1)(16h10−160h8 +666h6−1401h4 +1498h2−679)

14175
.

The desired conclusions then follow from Theorem 9.23.

At the end of this section, we point out that the following code

C = {(Tr2m/2(a(x
6 + x4 + x2)+bx)+h)x∈GF(2m) : a, b ∈ GF(2m), h ∈ GF(2)}

is permutation-equivalent to C(2,2m−1,5,1)
⊥, which is a consequence of the identity:

Tr2m/2

(
a(x6 + x4 + x2)+bx

)
= Tr2m/2

(
a2m−1

x3 +(a2m−2
+a2m−1

+b)x
)
.

Therefore, C holds the same 3-designs for odd m and 2-designs for even m as
C(2,2m−1,5,1)

⊥.

9.7 Designs from the Primitive BCH Codes C(q,qm−1,3,1) for q≥ 3

Let q ≥ 3. The weight distribution of the code C(q,qm−1,3,1)
⊥ can be worked out

easily. The weight distribution of C(q,qm−1,3,1) can then be given with the help
of the MacWilliams Identity. We will outline the procedure below and leave the
details to the reader.

According to the Delsarte Theorem, the code C(q,qm−1,3,1)
⊥ is equivalent to

the following linear code

C(q,m) := {(Trqm/q(ax2 +bx)+ c)x∈GF(qm) : a, b ∈ GF(qm), c ∈ GF(q)}.

One can employ Theorems 1.8 and 1.9 to determine the weight distribution of
C(q,m), and then the parameters of the 2-designs held in C(q,qm−1,3,1)

⊥. We have
the following conclusions.

Theorem 9.27. If q is odd, then C(q,qm−1,3,1) has parameters [qm,qm−1−2m,4],

and C(q,qm−1,3,1)
⊥

is a four-weight code for odd m, and six-weight code for even
m.

Theorem 9.28. Let q≥ 4 be even. Then C(q,qm−1,3,1)
⊥

has parameters [qm,2m+

1,(q−2)qm−1] and weight enumerator

1+
(q−1)(qm+1−q)

2
z(q−2)qm−1

+(q2m+1− (q−1)qm+1 +(q−2)q)z(q−1)qm−1
+

(q−1)(qm+1−q+2)
2

zqm
.



November 17, 2021 14:14 ws-book9x6 Designs from Linear Codes designscodes page 287

Designs from BCH Codes 287

Its dual distance is 4. The supports of all codewords of weight (q−2)×qm−1 in
C(q,qm−1,3,1)

⊥
form a design with parameters

2–
(

qm, (q−2)qm−1,
(q−2)((q−2)qm−1−1)

2

)
.

Theorem 9.29. [Xiang (2021)] Both C(4,4m−1,3,1) and C(4,4m−1,3,1)
⊥

hold 3-
designs for all m≥ 2.

Experimental data indicates that C(q,qm−1,3,1) and C(q,qm−1,3,1)
⊥ do not hold 3-

designs except that q= 4 and q= 2. Clearly, C(2,2m−1,3,1)
⊥ is the first-order Reed-

Muller code, and hence holds 3-designs. The case q = 4 treated in Theorem 9.29
is very special. For the parameters of some of the 3-designs held in C(4,4m−1,3,1)

and C(4,4m−1,3,1)
⊥, the reader is referred to Xiang (2021).

9.8 Designs from Nonprimitive BCH Codes

In the preceding sections of this chapter, we dealt with designs from narrow-sense
primitive BCH codes or their extended codes. In this section, we present a family
of designs from the extended codes of nonprimitive BCH codes. The purpose of
this section is to show that the extended code of a nonprimitive BCH code may
give a design.

Theorem 9.30. Let m ≥ 2 be a positive integer. The code C(2m,2m+1−1,3,1) over

GF(2m) has parameters [2m+1,2m+1−m− 2,4]. The dual code C(2m,2m+1−1,3,1)
⊥

over GF(2m) has parameters [2m+1,m+2,2m]. Furthermore, the minimum weight
codewords in C(2m,2m+1−1,3,1) support a Steiner quadruple system S(3,4,2m+1),

and the minimum weight codewords in the dual code C(2m,2m+1−1,3,1)
⊥

support a
3-(2m+1,2m,2m−1−1) design.

Note that the code C(2m,2m+1−1,3,1) is over GF(q), where q = 2m. But its length
is 2q−1. Therefore, by definition it is not a primitive BCH code over GF(q).

Theorem 9.30 may be proved as follows. Using the trace expression of
C(2m,2m+1−1,3,1)

⊥, one can prove that the subfield subcode C(2m,2m+1−1,3,1)
⊥|GF(2)

is the first-order Reed-Muller code R2(1,m+ 1) and the code C(2m,2m+1−1,3,1)
⊥

over GF(2m) is actually generated by a generator matrix of R2(1,m+ 1). Thus,
the 3-(2m+1,2m,2m−1 − 1) design held in C(2m,2m+1−1,3,1)

⊥ is the same as the
3-design held in R2(1,m + 1). Similarly, one can prove that the subfield sub-
code C(2m,2m+1−1,3,1)|GF(2) is the Reed-Muller code R2(m− 1,m + 1) and the
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code C(2m,2m+1−1,3,1) over GF(2m) is actually generated by a generator matrix of
R2(m−1,m+1). Consequently, the Steiner quadruple system S(3,4,2m+1) held
in C(2m,2m+1−1,3,1) is the same as the one held in the binary Reed-Muller code
R2(m−1,m+1).

We point out that Theorem 9.30 can be modified for the code C(pm,pm+1−1,3,1)
over GF(pm), where p is an odd prime. Note that the minimum distance of
C(pm,pm+1−1,3,1) is 3 when p is odd. For example, the code C(3m,3m+1−1,3,1)

has parameters [3m+1,3m+1 −m− 2,3] and the minimum weight codewords in
C(3m,3m+1−1,3,1) support a Steiner triple system S(2,3,3m+1), which is very likely
isomorphic to the design AG1(m+1,GF(3)).

9.9 Notes

This chapter documented a number of infinite families of 2-designs and 3-designs
supported by primitive BCH codes over small fields and their extended codes.
Chapter 15 will treat some families of BCH codes of length q+ 1 over GF(q)
and the 3-designs and 4-designs supported by these codes. This shows that BCH
codes are very attractive. BCH codes may lead to more interesting results in
combinatorial t-designs.
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Chapter 10

Designs from Codes with Regularity

In this chapter, we will introduce several types of codes with regularity and deal
with their support designs. These codes include perfect codes, quasi-perfect
codes, uniformly packed codes, and t-regular codes. The codes dealt with in this
chapter may be linear or nonlinear. The materials in Sections 10.2, 10.3 and 10.6
come from Goethals and Van Tilborg (1975).

10.1 Packing and Covering Radii

An (n,M,d) code over GF(q) is a nonempty subset of GF(q)n with cardinality
M≥ 2 and minimum Hamming distance d. Let C be an (n,M,d) code over GF(q).
Due to the Sphere-Packing Bound, the packing radius of C , denoted by e(C ), is
defined to be

e(C ) =

⌊
d−1

2

⌋
. (10.1)

Recall that C is called an e(C )-error correcting code. The covering radius, denoted
by ρ(C ), is the smallest r such that

|C |
r

∑
i=0

(
n
i

)
(q−1)i ≥ qn. (10.2)

By definition, we have

ρ(C ) = max
x∈GF(q)n

min
c∈C

dist(x,c). (10.3)

The covering radius of codes is an interesting and challenging topic. The reader is
referred to Cohen, Honkala, Litsyn and Lobstein (1997) for detailed information.

289
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10.2 The Characteristic Polynomial of a Code

The distance enumerator of a code C is the formal polynomial

AC (z) =
1
|C | ∑

u,v∈C

zdist(u,v).

Thus, the coefficient Ai of zi in its expansion AC (z) = ∑Aizi, is the average over
all codewords of the number of codewords at distance i from a given codeword.
Note that the Ai are rational numbers with A0 = 1, and ∑Ai = |C |. A code C is
distance-invariant if, for any given codeword u, the number Ai(u) of codewords at
distance i from u is a constant not depending on u for every i with 0≤ i≤ n. Every
linear code is obviously distance-invariant. In this chapter, the weight enumerator
of a code C is defined to be the formal polynomial

WC (z) = ∑
u∈C

zwt(u),

where wt(u) denotes the Hamming weight of u. For any distance-invariant code
C containing the zero vector, its distance enumerator and weight enumerator are
identical.

Group algebras were defined in Section 1.3. Consider now the group algebra
C[GF(q)n], which is a vector space of dimension qn over the complex field C. To
each element u ∈ GF(q)n, we associate a basis element e(u) of C[GF(q)n]. Then
every element of C[GF(q)n] is a linear combination ∑c(u)e(u) of these qm basis
elements, where the coefficients c(u) ∈ C. We then define

e(u)∗ e(v) = e(u+ v),

which is the product for any two basis elements e(u) and e(v). This induces the
following multiplication ∗ for the elements in C[GF(q)m]:(

∑
u

b(u)e(u)
)
∗
(

∑
v

c(v)e(v)
)
= ∑

y

(
∑

u+v=y
b(u)c(v)

)
e(y). (10.4)

To each subset S⊂ GF(q)n, we associate the element

∑
u∈S

e(u) ∈ C[GF(q)n].

Without confusion, we use S to denote ∑u∈S e(u). The following mapping

S 7→ ∑
u∈S

e(u)

from the power set P(GF(q)n) to C[GF(q)n] is one-to-one. Hence, P(GF(q)n)

can be viewed as a subset of C[GF(q)n]. In this way, a code C ⊂ GF(q)n can be
viewed as an element of C[GF(q)n], i.e.,

C ⊆ GF(q)n⇐⇒ ∑
c∈C

e(c) ∈ C[GF(q)n].



November 17, 2021 14:14 ws-book9x6 Designs from Linear Codes designscodes page 291

Designs from Codes with Regularity 291

Define

Yi = {u ∈ GF(q)n : wt(u) = i}, i = 0,1, . . . ,n.

When these Yi are considered as elements in C[GF(q)n], they form the basis of an
(n+1)-dimensional subalgebra. For any code C ⊂ GF(q)n,

Yi ∗C =

(
∑
y∈Yi

e(y)

)(
∑
c∈C

e(c)

)

= ∑
u

 ∑
y+c=u

y∈Yi,c∈C

1

e(u)

= ∑
u

fi(u)e(u), (10.5)

where fi(u) is the number of codewords at distance i from u.
Now view Yi as elements in C[GF(q)n], and define

S j =
j

∑
i=0

Yi, 0≤ j ≤ n.

Then

S j ∗C = ∑
u

g j(u)e(u), (10.6)

where

g j(u) =
j

∑
i=0

fi(u)

is the number of codewords at distance at most j from u. For any j with 2 j < d(C ),
where d(C ) denotes the minimum distance of C , we have g j(u) = 0 or 1 in (10.6),
as any two codewords are at least at distance d(C ) from each other.

Let χ be any nonprincipal character of (GF(q),+). For each u ∈ GF(q)n, we
define a character χu : GF(q)n→ C by

χu(v) = χ((u,v)), for all v ∈ GF(q)n,

where (u,v) is the inner product in GF(q)n. Each character χu induces a linear
function from C[GF(q)n] to C by

χu

(
∑
v

a(v)e(v)
)
= ∑

v
a(v)χu(v).

These linear functions have the following properties whose proof can be found
in Van Lint (1971)[Chapter 5].

Lemma 10.1. Let notation be the same as before. Then we have the following.
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(a) For any A and B in C[GF(q)n], χu(A∗B) = χu(A)χu(B).
(b) For any u ∈ GF(q)n with wt(u) = j, χu(Yi) = Pi(q,n; j), where Pi(q,n;x) is

the Krawtchouk polynomial defined in Section 1.4.3.
(c) Sn = ∑n

i=0 Yi is the unique element of C[GF(q)n] satisfying

χ0(Sn) = qn, χu(Sn) = 0 for all u 6= 0.

For a code C ⊂ GF(q)n, we define

B j =
1
|C |2 ∑

u∈Y j

|χu(C )|2 (10.7)

for all j with 0 ≤ j ≤ n. These numbers Bi are called characteristic numbers of
C . When C is a linear code, (Bi) will become the weight distribution of the dual
code C⊥ (this will be proved later).

We further define the set

N(C ) = { j : 1≤ j ≤ n, B j 6= 0}. (10.8)

Let FC (x) be the polynomial

FC (x) =
qn

|C | ∏
j∈N(C )

(
1− x

j

)
, (10.9)

which is called the characteristic polynomial of C . Since the Krawtchouk poly-
nomials form a basis of the set of polynomials of degree at most n (see Section
1.4.3), FC (x) is uniquely expressed as

FC (x) =
n

∑
i=0

αiPi(q,n;x), (10.10)

which is referred to as the Krawtchouk expansion of the characteristic polynomial
FC (x).

The following result is due to Delsarte (1973a) (see also Goethals and Van
Tilborg (1975)).

Theorem 10.2. Let α0,α1, . . . ,αn be the coefficients of the Krawtchouk expansion
of the characteristic polynomial FC (x) of a code C ⊆GF(q)n. Then, as an element
of C[GF(q)n], the code C satisfies

n

∑
i=0

αiYi ∗C = Sn. (10.11)

Proof. By Lemma 10.1 (a), we have

χu

(
n

∑
i=0

αiYi ∗C

)
= χu

(
n

∑
i=0

αiYi

)
χu (C ) . (10.12)
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Let u have weight j. Then by Lemma 10.1 (b), we have

χu

(
n

∑
i=0

αiYi

)
= ∑αiPi(q,n; j) = FC ( j),

and from (10.7), (10.8) and (10.9), it follows that, for any u 6= 0, if χ(C ) 6= 0, then
FC ( j) = 0. Now, for u = 0 we have χu(C ) = |C |, and FC (0) = qn/|C |, from which
it follows that the value of (10.12) is zero for any u 6= 0, and qn for u = 0. The
desired conclusion then follows from Lemma 10.1 (c).

Corollary 10.3. Let α0,α1, . . . ,αn be the coefficients of the Krawtchouk expan-
sion of the characteristic polynomial FC (x) of a code C ⊆ GF(q)n, and let fi(u)
denote, for any u ∈ GF(q)n, the number of codewords at distance i from u. Then,

n

∑
i=0

αi fi(u) = 1 for all u ∈ GF(q)n. (10.13)

Proof. As an element of C[GF(q)n],

Sn = ∑
u∈GF(q)n

e(u).

By (10.5),

n

∑
i=0

αiYi ∗C =
n

∑
i=0

αi ∑
u∈GF(q)n

fi(u)e(u) = ∑
u∈GF(q)n

(
n

∑
i=0

αi fi(u)

)
e(u).

The desired conclusion then follows from (10.11).

Delsarte called FC (x) the minimal polynomial, and its degree the external dis-
tance of C due to the following result [Delsarte (1973a)].

Corollary 10.4. Let s be the degree of FC (x) of a code C and let ρ(C ) be its
covering radius. Then ρ(C )≤ s.

Proof. By Corollary 10.3, for all u ∈ GF(q)n we have
s

∑
i=0

αi fi(u) = 1.

Now suppose ρ(C )> s. Then there exits u ∈ GF(q)n such that dist(u,v)> s for
all v ∈ C . Whence fi(u) = 0 for all i with 0≤ i≤ s, and

s

∑
i=0

αi fi(u) = 0,

which contradicts Corollary 10.3.
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When C is linear, we have the following result.

Theorem 10.5. When C is linear, the Bi defined in (10.7) equals the number of
codewords with weight i in C⊥. That is, (Bi) is the weight distribution of C⊥.
Hence, the distance enumerator of the code C⊥ is the polynomial

BC (z) = ∑
j

B jz j.

Proof. By definition, we have

χu(C ) =

{
|C | if u ∈ C⊥,

0 otherwise.
(10.14)

The desired conclusion of the first part then follows from (10.7). The conclusion
of the second part is obvious.

The following theorem is a generalization of a result on the weight enumera-
tor of a code obtained in MacWilliams, Sloane and Goethals (1972), and can be
proved in the same line (see also Van Tilborg (1976)). It is equivalent to Theorem
2.4.

Theorem 10.6. The distance enumerator AC (z) of a linear code C , and BC of its
dual, are related by (the MacWilliams Identity)

AC (z) =
|C |
qn

n

∑
j=0

B j(1− z) j(1+(q−1)z)n− j,

where the number of distinct nonzero Bi is equal to s+ 1, and s is the degree of
FC (x).

The following result was developed in MacWilliams, Sloane and Goethals
(1972), and will be employed later.

Theorem 10.7. For a code C ⊆ GF(q)n, let the n + 1 real numbers H j, j =
0,1, . . . ,n, be defined by

H j =
1
|C | ∑

u∈Y j

χu(C ). (10.15)

Then, the weight enumerator WC (z) of C is given by (the Macwilliams Identify)

WC (z) =
|C |
qn

n

∑
j=0

H j(1− z) j(1+(q−1)z)n− j. (10.16)

Regarding Theorem 10.7, we have the following remarks:
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(1) If the characteristic number B j defined in (10.7) is zero, we have χu(C ) = 0
for all u ∈ Yj, whence H j = 0. Hence, the number of distinct nonzero H j is at
most s+1.

(2) Note that

H j =
1
|C | ∑v∈C

χv(Yj).

We know that these H j are real numbers.
(3) If C is linear, it follows from (10.14) that H j = B j, which equals the number

of codewords of weight j in C⊥.

10.3 Regular Codes and Their Designs

The objective of this section is to introduce the so-called t-regular codes and their
designs.

Let C ⊆ GF(q)n be a code with minimum distance d. The packing radius
e(C ) = b(d−1)/2c. By Corollary 10.4, we have

d−1
2
≤ ρ(C )≤ s,

where s is the external distance of C . In this section, we will study codes C

with d ≥ s, as they have certain regularity. The following theorem documents a
regularity aspect of such codes.

Theorem 10.8. Let the external distance s and the minimum distance d of a code
C satisfy d ≥ s. Then C is distance-invariant.

Proof. See Delsarte (1973a) for a proof.

Given a code C ⊆ GF(q)n and a vector v ∈ GF(q)n, we define the code
DC (v) =C− v = {u− v : u ∈ C}, (10.17)

which is a translate of C . We have the following conclusions:

• Clearly, all DC (v) have the same distance enumerator and the same character-
istic numbers.
• The weight enumerators of these codes DC (v) are, in general, different.

A very interesting question is whether DC (u) and DC (v) have the same weight
enumerator for distinct u and v in GF(q)n. The following theorem will be helpful
in answering this question [Delsarte (1973a)].

Theorem 10.9. Let s be the external distance of a code C ⊆ GF(q)n. The weight
enumerator WC (z) = ∑n

i=0 wizi of C is uniquely determined from its first s compo-
nents w0,w1, . . . ,ws−1.
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Proof. Let FC (x) be the characteristic polynomial of C and let s = deg(FC (x)) be
the external distance of C . Let N(C ) be the set of distinct zeros of FC (x) defined
in (10.8). By Theorem 10.7, the weight enumerator WC (z) is uniquely determined
from the real numbers Hi defined in (10.15), where H0 = 1, and for any j 6= 0,
H j 6= 0 only if j ∈ N(C ). By the definition of the Krawtchouk polynomials,

∑
i

Pi(q,n;x)zi = (1+(q−1)z)n−x(1− z)x.

It then follows from (10.16) that the coefficients of the expression WC (z) =
∑n

i=0 wizi are given by

wi =
1
qn |C |∑

j
H jPi(q,n; j), i = 0,1, . . . ,n.

We have then

∑
j∈N(C )

H jPi(q,n; j) = qn|C |−1wi−Pi(q,n;0) (10.18)

for all i ∈ {0,1, . . . ,s−1}. We would now show that this system of s linear equa-
tions with s unknowns H j ( j ∈ N(C )) has a unique solution. Let k be any given
element of N(C ), and let Fk(x) be the unique polynomial of degree s− 1 with
Fk(k) = 1 and Fk( j) = 0, for any j 6= k, j ∈ N(C ). If Fk(x) has the Krawtchouk
expansion

Fk(x) =
s−1

∑
i=0

βiPi(q,n;x),

it then follows from (10.18) that

Hk =
qn

|C |

s−1

∑
i=0

βiwi−Fk(0).

Consequently, the nonzero Hi are uniquely determined from the first s coefficients
of the weight enumerator. The desired conclusion then follows from Theorem
10.7.

We now consider the weight enumerator of DC (v) for any v ∈ GF(q)n. DC (v)
has the same external distance s with C . In the weight enumerate

W (z) = ∑
i

fi(v)zi

of DC (v), the coefficient fi(v) is the number of codewords u ∈ C at distance i
from v. Then according to Theorem 10.9, W (z) is uniquely determined from the
s components fi(v), i = 0,1, . . . ,s− 1. Let w be the minimum weight of DC (v),



November 17, 2021 14:14 ws-book9x6 Designs from Linear Codes designscodes page 297

Designs from Codes with Regularity 297

i.e., the smallest w such that fw(v) 6= 0 and fi(v) = 0 for i = 0,1, . . . ,w−1, in the
weight enumerator of DC (v). Note that we must have w≤ s.

We are now ready to define t-regular codes. Let C be a code with external
distance s. Let t be an integer with 0≤ t ≤ s. We say that C is t-regular if for every
v ∈GF(q)n such that DC (v) has minimum weight w≤ t, the weight enumerator of
DC (v) depends only on w. An s-regular code with external distance s is said to be
completely regular. By definition, a zero-regular code is distance-invariant.

The following theorem was developed in Delsarte (1973a) (see also Goethals
and Van Tilborg (1975)), and will be useful for constructing designs.

Theorem 10.10.

(a) If the minimum distance d and the external distance s of a code C satisfy
s≤ d < 2s−1, then C is (d− s)-regular.

(b) If d ≥ 2s−1, then C is completely regular.

Proof. Let v ∈ GF(q)n be any vector such that DC (v) = D− v has minimum
weight w≤ d− s, and let x ∈ DC (v) with weight w. Since the minimum distance
of DC (v) is d, any other vector y ∈ DC (v) has weight at least equal d−w ≥ s.
It follows that the first s components fi(v), i = 0,1, . . . ,s− 1, of the weight enu-
merator of DC (v) all equal zero, except that fw(v)≥ 1. Hence, by Theorem 10.9,
the weight enumerator is uniquely determined from these s components, which
clearly depend only on w. This proves the first part of this theorem.

We now prove the second part of this theorem. Assume now that d ≥ 2s−1,
i.e., d− s ≥ s− 1. Then from the discussions above it is clear that C is (s− 1)-
regular. For any DC (v) with minimum weight w = s, we have, by definition,
fi(v) = 0 for i = 0,1, . . . ,s−1, and by Theorem 10.9, the same conclusion holds
on its weight enumerator. Thus, in this case, C is completely regular.

The following theorem shows that certain t-regular codes hold t-designs. It
is a variation of Theorem 5.7 in Delsarte (1973a). Its proof is very similar and
omitted here (a proof could be found in Van Tilborg (1976)).

Theorem 10.11. Let C be a t-regular binary code of length n, containing the zero
vector, and let its minimum distance d satisfy d ≥ 2t. Then for each weight k, the
supports of all codewords of weight k form a t-design.

Example 10.12. Regarding the extended binary Hamming code C(2,3), we have
the following conclusions:

(a) It has parameters [8,4,4] and weight enumerator 1+ 14z4 + z8, and is self-
dual.
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(b) The external distance of the code is 2 as its dual code (in this case, the code
is self-dual) has two nonzero weights. Hence, it is 2-regular and completely
regular by Theorem 10.10.

(c) It holds 2-designs by Theorem 10.11.

10.4 Perfect Codes

Recall the packing radius e(C ) and covering radius ρ(C ) of a code C defined
in Section 10.1. By definition, e(C ) ≤ ρ(C ). A code C is said to be perfect if
e(C ) = ρ(C ). By definition, an e-error correcting code is perfect if, for every
v ∈ GF(q)n, there exists exactly one codeword at distance e or less from v.

Perfect codes can be characterized as follows [Goethals and Van Tilborg
(1975)].

Theorem 10.13. An e-error correcting code C is perfect if and only if, as an
element in C[GF(q)n], it satisfies Se ∗C = Sn.

Proof. Equation (10.6) says that

Se ∗C = ∑
v∈GF(q)n

ge(v)e(v),

where the coefficient ge(v) is equal to the number of codewords at distance e or
less from v. Hence, an e-error correcting code is perfect if and only if ge(v) = 1
for all v ∈ GF(q)n. This completes the proof.

As corollaries of Theorem 10.13, we have the following whose proofs can be
found in Van Lint (1971).

Corollary 10.14. The characteristic polynomial of a perfect e-error correcting
code C ⊂ GF(q)n is given by

Le(x) =
e

∑
i=0

Pi(q,n;x),

which has degree e.

The following is a consequence of Theorem 10.10.

Corollary 10.15. A perfect code is completely regular.

The next theorem documents a lower bound on the covering radius of linear
codes and is due to Delsarte (1973a), and follows from Corollary 10.4 and Theo-
rem 10.5.
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Theorem 10.16. Let C be an [n,κ,d] code over GF(q). Assume that C⊥ has s⊥

nonzero weights. Then

|C |
s⊥

∑
i=0

(
n
i

)
(q−1)i ≥ qn. (10.19)

Consequently, ρ(C ) ≤ s⊥. In addition, C is perfect if and only if the equality of
(10.19) holds.

The following theorem then follows from the definition of perfect codes, the
Sphere-Packing Bound and Theorem 10.16.

Theorem 10.17. Let C be an [n,κ,d] code over GF(q). Then the following three
statements are equivalent.

• C is perfect.
• The equality of the Sphere-Packing Bound holds.
• s⊥ =

⌊ d−1
2

⌋
.

The weight enumerator of perfect codes is given in the next theorem [Van Lint
(1975)].

Theorem 10.18. If C is a perfect single-error-correction code of length n over an
alphabet of q symbols (q not necessarily a prime power), then

A(z) =
[1+(q−1)z]n +n(q−1)[1+(q−1)z]

n−1
q (1− z)

n(q−1)+1
q

n(q−1)+1
.

Perfect codes are very rare. The following are the only perfect linear codes
over finite fields [Cohen, Honkala, Litsyn and Lobstein (1997); Van Lint (1975)].

(1) [n,n,1] codes over GF(q) with covering radius 0 for each n≥ 1.
(2) [2s+1,1,2s+1] repetition codes over GF(q) with covering radius s for each

s≥ 1.
(3) Codes of length n containing only one codeword.
(4) q-ary codes with the parameters of Hamming codes.
(5) The binary Golay code with parameters [23,12,7].
(6) The ternary Golay code with parameters [11,6,5].

We will treat the designs from some of these perfect codes in the next section.
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10.5 Designs in Perfect Codes

Perfect codes are fascinating partially because they hold designs. Some extended
perfect codes contain also designs. In this section, we first prove several general
theorems about designs held in perfect codes, and then document designs from
specific perfect codes.

10.5.1 Theory of Designs in Perfect Codes

The following is a characterisation of perfect linear codes with t-design, and was
developed in Assmus and Mattson (1974).

Theorem 10.19. A linear code C over GF(q) with length n and minimum distance
d = 2e+1 is perfect if and only if the supports of the codewords of weight d form
an (e+1)-(n,2e+1,(q−1)e) design.

Proof. Let C be a perfect linear code over GF(q) with length n and minimum
distance d = 2e+ 1. Let T be an arbitrary (e+ 1)-subset of the point set P =

{0,1, . . . ,n−1}. Any vector u ∈GF(q)n with Hamming weight e+1 and support
Suppt(u) = T is at distance e from exactly one codeword c ∈ C , and the weight of
c is equal to d = 2e+1. The number of all vectors in GF(q)n with T as the support
is (q−1)e+1, and each two such vectors are at distance e from distinct codewords.
Hence, not counting scalar multiples, T is contained in exactly (q− 1)e supports
of the codewords of weight d = 2e+ 1. As a result, the set of supports of the
codewords with minimum weight d is an (e+1)-(n,2e+1,(q−1)e) design.

Assume now that the supports of all codewords of minimum weight d = 2e+1
in a linear code C over GF(q) with length n form an (e+ 1)-(n,2e+ 1,(q− 1)e)

design. Any vector x in GF(q)n with weight not exceeding e is at distance at most
e from the zero codeword. Suppose, on the contrary, that the spheres of radius
e around all codewords of C do not contain all vectors in GF(q)n, and let y be a
vector of smallest weight among all vectors that are at distance no less than e+1
from every codeword. Hence, the weight of y (i.e., the distance of y from the
zero codeword) is at least e+ 1. Let yi1 ,yi2 , . . . ,yie+1 be the set of e+ 1 nonzero
coordinates of y. The set of indices T = {i1, i2, . . . , ie+1} is contained in (q−1)e

supports of the codewords of minimum weight. The number of codewords of
minimum weight whose supports contain T is equal to (q− 1)e+1, and any two
such codewords differe in at least one position from T . Therefore, there is a
codeword z of minimum weight which coincides with y in all positions from T ,
i.e., zi j = yi j for all 1 ≤ j ≤ e+ 1. As a result, the vector u = z− y is of weight
smaller than the weight of y, and is at distance at least e+1 from all codewords.
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This is contrary to the choice of y.

Corollary 10.20. In a perfect linear code C over GF(q) with length n and mini-
mum distance d = 2e+1, the number of minimum weight codewords is

Ad = (q−1)e+1

( n
e+1

)(2e+1
e+1

) .
Proof. Note that C is linear. Any two codewords of minimum weight d have the
same support if and only if one is the scaler multiple of the other. It then follows
from Theorem 10.19 that

Ad = (q−1)b = (q−1)× (q−1)e

( n
e+1

)(2e+1
e+1

) ,
where b is the number of blocks in the (e+1)-(n,2e+1,(q−1)e) design formed
by the supports of the codewords of minimum weight.

Perfect codes are attractive, as their extended codes sometimes hold t-designs
also. The next theorem gives the details and was proved in Assmus and Mattson
(1974).

Theorem 10.21. If C is a perfect binary code of length n and minimum weight
d = 2e+1 and contains the zero vector, the supports of the codewords of weight
2e+2 in the extended code C form an (e+2)-(n+1,2e+2,1) design.

Theorem 10.21 is not really useful, as the only nontrivial binary perfect codes
are the Hamming codes and the binary Golay code with parameters [23,12,7].
Hence, we omit its proof and refer the reader to Assmus and Mattson (1974) for a
proof.

10.5.2 Designs in the [23,12,7] Golay Binary Code

The binary quadratic residue code QRC(23,2)
0 is perfect. It has parameters

[23,12,7] and generator polynomial

g(x) = x11 + x9 + x7 + x6 + x5 + x+1,

which is irreducible over GF(2). Its weight enumerator is

1+253z7 +506z8 +1288z11 +1288z12 +506z15 +253z16 + z23.

The weight enumerator of (QRC(23,2)
0 )⊥ is given by

1+506z8 +1288z12 +253z16.
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The 4-designs held by QRC(23,2)
0 have the following parameters (v,k,λ):

(23,7,1), (23,8,4), (23,11,48), (23,12,72), (23,15,78), (23,16,52).

The 4-designs held by (QRC(23,2)
0 )⊥ have the following parameters (v,k,λ):

(23,8,4), (23,12,72), (23,16,52).

By Theorem 10.19, the minimum weight codewords hold a 4-design. One can
apply for the Assmus-Mattson Theorem to prove that the supports of the code-
words of every fixed weight form a 4-design. The parameters of the designs are
computed with Magma. They can also be computed from Theorem 10.18. The
automorphism group of the code is the Mathieu group M23, which is 4-transitive.
Some of the designs above are complete and are not interesting. Further informa-
tion about Golay codes can be found in MacWilliams and Sloane (1977)[Chapter
20].

10.5.3 Designs in the [11,6,5] Golay Ternary Code

The ternary quadratic residue code QRC(11,3)
0 is perfect. It has parameters [11,6,5]

and generator polynomial

g(x) = x5 + x4 +2x3 + x2 +2,

which is irreducible over GF(3). Its weight enumerator

1+132z5 +132z6 +330z8 +110z9 +24z11.

The code (QRC(11,3)
0 )⊥ has parameters [11,5,6] and weight enumerator

1+132z6 +110z9.

The 4-designs held by QRC(11,3)
0 have the following parameters (v,k,λ):

(11,5,1), (11,6,3),(11,8,35), (11,9,21).

The 4-designs held by (QRC(11,3)
0 )⊥ have the following parameters:

(11,6,3), (11,9,21).

By Theorem 10.19, the minimum weight codewords hold a 4-design. By the
Assmus-Mattson Theorem, the supports of the codewords of every fixed weight
form a 4-design. The parameters of the designs are computed with Magma. They
can also be computed from Theorem 10.18. The automorphism group of the code
is 4-transitive [MacWilliams and Sloane (1977)][Section 7]. Some of the designs
above are complete and not interesting.
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10.5.4 Designs in the Hamming and Simplex Codes

Hamming codes and Simplex codes are duals of each other. Hamming codes are
widely employed in communication systems, data storage systems, and consumer
electronics. They also hold many infinite families of designs. In this section, we
will investigate the designs derived from these codes. This section is mainly based
on Ding and Li (2017).

Hamming and Simplex codes were introduced in Section 2.13. Hamming
codes are not cyclic in general. However, they are equivalent to cyclic codes
under certain conditions.

Let α be a generator of GF(qm)∗. Set β = αq−1. Let g(x) be the minimal
polynomial of β over GF(q). Let C(q,m) denote the cyclic code of length v =

(qm− 1)/(q− 1) over GF(q) with generator polynomial g(x). Then C(q,m) has
parameters [(qm− 1)/(q− 1),(qm− 1)/(q− 1)−m,d], where d ∈ {2,3}. When
gcd(q−1,m) = 1, C(q,m) has minimum weight 3 and is equivalent to the Hamming
code. In this section, we use C(q,m) to denote the [(qm−1)/(q−1),(qm−1)/(q−
1)−m,3] Hamming code over GF(q), which may be cyclic or non-cyclic.

Lemma 10.22. The weight distribution of C(q,m) is given by

qmAk = ∑
0≤i≤ qm−1−1

q−1
0≤ j≤qm−1

i+ j=k

[( qm−1−1
q−1

i

)(qm−1

j

)(
(q−1)k +(−1) j(q−1)i(qm−1)

)]

for 0≤ k ≤ (qm−1)/(q−1).

Proof. C⊥(q,m) is the Simplex code and has weight enumerator is 1+(qm−1)zqm−1
.

By Theorem 2.4, the weight enumerator of C(q,m) is given by

qmA(z) = (1+(q−1)z)v

[
1+(qm−1)

(
1− z

1+(q−1)z

)qm−1]

=

[
(1+(q−1)z)v +(qm−1)(1− z)qm−1

(1+(q−1)z)
qm−1−1

q−1

]
= (1+(q−1)z)

qm−1−1
q−1

[
(1+(q−1)z)qm−1

+(qm−1)(1− z)qm−1
]
.

The desired conclusion then follows.

It is known that the Hamming code over GF(q) is perfect, and the codewords
of weight 3 hold a 2-design by Theorem 10.19. The 2-designs documented in the
following theorem may be viewed as an extension of this result.
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Theorem 10.23. Let m≥ 3 and q = 2 or m≥ 2 and q > 2, and let gcd(q−1,m) =

1. Let P = {0,1,2, . . . ,(qm− q)/(q− 1)}, and let B be the set of the supports
of the codewords of Hamming weight k with Ak 6= 0 in C(q,m), where 3 ≤ k ≤ w
and w is the largest such that w−b(w+ q− 2)/(q− 1)c < 3. Then (P ,B) is a
2-((qm− 1)/(q− 1),k,λ) design. In particular, the supports of the codewords of
weight 3 in C(q,m) form a 2-((qm−1)/(q−1),3,q−1) design.

The supports of all codewords of weight qm−1 in C⊥(q,m) form a 2-((qm −
1)/(q− 1),qm−1,(q− 1)qm−2) design. In particular, the complementary design
of the design formed by the supports of all codewords of weight q2 in C⊥(q,3) is a

Steiner system with parameters 2-(q2 +q+1,q+1,1).

Proof. C⊥(q,m) is the Simplex code, and has weight enumerator 1+(qm−1)zqm−1
.

Recall now Theorem 4.24 and the definition of w for C(q,m) and w⊥ for C⊥(q,m).

Since C(q,m) has minimum weight 3. Given that the weight enumerator of C⊥(q,m)

is 1+(qm− 1)zqm−1
, we deduce that w⊥ = qm−1. Put t = 2. It then follows that

s = 1 = d− t. The desired conclusion on the 2-design property then follows from
Theorem 4.24 and Lemma 10.22.

We now prove that the supports of codewords of weight 3 in C(q,m) form a
2-((qm−1)/(q−1),3,q−1) design. We have already proved that these supports
form a 2-((qm−1)/(q−1),3,λ) design. To determine the value λ for this design,
we need to compute the total number b of blocks in this design. To this end, we
first compute the total number of codewords of weight 3 in C(q,m). It follows from
Lemma 10.22 that

qmA3 =

( qm−1−1
q−1
0

)(
qm−1

3

)
[(q−1)3− (q−1)0(qm−1)]+( qm−1−1

q−1
1

)(
qm−1

1

)
[(q−1)3− (q−1)1(qm−1)]+( qm−1−1

q−1
2

)(
qm−1

1

)
[(q−1)3− (q−1)2(qm−1)]+( qm−1−1

q−1
3

)(
qm−1

0

)
[(q−1)3− (q−1)3(qm−1)]

= qm(qm−1)(qm−q).

We obtain then

A3 =
(qm−1)(qm−q)

6
,

which also follows directly from Theorem 10.19. Since 3 is the minimum nonzero
weight in C(q,m), it is easy to see that two codewords of weight 3 in C(q,m) have
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the same support if and only one is a scalar multiple of another. Thus, the total
number b of blocks is given by

b :=
A3

q−1
=

(qm−1)(qm−q)
6(q−1)

.

It then follows that

λ =
b
(3

2

)
( qm−1

q−1
2

) = q−1.

Since C⊥(q,m) has weight enumerator 1+(qm−1)zqm−1
, the total number b⊥ of

blocks in the design held in C⊥(q,m) is given by

b⊥ =
qm−1
q−1

.

Consequently,

λ⊥ =

qm−1
q−1

(qm−1

2

)
( qm−1−1

q−1
2

) = (q−1)qm−2.

Thus, the supports of all codewords of weight qm−1 in C⊥(q,m) form a 2-design with
parameters (

(qm−1)/(q−1), qm−1, (q−1)qm−2) .
The Steiner system with the parameters 2-(q2 + q+ 1,q+ 1,1) in Theorem

10.23 may be isomorphic to the projective plane PG1(2,q). Theorem 10.23 tells
us that for some k ≥ 3 with Ak 6= 0, the supports of the codewords with weight
k in C(q,m) form 2-((qm−1)/(q−1),k,λ) design. However, it looks complicated
to determine the parameter λ corresponding to k ≥ 4. We propose the following
problem.

Problem 10.24. Let q≥ 3 and m≥ 2. For k≥ 4 with Ak 6= 0, determine the value
λ in the 2-((qm−1)/(q−1),k,λ) design formed by the supports of the codewords
with weight k in C(q,m).

Notice that two binary codewords have the same support if and only if they
are equal. When q = 2, Theorem 10.23 becomes the following.

Corollary 10.25. Let m≥ 3. Let P = {0,1,2, . . . ,2m−2}, and let B be the set of
the supports of the codewords with Hamming weight k in C(2,m), where 3 ≤ k ≤
2m−3. Then (P ,B) is a 2-(2m−1,k,λ) design, where

λ =
(k−1)kAk

(2m−1)(2m−2)
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and Ak is given in Lemma 10.22.
The supports of all codewords of weight 2m−1 in C⊥(2,m) form a 2-(2m −

1,2m−1,2m−2) design.

Corollary 10.25 says that each binary Hamming code C(2,m) and its dual code
give a total number 2m−4 of 2-designs with various block sizes.

The following are examples of the 2-designs held in the binary Hamming code.

Corollary 10.26. Let m≥ 4. Let P = {0,1,2, . . . ,2m−2}, and let B be the set of
the supports of the codewords with Hamming weight 3 in C(2,m). Then (P ,B) is a
2-(2m−1, 3, 1) design, i.e., a Steiner triple system S(2,3,2m−1).

Proof. By Lemma 10.22, we have

A3 =
(2m−1−1)(2m−1)

3
.

The desired value for λ then follows from Corollary 10.25.

Corollary 10.26 presents another infinite family of Steiner systems. Two other
families were described in Corollaries 6.31 and 5.22. Theorem 6.64 documents
an infinite family of Steiner systems S(2,4,2m) for m≡ 2 (mod 4).

Corollary 10.27. Let m≥ 4. Let P = {0,1,2, . . . ,2m−2}, and let B be the set of
the supports of the codewords with Hamming weight 4 in C(2,m). Then (P ,B) is a
2-(2m−1, 4, 2m−1−2) design.

Proof. By Lemma 10.22, we have

A4 =
(2m−1−1)(2m−1−2)(2m−1)

6
.

The desired value for λ then follows from Corollary 10.25.

Corollary 10.28. Let m≥ 4. Let P = {0,1,2, . . . ,2m−2}, and let B be the set of
the supports of the codewords with Hamming weight 5 in C(2,m). Then (P ,B) is a
2-(2m−1, 5, λ) design, where

λ =
2(2m−1−2)(2m−1−4)

3
.

Proof. By Lemma 10.22, we have

A5 =
(2m−1−1)(2m−1−2)(2m−1−4)(2m−1)

15
.

The desired value for λ then follows from Corollary 10.25.
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Corollary 10.29. Let m≥ 4. Let P = {0,1,2, . . . ,2m−2}, and let B be the set of
the supports of the codewords with Hamming weight 6 in C(2,m). Then (P ,B) is a
2-(2m−1, 6, λ) design, where

λ =
(2m−1−2)(2m−1−3)(2m−1−4)

3
.

Proof. By Lemma 10.22, we have

A6 =
(2m−1−1)(2m−1−2)(2m−1−3)(2m−1−4)(2m−1)

45
.

The desired value for λ then follows from Corollary 10.25.

Corollary 10.30. Let m≥ 4. Let P = {0,1,2, . . . ,2m−2}, and let B be the set of
the supports of the codewords with Hamming weight 7 in C(2,m). Then (P ,B) is a
2-(2m−1, 7, λ) design, where

λ =
(2m−1−2)(2m−1−3)(4×22(m−1)−30×2m−1 +71)

30
.

Proof. By Lemma 10.22, we have

A7 = (2m−1−1)(2m−1−2)(2m−1−3)(2m−1)×
4×22(m−1)−30×2m−1 +71

630
.

The desired value for λ then follows from Corollary 10.25.

10.6 Designs in Uniformly Packed Codes

Quasi-perfect codes are an interesting class of codes, and uniformly packed codes
are a subclass of quasi-perfect codes. The purpose of this section is to treat these
codes and their designs.

10.6.1 Definitions, Properties and General Results

Recall that a code C is perfect if its covering radius equals its packing radius, i.e.,
ρ(C ) = e(C ). In view that there is only one infinite family of perfect linear codes,
it would be very interesting to consider codes C such that ρ(C ) = e(C )+1.

A code C over GF(q) with minimum distance d is quasi perfect if

ρ(C ) = e(C )+1 =

⌊
d−1

2

⌋
+1.

By definition, in a quasi-perfect code every vector in GF(q)n is at distance e+ 1
or less from at least one codeword, here and hereafter e means e(C ).
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Let C be a quasi-perfect e-error correcting code. Then the minimum distance
d(C ) = 2e+2 or d(C ) = 2e+1. Let v ∈ GF(q)n be at distance e+1 from some
codeword c ∈ C . If d(C ) = 2e+2, then v is at distance e+1 or more from every
codeword in C . But, if d(C ) = 2e+ 1, v can be at distance e from some other
codeword, or be at distance e+ 1 or more from every codeword. In general, the
number of codewords at distance e+1 from v depends on v.

We say that an e-error correcting code C is a uniformly packed code with
parameters λ and µ if,

• it is quasi-perfect (i.e., ρ(C ) = e+1); and
• for every vector v ∈GF(q)n at distance e from some codeword, the number of

codewords at distance e+1 from v is a constant λ; and
• for every vector v ∈ GF(q)n at distance e+ 1 or more from every codeword,

the number of codewords at distance e+1 from v is a constant µ.

Note that λ = 0 if d(C ) = 2e+2.
The following two theorems give a characterisation of uniformly packed codes

[Goethals and Van Tilborg (1975)].

Theorem 10.31. A quasi-perfect e-error correcting code C is uniformly packed
with parameters λ and µ if and only if, as an element in C[GF(q)n], it satisfies

(µSe−λYe +Ye+1)∗C = µSn.

Theorem 10.32. An e-error correcting code C ⊆ GF(q)n is a uniformly packed
code with parameters λ and µ if and only if it is quasi-perfect and its characteristic
polynomial is the polynomial of degree e+1 defined by the Krawtchouk expansion
∑αiPi(q,n;x) with coefficients

αe+1 =
1
µ
, αe = 1− λ

µ
and αi = 1 for 0≤ i≤ e−1. (10.20)

Corollary 10.33. Any uniformly packed e-error correcting code C is completely
regular.

Proof. By Theorem 10.32, the external distance s of C is e+ 1. By definition,
d ≥ 2e+1. The desired conclusion then follows from Theorem 10.10.

The following is a very interesting result [Goethals and Van Tilborg (1975)].

Corollary 10.34. In a uniformly packed e-error correcting binary code contain-
ing the zero vector, the supports of all codewords with any nonzero weight k form
a t-design, where

t =
{

e if d = 2e+1,
e+1 if d = 2e+2.
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Proof. The desired conclusion of corollary follows from Theorem 10.11 and
Corollary 10.33.

Corollary 10.34 tells us that uniformly packed e-error correcting binary codes
hold t-designs. However, we do not have results on possible t-designs held in uni-
formly packed e-error correcting codes over GF(q) for q > 2. The reader should
be informed that uniformly packed codes over GF(q) do hold “q-ary t-designs”,
which are different from classical t-designs for q > 2 [Goethals and Van Tilborg
(1975)].

Uniformly packed binary codes with λ+1 = µ were introduced in [Semakov,
Zinovjev and Zaitzev (1973)]. Such codes are said to be strongly uniformly
packed. We have the following result for these codes [Van Tilborg (1976)].

Theorem 10.35. Let C be a uniformly packed e-error correcting binary code con-
taining the zero vector and satisfying µ− λ = 1 and d = 2e + 1. Then in the
extended code C , the supports of codewords of any fixed weight form an (e+1)-
design.

Since the main objective of this monograph is to give a well-rounded treatment
of designs from linear codes, the following theorem will be very useful to us [Van
Tilborg (1976)].

Theorem 10.36. Let C be an e-error correcting linear code. Then C is uniformly
packed if and only if the dual code C⊥ contains exactly e+1 nonzero weights.

The following is a corollary of Theorem 10.32 [Goethals and Van Tilborg
(1975)].

Corollary 10.37. A linear single-error-correcting code is uniformly packed if and
only if its dual is a two-weight code.

Example 10.38. For the extended binary Hamming code C(2,3) with parameters
[8,4,4], we have the following:

(a) It is quasi perfect, as its packing and covering radii are 1 and 2, respectively.
(b) It is a uniformly packed code with parameters (λ,µ) = (0,4), as the code is

self-dual and has two nonzero weight 4 and 8 (by Corollary 10.37).

10.6.2 Designs in Uniformly Packed Binary Codes

We are much interested in uniformly packed e-error correcting codes, as they hold
designs. Such codes with a large e are desired. However, we have the following
result due to Van Tilborg (1976).
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Theorem 10.39. There is no uniformly packed e-error correcting code for e≥ 4.

No infinite family of uniformly packed 3-error correcting codes is known in
the literature. There are only a small number of sporadic uniformly packed 3-error
correcting codes. Only a few finite families of uniformly packed 2-error correcting
codes are known.

The parameters of known infinite families of uniformly packed single-error
correcting codes are summarized in Tables 10.1, 10.2, and 10.3, where k is the
dimension of the codes. Three more families of uniformly packed single-error
correcting binary codes were introduced in Van Tilborg (1976). These codes are
obtained from two-weight projective codes. When q = 2, some of these codes
hold either 1-designs or 2-designs. The extended codes of some of them may
hold 2-designs. For detailed descriptions of these codes, the reader should consult
Goethals and Van Tilborg (1975) and Van Tilborg (1976). We are not interested
in 1-designs, and thus will not work out parameters of these designs.

Table 10.1 Parameters of uniformly packed 1-error correcting codes (I)
Number 1 2 3 4
q q q 2m 2m

n r qm−1
q−1 r qm+1

q−1 2m +2 22m−1
k 2m 2m 3 3
λ

(r−1
2

)
+ qm−q

2

(r+2
2

)
− qm+q

2 0 23m−1−22m−2m +3
µ

(r
2

) (r+1
2

)
2m−1 +1 (2m−1−1)(22m−1)

Table 10.2 Parameters of uniformly packed 1-error correcting codes (II)
Number 5 6
q 2m 2m

n 2m−1(2m−1) (2m−1 +1)(2m +1)
k 3 3
λ (2m−2−1)(2m−1−1)(2m +1) 2m−2(2m−1 +3)(2m−1)
µ 2m−2(2m−1−1)(2m−1) 2m−2(2m−1 +1)(2m +1)

Table 10.3 Parameters of uniformly packed 1-error correct-
ing codes (III)

Number 7 8
q 2 q
n (2m−1)(22m−1) (qm−q)/(q−1)
k 3m m
λ 23m−1−22m−2m−1 +2 (n−2)(q−1)/2
µ (2m−1−1)(22m−1) n(q−1)/2



November 17, 2021 14:14 ws-book9x6 Designs from Linear Codes designscodes page 311

Designs from Codes with Regularity 311

Parameters of known uniformly packed e-error correcting codes for e ∈ {2,3}
are summarised in Table 10.4. The parameters in the first row are from the
Preparata codes, which are nonlinear. The narrow-sense primitive BCH binary
code with length 22ℓ+1−1 and designed distance 5 is uniformly packed, and has
the parameters of the second row [Gorenstein, Peterson and Zieler (1960)]. Its
dual code has the weight distribution of Table 8.1.

Table 10.4 Parameters of uniformly packed
e-error correcting codes for e≥ 2

No. q e n λ µ

1 2 2 22ℓ−1 22ℓ−4
3

22ℓ−1
3

2 2 2 22ℓ+1−1 22ℓ−1
3

22ℓ−1
3

3 2 2 11 2 3
4 2 2 21 1 4
5 2 2 22 0 2
6 2 3 24 0 6
7 3 1 9 4 9
8 3 1 10 0 3
9 3 2 12 0 4

Now we present a general construction of other families of linear codes that
are uniformly packed and have also the parameters of the second row. Let f be
a function from GF(2m) to itself with f (0) = 0. Let α be a generator of GF(2m).
Define a matrix

H f =

[
1 α α2 · · · α2m−2

f (1) f (α) f (α2) · · · f (α2m−2)

]
, (10.21)

where each entry b means the column vector (b1,b2, . . . ,bm)
T in GF(2)m, where

b =
m

∑
i=1

biβi

and {β1,β2, . . . ,βm} is a basis of GF(2m) over GF(2). Thus, H f is a 2m×(2m−1)
matrix over GF(2). Let C f denote the linear code over GF(2) with parity-check
matrix H f . When f (x) = xe, the code is the cyclic code over GF(2) with generator
polynomial g(x) = LCM(Mα(x),Mαe(x)).

The following result was proved in Carlet, Charpin and Zinoviev (1998).

Theorem 10.40. Let m be odd. Let f be a mapping from GF(2m) to itself with
f (0) = 0. Then, f is almost bent if and only if C f is a uniformly packed code with
minimum distance 5 and covering radius 3.

If f is almost bent, then the dual code C⊥f has the weight distribution in Table
8.1, and the code C f has the parameters of the second column in Table 10.4.
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Several families of known almost bent functions were introduced in Section
1.10. Plugging them into Theorem 10.40, one obtains several families of cyclic
codes which are uniformly packed and double-error correcting. These codes and
the narrow-sense primitive BCH code with designed distance 5 all hold 2-designs.
The parameters of the 2-designs were determined in Section 8.1. Uniformly
packed codes were also investigated in Calderbank (1982), Tonchev (1996) and
Rifà and Zinoviev (2010).

Uniformly packed codes over GF(q) hold t-designs in many cases for q ≥ 3.
But it is open when they hold t-designs in general. Some quasi-perfect codes may
not be uniformly packed, but may still hold t-designs. For example, a class of
quasi-perfect ternary codes in Danev and Dodunekov (2008) hold 1-designs.
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Chapter 11

Designs from QR and Self-Dual Codes

Self-dual codes are fascinating in both theory and application. The objective of
this chapter is to present a summary of results about self-dual codes and extended
quadratic residue codes as well as their designs. We restrict ourselves to only
theories of these codes that are related to t-designs, as self-dual codes form a huge
topic with hundreds of references.

11.1 Self-Dual Codes and Their Designs

11.1.1 Definition and Existence

So far in this monograph, we have only associated to the ambient space GF(q)n

the following standard (Euclidean) inner product

〈x,y〉=
n

∑
i=1

xiyi, (11.1)

where x = (x1, . . . ,xn) ∈ GF(q)n and y = (y1, . . . ,yn) ∈ GF(q)n. If q = r2, the
Hermitian inner product is defined by

〈u,v〉=
n

∑
i=1

uivr
i , (11.2)

where u = (u1, . . . ,un) ∈ GF(q)n and v = (v1, . . . ,vn) ∈ GF(q)n. The map x 7→ xr,
x ∈ GF(r2), is called the global conjugation.

Recall that the (Hermitian) dual of a linear code C over GF(q) is defined to be

C⊥ = {x ∈ GF(q)n : 〈x,y〉= 0 for all y ∈ C}.

A code C is self-orthogonal if C ⊆C⊥, and C is self-dual if C =C⊥. By definition,
the length n of a self-dual code must be even, and the dimension of a self-dual code
is equal to half of the length. A code C is formally self-dual if C and C⊥ have the

313
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same weight distribution. By definition, formally self-dual codes contain self-dual
codes as a subclass.

In this section, we consider linear codes over GF(q), where q ∈ {2,3,4}.
Whenever we talk about the orthogonality and dual of a linear code over GF(4),
we mean the orthogonality and dual with respect to the Hermitian inner product,
unless otherwise stated.

Let C be an [n,n/2,d] self-dual code over GF(q), where q ∈ {2,3,4}. By
definition, we have 〈c,c〉= 0 for all c ∈ C . When q ∈ {2,3},

0 = 〈c,c〉=
n−1

∑
i=0

c2
i = wt(c) mod q.

When q = 4,

0 = 〈c,c〉=
n−1

∑
i=0

c3
i = wt(c) mod 2.

Thus, for self-dual codes over GF(2), GF(3), and GF(4) all weights are divisible
by 2, 3, and 2, respectively.

A linear code C is said to be divisible if there is an integer ∆ > 1 such that
every weight in C is divisible by ∆. The largest integer ∆, for which a code C is
divisible, is called the divisor of C .

The following is a fundamental theorem about self-dual codes over small fields
([Ward (1981, 1998)], [Huffman and Pless (2003)][p. 339]), and is called the
Gleason-Pierce-Ward Theorem.

Theorem 11.1. Let C be an [n,n/2] divisible code of length n over GF(q) with
divisor ∆. Then one (or more) of the following holds:

(I) (q,∆) = (2,2).
(II) (q,∆) = (2,4) and C is self-dual.

(III) (q,∆) = (3,3) and C is self-dual.
(IV) (q,∆) = (4,2) and C is Hermitian self-dual.
(V) ∆ = 2 and C is equivalent to the code over GF(q) with generator matrix

[In/2In/2].

The code in the last case in Theorem 11.1 is not interesting from the viewpoint
of design theory. Self-dual codes over small fields are classified into the following
types according to Theorem 11.1. A self-dual code C over GF(q) is said to be of

• Type I if (q,∆) = (2,2) and there is a codeword with weight w≡ 2 (mod 4);
• Type II if (q,∆) = (2,4);
• Type III if (q,∆) = (3,3); and
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• Type IV if (q,∆) = (4,2) and C is Hermitian self-dual.

Binary divisible codes with ∆ = 4 are said to be doubly-even. Codes with
∆ = 2 and at least one codeword of weight 2 mod 4 are said to be singly-even.

A basic question regarding self-dual codes is their existence. The theorem
below answers this question [Pless (1968)].

Theorem 11.2. There exists a self-dual code over GF(q) of even length n if and
only if (−1)n/2 is a square in GF(q). Furthermore, if n is even and (−1)n/2 is
not a square in GF(q), then the dimension of a maximal self-orthogonal code of
length n is (n−2)/2. If n is odd, then the dimension of a maximal self-orthogonal
code of length n is (n−1)/2.

The following follows from Theorem 11.2.

Corollary 11.3. Self-dual doubly-even binary codes of length n exist if and only
if 8|n; self-dual ternary codes of length n exist if and only if 4|n; and Hermitian
self-dual codes over GF(4) of length n exist if and only if n is even.

Example 11.4. Define

G =


1 0 0 0 1 0 1 1
0 1 0 0 1 1 1 0
0 0 1 0 1 1 0 1
0 0 0 1 0 1 1 1

 .
The binary code generated by G is a self-dual code of Type II and has parameters
[8,4,4]. Its weight enumerator is 1+14z4 + z8.

11.1.2 Weight Enumerators of Self-Dual Codes

The weight enumerator of a code C of length n has the univariate polynomial form

AC (z) =
n

∑
i=0

Aizi.

It can also be expressed with the following bivariate polynomial

WC (x,y) =
n

∑
i=0

Aixiyn−i.

In this section, we use the later.
The weight enumerator of a self-dual code over GF(q) differs from code to

code in general, but can be expressed as a combination of special polynomials that
are the weight enumerators of specific codes of small length, when q ∈ {2,3,4}.
The following theorem gives such expression ([Huffman and Pless (2003)][p.
341], [Gleason (1971)], [MacWilliams, Mallows and Sloane (1972)]).
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Theorem 11.5 (Gleason). Let C be a self-dual code of length n over GF(q) with
q≤ 4 and let

g1(x,y) = x2 + y2,

g2(x,y) = x8 +14x4y4 + y8,

g3(x,y) = x24 +759x16y8 +2576x12y12 +759x8y16 + y24,

g4(x,y) = y4 +8x3y,

g5(x,y) = y12 +264x6y6 +440x9y3 +24x12,

g6(x,y) = y2 +3x2,

g7(x,y) = y6 +45x4y2 +18x6.

Then we have the following:

(i) If q = 2 and C is formally self-dual and even,

WC (x,y) =
b n

8 c

∑
i=0

aig1(x,y)
n
2−4ig2(x,y)i.

(ii) If q = 2 and C is self-dual and doubly-even,

WC (x,y) =
b n

24 c

∑
i=0

aig2(x,y)
n
8−3ig3(x,y)i.

(iii) If q = 3 and C is self-dual,

WC (x,y) =
b n

12 c

∑
i=0

aig4(x,y)
n
4−3ig5(x,y)i.

(iv) If q = 4 and C is Hermitian self-dual,

WC (x,y) =
b n

6 c

∑
i=0

aig6(x,y)
n
6−3ig7(x,y)i.

In all cases, all ai are rational and ∑i ai = 1.

An immediate corollary of Theorem 11.5 is the restriction on the length of a
self-dual code.

Corollary 11.6. Let C be a self-dual code of length n over GF(q) with q ≤ 4.
Then

• 2|n if C is of Type I or Type IV,
• 4|n if C is of Type III, and
• 8|n if C is of Type II.
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The polynomials gi in Theorem 11.5 are weight enumerators of certain codes
with small length. For instances, g1(x,y) is the weight enumerator of the binary
repetition code of length 2, and g2(x,y) is the weight enumerator of the binary
code of Example 11.4.

With the help of Theorem 11.5, it could be easier to determine the weight
enumerator of some self-dual codes theoretically and experimentally. In addi-
tion, Theorem 11.5 could be employed to develop upper bounds on the minimum
weight of self-dual codes (see the following subsection for further information).

11.1.3 Extremal Self-Dual Codes and Their Designs

Theorem 11.5 was employed to develop the following upper bounds on the min-
imum distance of seld-dual codes ([MacWilliams, Odlyzko, Sloane and Ward
(1978)], [Mallows and Sloane (1973)], [Rains (1998)]).

Theorem 11.7. Let C be a self-dual divisible [n,n/2,d] code over GF(q). Then

d ≤ 4b n
24c+4, if C is of Type II or Type I and n 6≡ 22 (mod 24),

d ≤ 4b n
24c+6, if C is of Type I and n≡ 22 (mod 24),

d ≤ 3b n
12c+3, if C is of Type III,

d ≤ 2b n
6c+2, if C is of Type IV.

Self-dual codes that achieve the corresponding bound in Theorem 11.7 are
said to be extremal. Extremal self-dual codes are interesting to us as they hold
t-designs as a consequence of the Assmus-Mattson Theorem.

Theorem 11.8. The following results on t-designs hold in extremal codes of Types
II, III, and IV.

(a) Let C be a [24m+8µ,12m+4µ,4m+4] extremal Type II code for µ∈ {0,1,2}.
Then codewords of any fixed weight except 0 hold t-designs for the following
parameters:

(1) t = 5 if µ = 0 and m≥ 1,
(2) t = 3 if µ = 1 and m≥ 0, and
(3) t = 1 if µ = 2 and m≥ 0.

(b) Let C be a [12m+4µ,6m+2µ,3m+3] extremal Type III code for µ∈ {0,1,2}.
Then codewords of any fixed weight i with 3m+3≤ i≤ 6m+3 hold t-designs
for the following parameters:

(1) t = 5 if µ = 0 and m≥ 1,
(2) t = 3 if µ = 1 and m≥ 0, and
(3) t = 1 if µ = 2 and m≥ 0.
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(c) Let C be a [6m+2µ,3m+µ,2m+2] extremal Type IV code for µ ∈ {0,1,2}.
Then codewords of any fixed weight i with 2m+2≤ i≤ 3m+2 hold t-designs
for the following parameters:

(1) t = 5 if µ = 0 and m≥ 2,
(2) t = 3 if µ = 1 and m≥ 1, and
(3) t = 1 if µ = 2 and m≥ 0.

The conclusions of Theorem 11.8 can be proved with the Assmus-Mattson
Theorem (see Huffman and Pless (2003)[p. 349]). Part (a) of Theorem 11.8 has
been generalised as follows [Janusz (2000)].

Theorem 11.9. Let C be a [24m+8µ,12m+4µ,4m+4] extremal Type II code for
µ ∈ {0,1,2}, where m≥ 1 if µ = 0. Then

(i) either the codewords of any fixed weight i 6= 0 hold t-designs for t = 7−2µ,
or

(ii) the codewords of any fixed weight i 6= 0 hold t-designs for t = 5− 2µ and
there is no i with 0 < i < 24m+ 8µ such that codewords of weight i hold a
(6−2µ)-design.

Below is an example of self-dual codes and their designs.

Example 11.10. Let C be the binary cyclic code of length 31 generated by

g(x) = x15 + x13 + x12 + x11 + x9 + x7 + x5 + x4 + x3 + x+1.

Then C has parameters [31,16,7]. The extended code C has parameters [32,16,8]
and weight enumerator

y32 +620x8y24 +13888x12y30 +36518x16y16 +13888x20y12 +620x24y8 + x32.

C is doubly-even and self-dual. By Theorem 11.7, it holds 3-designs with the
following parameters:

(32,8,7), (32,12,616), (32,16,4123), (32,20,3193), (32,24,253).

The existence and construction of extremal self-dual codes are important for
the theory of t-designs. Unfortunately, we have the following negative results
regarding the existence question [Zhang (1999)].

Theorem 11.11. Let C be an extremal self-dual code of length n and of Type II or
IV. Assume that n is divisible by 8 or 2, respectively. Then we have the following:

(a) Type II: i < 154 if n = 24i, i < 159 if n = 24i+8 and i < 164 if n = 24i+16.
In particular C cannot exist for n > 3928.
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(b) Type IV: i < 17 if n = 6i, i < 20 if n = 6i+ 2 and i < 22 if n = 6i+ 4. In
particular C cannot exist for n > 130.

Theorem 11.12. Let C be an extremal self-dual code of Type III and length n.
Then n < 144 and, moreover, n 6= 72,96,120.

There is no explicit bound on the length of an extremal Type I code. In this
case only an asymptotic bound is known [Rains (2003)]. Anyway, Type I extremal
self-dual codes are not interesting to us, as they may not hold t-designs. In view
there are only finitely many extremal self-dual codes, extremal self-dual codes
are of limited interest to us. There are many references on the constructions and
classification of extremal self-dual codes of length within the ranges defined by
Theorems 11.11 and 11.12. The reader is referred to Malevich (2012) for details.

11.2 Designs from Extended Quadratic Residue Codes

Let n be an odd prime and q be a prime power with gcd(n,q) = 1. Assume that q
is a quadratic residue modulo n. Recall the quadratic residue code QRC(n,q)

0 and

its extended code QRC(n,q)
0 treated in Section 3.8.

11.2.1 Infinite Families of 2-Designs and 3-Designs

Theorem 11.13. For every nonzero weight k in QRC(n,q)
0 , the supports of all the

codewords with weight k in this code hold a 2-design, and in particular a 3-design
if n≡ 3 (mod 4).

Proof. It was proved in Section 3.8.2 that the group PSL2(GF(n)) is a subgroup of
the permutation automorphism group of QRC(n,q)

0 . It was proved in Section 1.8.10
that PSL2(GF(n)) is doubly transitive on {0,1, . . . ,n−1,∞} and 3-homogeneous
on {0,1, . . . ,n−1,∞} if n≡ 3 (mod 4). The desired conclusions then follow from
Theorem 4.30.

Theorem 11.13 describes an infinite family of 2-designs for primes n ≡ 1
(mod 4) and an infinite family of 3-designs for primes n≡ 3 (mod 4).

11.2.2 Sporadic 5-Designs from Self-Dual Codes

In this section, we document sporadic 5-designs from certain self-dual codes,
which are extended irreducible cyclic codes. Some of the codes are the extended
perfect Golay codes. The weight enumerators of these codes are computed with
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Magma. Their design property can be proved with the Assmus-Mattson Theorem.
An alternative proof of their design property is via their automorphism groups
[Assmus and Mattson (1969)]. The automorphism groups of some of the codes
presented in this section are called Mathieu groups [MacWilliams and Sloane
(1977)][Chapter 20].

Example 11.14. The binary code QRC(23,2)
0 has parameters [24,12,8] and weight

enumerator

1+759z8 +2576z12 +759z16 + z24.

The code is self-dual. By the Assmus-Mattson Theorem, it holds 5-designs. The
parameters (v,k,λ) are

(24,8,1), (24,12,48), (24,16,78).

Example 11.15. The binary code QRC(47,2)
0 has parameters [48,24,12] and

weight enumerator

1+17296z12 +535095z16 +3995376z20 +7681680z24 +

3995376z28 +535095z32 +17296z36 + z48.

The code is self-dual. By the Assmus-Mattson Theorem, it holds 5-designs. The
parameters (v,k,λ) are

(48,12,8), (48,16,1365), (48,20,36176), (48,24,190680),

(48,28,229320), (48,32,62930), (48,36,3808).

Example 11.16. The ternary code QRC(11,3)
0 has parameters [12,6,6] and weight

enumerator 1+264z6 +440z9 +24z12. The code is self-dual, and holds only one
nontrivial 5-design, i.e., the Steiner system S(5,6,12).

Example 11.17. Recall the BCH code C(q,n,δ,b) over GF(q) defined in Section
3.7, where n is the length with gcd(n,q) = 1, δ is the designed distance, and b is a
nonnegative integer. In this example, we consider the code C(9,11,2,1) over GF(9)
and its extended code C(9,11,2,1).

The code C(9,11,2,1) has parameters [11,6,5] and weight enumerator

1+528z5 +528z6 +15840z7 +40920z8 +129800z9 +198000z10 +145824z11.

Its dual C⊥(9,11,2,1) has parameters [11,5,6] and weight enumerator

1+528z6 +7920z8 +11000z9 +23760z10 +15840z11.

Notice that the code C(9,11,2,1) over GF(9) has generator polynomial x5 +x4 +

2x3 + x2 + 2, which is over the subfield GF(3) and is irreducible over GF(9).
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The subfield subcode C(9,11,2,1)|GF(3) is the [11,6,5] Golay ternary code treated
in Section 10.5.3. The codes C(9,11,2,1) over GF(9) and its dual support the same
set of 4-designs as the [11,6,5] Golay ternary code and its dual documented in
Section 10.5.3, including the Steiner system S(4,5,11).

The extended code C(9,11,2,1) over GF(9) has parameters [12,6,6] and weight
enumerator

1+1056z6 +23760z8 +44000z9 +142560z10 +190080z11 +129984z12.

It is self-dual. Its subfield subcode C(9,11,2,1)|GF(3) is the code of Example
11.16, i.e., the extended Golay ternary code. The minimum weight codewords
in C(9,11,2,1) hold a Steiner system S(5,6,12).

Example 11.18. The ternary code QRC(23,3)
0 has parameters [24,12,9] and weight

enumerator

1+4048z9 +61824z12 +242880z15 +198352z18 +24288z21 +48z24.

The code is self-dual, and holds three nontrivial 5-designs. The parameters (v,k,λ)
are

(24,9,6), (24,12,576), (24,15,8580).

Example 11.19. The ternary code QRC(47,3)
0 has parameters [48,24,15] and

weight enumerator

1+415104z15 +20167136z18 +497709696z21 +5745355200z24 +

31815369344z27 +83368657152z30 +99755406432z33 +50852523072z36 +

9794378880z39 +573051072z42 +6503296z45 +96z48

The code is self-dual, and holds 5-designs. The parameters (v,k,λ) of two known
ones are

(48,15,364), (48,18,50456).

Example 11.20. The ternary code QRC(59,3)
0 has parameters [60,30,18]. It is

self-dual, and holds 5-designs. The parameters (v,k,λ) of the design held by the
minimum-weight codewords are

(60,18,3060).

Example 11.21. The code QRC(23,4)
0 over GF(4) has parameters [24,12,8] and

weight enumerator

1+2277z8 +220248z12 +1020096z14 +3895947z16 +

6120576z18 +4462920z20 +1020096z22 +35055z24.
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The code is self-dual, and holds 5-designs. The parameters (v,k,λ) are

(24,8,1), (24,12,708), (24,14,8008), (24,16,65598).

It holds three complete 5-designs with parameters

(24,18,27132), (24,20,3876), (24,22,171).

Note that QRC(23,4)
0 holds one more 5-design than the binary code QRC(23,2)

0
in Example 11.14.

Example 11.22. The code QRC(29,4)
0 over GF(4) has parameters [30,15,12] and

weight enumerator

1+118755z12 +1151010z14 +12038625z16 +

61752600z18 +195945750z20 +341403660z22 +

312800670z24 +129570840z26 +18581895z28 +378018z30.

The code is formally self-dual, and holds 5-designs. The parameters (v,k,λ) are

(30,12,220), (30,14,5390), (30,16,123000).

The support set of the codewords of weight 18 in this code has cardinality
19716375. Then

19716375
(

18
5

)
mod

(
30
5

)
= 10962.

Hence, the codewords of weight 18 in this code do not support a 5-design. It is
open if the codewords of weight k for k ∈ {20,22,24} hold a 5-design or not.
For other k ∈ {26,28,30}, the 5-designs must be trivial (as 5+ k > 30), if the
codewords of weight k indeed support 5-designs.

We remark that all these QRC(n,q)
0 for these pairs (n,q) covered in this section

hold 4-designs. A theoretical treatment of the 5-designs in the forgoing examples
was given in Assmus and Mattson (1969).

11.3 Pless Symmetry Codes and Their Designs

The objective of this section is to introduce the Pless symmetry codes and their
designs. We start with double circulant codes. A k×k matrix is said to be circulant
if each row is obtained from the previous one by a cyclic shift over one position
to the right. Hence, a circulant matrix is of the form

A =


a0 a1 · · · ak−2 ak−1

ak−1 a0 · · · ak−3 ak−2
...

...
. . .

...
a1 a2 · · · ak−1 a0

 . (11.3)
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Consider now the algebra of k× k circulant matrices over GF(q). We associate
each circulant matrix A in (11.3) with the polynomial

a(x) = a0 +a1x+ · · ·+ak−1xk−1 ∈ GF(q)[x]. (11.4)

It is easily seen that the mapping A 7→ a(x) is an isomorphism from the algebra
of k× k circulant matrices over GF(q) to the algebra of polynomials in the ring
GF(q)[x]/(xk−1). Consequently, we have the following:

(a) The sum and product of two circulant matrices are circulant matrices. More
specifically, C = AB if and only if c(x) = a(x)b(x) mod xk−1.

(b) A is invertible if and only if gcd(a(x),xk−1) = 1. If A is invertible, the inverse
B is given by a(x)b(x) = 1 (mod xk− 1), where b(x) can be computed with
the extended Euclidean algorithm.

(c) The transpose AT is a circulant matrix associated with the polynomial aT (x) =
a0 +ak−1x+ · · ·+a1xk−1.

A [2k,k] code over GF(q) is said to be double circulant if it has a generator
matrix of one of the forms

G = [Ik A] (11.5)

and

G =


a 0 · · · · · ·0 c 1 · · · · · ·1
b
...
b

Ik−1

d
...
d

H

 . (11.6)

where Im is the m×m identity matrix, A and H are (k− 1)× (k− 1) circulant
matrices over GF(q), and a and b and c are elements of GF(q).

Double circulant codes are interesting partly because they are easy to encode.
Our interest in these codes comes from the fact that some double circulant codes
hold designs. A number of interesting classes of double circulant codes are known
in the literature [Beenker (1980)].

We are now ready to introduce the Pless symmetry codes and their designs.
The original codes were published in Pless (1972). Here we introduce their gen-
eralised version documented in Beenker (1980). Let q be a power of an odd prime
with q≡−1 (mod 6). Define the following (q+1)× (q+1) matrix over GF(q)

Mq+1 =


0 1 · · · · · ·1
ε
...
ε

Q

 , (11.7)
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where ε = 1 if q ≡ 1 (mod 4), ε = −1 if q ≡ 3 (mod 4), Q is a q× q circulant
matrix defined by Qa,a = 0 and

Qa,b =

{
1 if a−b is a square in GF(q),
−1 if a−b is not a square in GF(q)

for all a,b∈GF(q), a 6= b. The Pless symmetry code Pless2q+2 is the [2q+2,q+1]
code over GF(3) with generator matrix

G2q+2 = [Iq+1 Mq+1] . (11.8)

It is clearly a double circulant code by definition.
Properties of the code Pless2q+2 are summarized in next theorem. A proof of

these properties could found in Pless (1972) or Beenker (1980).

Theorem 11.23. Let notation be as before. Then the following holds.

(1) Pless2q+2 is self-dual and all weights are divisible by 3.
(2) The automorphism group Aut(Pless2q+2) contains a subgroup isomorphic to

PSL2(GF(q)).
(3) Let d be the minimum weight of Pless2q+2. Then

(d−1)2− (d−1)+1≥ 2q+1 if q≡−1 (mod 12),

and

(d−1)2 ≥ 2q−1 if q≡ 5 (mod 12).

When q ≡ 1 (mod 6), the code Pless2q+2 could be defined in the same way.
However, in this case the code is not self-dual. Experimental data indicates that
the code Pless2q+2 is formally self-dual when q≡ 1 (mod 6). Hence, we propose
the following problem.

Problem 11.24. Prove or disprove that Pless2q+2 is formally self-dual when q≡ 1
(mod 6).

Example 11.25. Let q = 7. Then the code Pless16 has parameters [16,8,6] and
weight enumerator

1+112z6 +224z7 +592z8 +672z9 +1456z10 +

1120z11 +1456z12 +448z13 +448z14 +32z16.
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The code is formally self-dual and has the following generator matrix

1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1
0 1 0 0 0 0 0 0 2 0 1 1 2 1 2 2
0 0 1 0 0 0 0 0 2 2 0 1 1 2 1 2
0 0 0 1 0 0 0 0 2 2 2 0 1 1 2 1
0 0 0 0 1 0 0 0 2 1 2 2 0 1 1 2
0 0 0 0 0 1 0 0 2 2 1 2 2 0 1 1
0 0 0 0 0 0 1 0 2 1 2 1 2 2 0 1
0 0 0 0 0 0 0 1 2 1 1 2 1 2 2 0


.

The supports of the minimum weight codewords of this code do not form a 2-
design.

The code Pless2q+2 is interesting as it holds 5-designs in certain cases. We
now introduce them. The smallest case is that q = 5, which is documented in the
following example.

Example 11.26. Let q = 5. Then the code Pless12 has parameters [12,6,6] and
weight enumerator

1+264z6 +440z9 +24z12.

The code is self-dual and has the following generator matrix

1 0 0 0 0 0 0 1 1 1 1 1
0 1 0 0 0 0 1 0 1 2 2 1
0 0 1 0 0 0 1 1 0 1 2 2
0 0 0 1 0 0 1 2 1 0 1 2
0 0 0 0 1 0 1 2 2 1 0 1
0 0 0 0 0 1 1 1 2 2 1 0


.

By the Assmus-Mattson theorem, this ternary code holds a 5-(12,6,1) design.
The supports of the codewords of weight 9 or 12 form trivial 5-designs.

The second set of designs held in the code Pless2q+2 is given below.

Example 11.27. Let q = 11. Then the code Pless24 has parameters [24,12,9] and
weight enumerator

1+4048z9 +61824z12 +242880z15 +198352z18 +24288z21 +48z24.
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The code is self-dual and has the following generator matrix

1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1
0 1 0 0 0 0 0 0 0 0 0 0 2 0 1 2 1 1 1 2 2 2 1 2
0 0 1 0 0 0 0 0 0 0 0 0 2 2 0 1 2 1 1 1 2 2 2 1
0 0 0 1 0 0 0 0 0 0 0 0 2 1 2 0 1 2 1 1 1 2 2 2
0 0 0 0 1 0 0 0 0 0 0 0 2 2 1 2 0 1 2 1 1 1 2 2
0 0 0 0 0 1 0 0 0 0 0 0 2 2 2 1 2 0 1 2 1 1 1 2
0 0 0 0 0 0 1 0 0 0 0 0 2 2 2 2 1 2 0 1 2 1 1 1
0 0 0 0 0 0 0 1 0 0 0 0 2 1 2 2 2 1 2 0 1 2 1 1
0 0 0 0 0 0 0 0 1 0 0 0 2 1 1 2 2 2 1 2 0 1 2 1
0 0 0 0 0 0 0 0 0 1 0 0 2 1 1 1 2 2 2 1 2 0 1 2
0 0 0 0 0 0 0 0 0 0 1 0 2 2 1 1 1 2 2 2 1 2 0 1
0 0 0 0 0 0 0 0 0 0 0 1 2 1 2 1 1 1 2 2 2 1 2 0



.

By the Assmus-Mattson theorem, this ternary code holds designs with the follow-
ing parameters:

5-(24,9,6), 5-(24,12,576), 5-(24,15,8580).

The supports of the codewords of weight 18 do not form a 4-design, but a 3-
(24,18,29784) design, which can be explained by the subgroup contained in the
automorphism group of this code. The supports of the codewords of weight 21 or
24 form a trivial 5-design.

The third set of designs held in the code Pless2q+2 is documented below.

Example 11.28. Let q = 17. Then the code Pless36 has parameters [36,18,12]
and weight enumerator

1+42840z12 +1400256z15 +18452280z18 +90370368z21 +

162663480z24 +97808480z27 +16210656z30 +471240z33 +888z36.

It follows from the Assmus-Mattson theorem that this ternary code holds designs
with the following parameters:

5-(36,12,45), 5-(36,15,5577), 5-(36,18,209685), 5-(36,21,2438973).

The fourth set of designs held in the code Pless2q+2 is documented below.

Example 11.29. Let q = 23. Then the code Pless48 has parameters [48,24,15]
and weight enumerator

1+415104z15 +20167136z18 +497709696z21 +5745355200z24 +

31815369344z27 +83368657152z30 +99755406432z33 +50852523072z36 +

9794378880z39 +573051072z42 +6503296z45 +96z48.
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By the Assmus-Mattson theorem, this ternary code holds 5-(48,k,λ) designs with
the following parameters (k,λ):

(15,364), (18,50456), (21,2957388), (24,71307600), (27,749999640).

The fifth set of designs held in the code Pless2q+2 is introduced below.

Example 11.30. Let q = 29. Then the code Pless60 has parameters [60,30,18].
The weight distribution of Pless60 was given in Mallows, Pless and Sloane (1976).
By the Assmus-Mattson theorem, this ternary code holds 5-(60,k,λ) designs with
the following values of k:

18, 21, 24, 27, 30, 33.

It is easily seen that the five codes Pless12, Pless24, Pless36, Pless48 and Pless60

meet the following bound

d ≤ 3
⌊ n

12

⌋
+3,

which was documented in Theorem 11.7. Hence, these five codes are extremal.

11.4 Other Self-Dual Codes Holding t-Designs

In Section 11.2.1, we described an infinite family of self-dual binary codes of
prime length n≡ 7 (mod 8) which hold 3-designs, but are not extremal in general.
Another such infinite family is the Reed-Muller binary codes R2((m− 1)/2,m)

for odd m, which were studied earlier. Hence, the study of non-extremal self-dual
codes is interesting.

The number of self-dual codes over small finite fields is known ([Huffman
and Pless (2003)], [Rains and Sloane (1998)]), and is huge. Some of them are not
extremal, but may hold t-designs. There are hundreds of references on self-dual
codes. The most comprehensive reference may be Rains and Sloane (1998).

Problem 11.31. Construct infinite families of self-dual codes (other than extended
quadratic residue codes and Reed-Muller codes) that are not extremal but hold t-
designs for some t ≥ 2.
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Chapter 12

Designs from Arc and MDS Codes

MDS codes do hold support t-designs for large t. But these designs are complete
and not interesting. Nevertheless, certain MDS codes over GF(2m) yield hyper-
ovals in PG(2,GF(2m)), and such hyperovals give rise to two types of 2-designs
and 3-designs, which are called hyperoval designs. This demonstrates that certain
linear codes can be employed to construct designs in other ways. Maximal arcs are
an interesting topic of study in finite geometries. They give interesting two-weight
codes, which hold nice 2-designs. The objective of this chapter is to present these
designs. Although all the designs treated in this chapter are from linear codes,
some of them are support designs of linear codes, others are not support designs.

12.1 Arcs, Caps, Conics, Hyperovals and Ovals in PG(2,GF(q))

Recall the Desargusian projective plane PG(2,GF(q)) treated in Section 1.6.4. An
arc in PG(2,GF(q)) is a set of at least three points in PG(2,GF(q)) such that no
three of them are collinear. In general, an arc in PG(r,GF(q)) is a set of at least
r+1 points in PG(r,GF(q)) such that no r+1 of them lie in a hyperplane. A cap
in PG(r,GF(q)) is a set of points such that no three are collinear.

Theorem 12.1. The set of points of PG(r,GF(q))

A = {(tr, tr−1, . . . , t2, t,1) : t ∈ GF(q)}∪{(1,0, . . . ,0,0,0)}

is an arc with q+1 points in PG(r,GF(q)).

Given an arc A with n points in PG(r,GF(q)), the corresponding code CA

defined in Section 2.15 is an [n,r + 1,n− r] MDS code over GF(q). This is a
direct consequence of Theorem 2.43 and the definition of arcs. Conversely, the
column vectors of a generator matrix of any [n,r+1,n−r] MDS code over GF(q)
form an arc A with n points in PG(r,GF(q)). We have then the following theorem.

329
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Theorem 12.2. Let A be an n-subset of the point set in PG(r,GF(q)) with n ≥
r+1. Then A is an arc in PG(r,GF(q)) if and only if the corresponding code CA

defined in Section 2.15 is an [n,r+1,n− r] MDS code over GF(q).

Hence, arcs in projective spaces over GF(q) and MDS codes over GF(q) are
equivalent.

Theorem 12.3. If A is an arc of PG(r,GF(q)), then |A | ≤ q+ r.

Proof. We take any subset S of A of size r− 1. If the points of S do not span
a subspace of dimension r− 2 then we can find a hyperplane that contains r+ 1
points of A , contradicting the definition of an arc. The space of dimension r− 2
spanned by the points of S is contained in q+ 1 hyperplanes, each of which is
incident with at most one point of A \S. Consequently.

|A | ≤ q+1+ r−1 = q+ r.
This completes the proof.

As a corollary of Theorem 12.3, we have |A | ≤ q + 2 for an arc A in
PG(2,GF(q)). This upper bound is achieved when q is even.

For odd q we have the following conclusion [MacWilliams and Sloane
(1977)][p. 326].

Theorem 12.4. If A is an arc of PG(r,GF(q)) and q is odd, then |A | ≤ q+ r−1.

Example 12.5. Let q = 2m with m odd. Then
A = {(t6, t,1) : t ∈ GF(q)}∪{(1,0,0)}

is an arc with q+1 points in PG(2,q).

We now introduce ovals and hyperovals, which are our main subjects of study
in this section. An oval O in PG(2,GF(q)) is a set of q + 1 points such that
no three of them are collinear, i.e., an arc with q+ 1 points. A hyperoval H in
PG(2,GF(q)) is a set of q+2 points such that no three of them are collinear, i.e.,
an arc with q+ 2 points. Two ovals (resp. hyperovals) are said to be equivalent
if there is a collineation (i.e., automorphism) of PG(2,GF(q)) that sends one to
the other. The automorphism group of an oval (resp. hyperoval) is the set of all
collineations of PG(2,GF(q)) that leave the oval (resp. hyperoval) invariant.

The arc in Example 12.5 is an oval by definition. Another example of ovals is
the following.

Example 12.6. Let q > 3. Then
O = {(t2, t,1) : t ∈ GF(q)}∪{(1,0,0)}

is an oval in PG(2,GF(q)).
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Theorem 12.7. Let O be an oval in PG(2,GF(q)). Then through each point P of
O, there is exactly one line whose intersection with O is just the point P. Such a
line is called a tangent of O.

Proof. Recall that PG(2,GF(q)) is a 2-(q2+q+1,q+1,1) design with q2+q+1
lines. Each line has q+1 points and each point is on q+1 lines. By definition, O

has q+1 points, say P0,P1, . . . ,Pq. Then P0Pi are q pairwise distinct lines passing
through P0, where 1 ≤ i ≤ q. Since P0 is on q+ 1 lines, there is another line
passing through P0 which is different from the q lines mentioned above. This line
must intersect O with only the point P0, and is thus a tangent at P0. Note that P0 is
an arbitrary point on O. The proof now is completed.

By Theorem 12.7, there are q+1 tangents to O. Lines meeting an oval in two
points are called secants. Figure 12.1 gives a pictorial illustration of tangents and
secants. The total number of secants of O is clearly q(q+1)/2.

Oval

Secant

Tangent

Fig. 12.1 Tangents and secants of an oval O

Theorem 12.8. Let O be an oval in PG(2,GF(q)), where q = 2m. The q + 1
tangents to O intersect a common point, called the nucleus or knot of O.

Proof. Let P be any point of PG(2,GF(q)) outside O. Since the lines though P
partition the points of O and q+1 is odd, P must be on at least one tangent to O.
Now let ℓ be a secant to O with ℓ∩O = {Q,R}. The tangents of O at the points
O \{Q,R} meet ℓ in distinct points. Thus, any point not on O that lies on a secant
must lie on exactly one tangent. If we take the intersection of two tangents to O

this point lies on two tangents and so cannot lie on any secants. Consequently, it
lies on all the tangents to O.

Let O be an oval in PG(2,GF(q)), where q = 2m. Let K be the nucleus of O.
The proof of Theorem 12.8 shows that H = O ∪{K} is a hyperoval. Hence, for
even q an oval O can always be extended uniquely to a hyperoval H .
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Example 12.9. Let q = 2m with m≥ 2. Then the nucleus of the oval

O = {(t2, t,1) : t ∈ GF(q)}∪{(1,0,0)}

is (0,1,0). Furthermore, O ∪{(0,1,0)} is a hyperoval.

A conic in PG(2,GF(q)) is a set of points of PG(2,GF(q)) that are zeros of
a nondegenerate homogeneous quadratic form f (x,y,z) in three variables. It is
known that every homogeneous quadratic equation in three variables over GF(q)
has a solution [Payne (2007)][Section 4.2].

Example 12.10. Let P be the point set of PG(2,GF(q)), and let f (x,y,z) = y2−
xz. Then the set

C = {(x,y,z) ∈ P : y2 = xz}= {(t2, t,1) : t ∈ GF(q)}∪{(1,0,0)}

is a conic in PG(2,GF(q)). The point (1,0,0) is called the point at infinity, and
denoted by P∞.

A proof of the following result can be found in Payne (2007)[Chapter 4].

Theorem 12.11. A conic is an oval in PG(2,GF(q)).

The following is proved in Segre (1955), and also Assmus and Key
(1992a)[Section 3.7].

Theorem 12.12 (Segre). An oval in PG(2,GF(q)) is a conic if q is odd.

Combining the two theorems above, we conclude that conics and ovals in
PG(2,GF(q)) are the same when q is odd. A conic and its nucleus together form a
hyperoval. Such hyperoval is called a regular hyperoval. The conic and its nucleus
in Example 12.9 form a regular hyperoval.

The most important subject of study in this section is hyperovals. By Theorem
12.3, hyperovals are maximal arcs, as they have the maximal number of points
as arcs. The next theorem shows that all hyperovals in PG(2,GF(2m)) can be
constructed with a special type of permutation polynomials on GF(2m).

Theorem 12.13. Let q = 2m with m ≥ 2. Any hyperoval in PG(2,GF(q)) can be
written in the form

H ( f ) = {( f (c),c,1) : c ∈ GF(q)}∪{(1,0,0)}∪{(0,1,0)},

where f ∈ GF(q)[x] is such that

(i) f is a permutation polynomial of GF(q) with deg( f ) < q and f (0) = 0,
f (1) = 1;
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(ii) for each a ∈ GF(q), ga(x) = ( f (x + a) + f (a))xq−2 is also a permutation
polynomial of GF(q).

Conversely, every such set H ( f ) is a hyperoval.

Proof. See Lidl and Niederreiter (1997)[p. 504] for a proof.

Polynomials satisfying Conditions (i) and (ii) of Theorem 12.13 are called o-
polynomials, i.e., oval-polynomials. Two o-polynomials f and g are said to be
equivalent if their hyperovals H ( f ) and H (g) are equivalent. In the next section,
we will survey known o-polynomials on GF(2m).

Example 12.14. f (x) = x2 is an o-polynomial on GF(2m) for all m≥ 2.

We now introduce properties of hyperovals in PG(2,GF(2m)). The following
theorem is essential for the construction of hyperoval designs later.

Theorem 12.15. Any hyperoval O in PG(2,GF(2m)) meets each line either in 0
or 2 points.

Proof. Let O be a hyperoval in PG(2,GF(2m)). By definition, O has 2m + 2
points. For any point P in O, the set O \ {P} is an oval in PG(2,GF(2m)). The
proof of Theorem 12.8 shows that P is the nucleus of the oval O \ {P}. Hence,
O has no tangents. By definition, any line intersects a hyperoval in at most two
points. The desired conclusion then follows.

Let O be a hyperoval in PG(2,GF(2m)). A line ℓ in PG(2,GF(2m)) is said to
be exterior to O if ℓ meets O in zero point, and interior otherwise. Figure 12.2 is
a pictorial illustration of interior and exterior lines to a hyperoval. Points on O are
called interior points and those in PG(2,GF(2m))\O exterior points of O.

Hyperoval

Interior 
line

Exterior line

Fig. 12.2 Interior and exterior lines to a hyperoval O



November 17, 2021 14:14 ws-book9x6 Designs from Linear Codes designscodes page 334

334 Designs from Linear Codes

12.2 Hyperovals in PG(2,GF(q)) and [q+2,3,q] MDS Codes

Let q = 2m. Given any hyperoval H = {h1,h2, . . . ,hq+2} in PG(2,q), we con-
struct a linear code CH of length q + 2 over GF(q) with generator matrix
[h1,h2, . . . ,hq+2], where each hi is a column vector of GF(q)3 (see Section 2.15).
It then follows from Theorems 12.15 and 2.43 that the code has only the nonzero
weights q and q+2 and it is projective. Solving the first two Pless power moments,
one obtains the following weight enumerator of the code:

1+
(q+2)(q2−1)

2
zq +

q(q−1)2

2
zq+2.

Hence, CH is an MDS code over GF(q) with parameters [q+2,3,q]. The dual of
CH is an MDS code over GF(q) with parameters [q+2,q−1,4].

Conversely, given any MDS code C over GF(q) with parameters [q+ 2,3,q],
let [h1,h2, . . . ,hq+2] be a generator matrix of C . Let ai ∈GF(q)∗ such that h̄i = aihi

is a point of PG(2,GF(q)). Then

H = {h̄1, h̄2, . . . , h̄q+2}

is a hyperoval in PG(2,GF(q)). The dual code C⊥ is an MDS code over GF(q)
with parameters [q+2,q−1,4].

Summarizing the discussions above, we conclude that constructing hyperovals
in PG(2,GF(q)) is equivalent to constructing [q+2,3,q] linear codes over GF(q).

12.3 Oval Polynomials on GF(2m)

Throughout this section, let q = 2m ≥ 4. To construct hyperovals in PG(2,GF(q))
with Theorem 12.13, and subsequently 2-designs and 3-designs, we need o-
polynomials on GF(q). The objective of this section is to survey known construc-
tions of o-polynomials on GF(q) and consequently hyperovals in PG(2,GF(q)).

In the definition of o-polynomials, it is required that f (1) = 1. However, this
is not essential, as one can always normalise f (x) by using f (1)−1 f (x) due to
the fact that f (1) 6= 0. In this section, we do not require that f (1) = 1 for o-
polynomials.

For any permutation polynomial f (x) over GF(q), we define f (x) = x f (xq−2),
and use f−1 to denote the compositional inverse of f , i.e., f−1( f (x)) = x for all
x ∈ GF(q).

12.3.1 Basic Properties of Oval Polynomials

The equivalence of o-monomials is settled and documented below [Xiang (1999)].
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Lemma 12.16. Let q ≥ 4. Two monomial hyperovals H (x j) and H (xe) in
PG(2,GF(q)) are equivalent if and only if i ≡ e,1/e,1− e,1/(1− e),e/(e−
1) or (e−1)/e (mod q−1).

The following two theorems introduce basic properties of o-polynomials
whose proofs can be found in Cherowitzo (1988).

Theorem 12.17. Let f be an o-polynomial on GF(q). Then the following state-
ments hold:

(1) f−1 is also an o-polynomial;
(2) f (x2 j

)2m− j
is also an o-polynomial for any 1≤ j ≤ m−1;

(3) f is also an o-polynomial; and
(4) f (x+1)+ f (1) is also an o-polynomial.

Further, they are equivalent to f .

Theorem 12.18. Let xk be an o-polynomial on GF(q). Then every polynomial in{
x

1
k , x1−k, x

1
1−k , x

k
k−1 , x

k−1
k

}
is also an o-polynomial, where 1/k denotes the multiplicative inverse of k modulo
q−1. Further, they are all equivalent.

Theorem 12.19 (Maschietti (1998)). A polynomial f from GF(q) to GF(q) with
f (0) = 0 is an o-polynomial if and only if fu := f (x) + ux is 2-to-1 for every
u ∈ GF(q)∗.

12.3.2 Translation Oval Polynomials

The translation o-polynomials are described in the following theorem [Segre
(1957)].

Theorem 12.20. Trans(x) = x2h
is an o-polynomial on GF(q), where gcd(h,m) =

1.

The following is a list of known properties of translation o-polynomials.

(1) Trans−1(x) = x2m−h
and

(2) Trans(x) = x f (xq−2) = xq−2m−h
.
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12.3.3 Segre and Glynn Oval Polynomials

The following theorem describes a class of o-polynomials, which are called Segre
o-polynomials [Segre (1962, 1971)].

Theorem 12.21. Let m be odd. Then Segre(x) = x6 is an o-polynomial over
GF(q).

For this o-monomial, we have the following.

(1) Segre(x) = xq−6.

(2) Segre−1(x) = x
5×2m−1−2

3 [Ding and Yuan (2015)].

Glynn discovered two families of o-polynomials [Glynn (1983)]. The first is
described as follows.

Theorem 12.22. Let m be odd. Then Glynni(x) = x3×2(m+1)/2+4 is an o-
polynomial.

The second family of o-polynomials discovered by Glynn is documented in
the following theorem.

Theorem 12.23. Let m be odd. Then

Glynnii(x) =

{
x2(m+1)/2+2(3m+1)/4

if m≡ 1 (mod 4),
x2(m+1)/2+2(m+1)/4

if m≡ 3 (mod 4)

is an o-polynomial over GF(q).

12.3.4 Cherowitzo Oval Polynomials

The following theorem describes another class of o-polynomials discovered by
Cherowitzo [Cherowitzo (1988, 1996)].

Theorem 12.24. Let m be odd and e = (m+1)/2. Then

Cherowitzo(x) = x2e
+ x2e+2 + x3×2e+4

is an o-polynomial over GF(q).

For this o-trinomial, we have the following conclusions [Ding and Yuan
(2015)].

(1) Cherowitzo(x) = xq−2e
+ xq−2e−2 + xq−3×2e−4.

(2) Cherowitzo−1(x) = x(x2e+1 + x3 + x)2e−1−1.
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12.3.5 Payne Oval Polynomials

The following documents a family of o-trinomials [Ding and Yuan (2015)].

Theorem 12.25. Let m be odd. Then Paynea(x) = x
5
6 + ax

3
6 + a2x

1
6 is an o-

polynomial on GF(q) for every a ∈ GF(q).

We have the following remarks on this family.

(1) Payne1(x) is the original Payne o-polynomial [Payne (1985)]. So this is an
extended family.

(2) Paynea(x) = xD5(x
1
6 ,a), where D5(x,a) is the Dickson polynomial of order

5.
(3) Paynea(x) = aq−3Payneaq−2(x).
(4) Note that

1
6
=

5×2m−1−2
3

.

We have then

Paynea(x) = x
2m−1+2

3 +ax2m−1
+a2x

5×2m−1−2
3 .

Theorem 12.26 (Ding and Yuan (2015)). Let m be odd. Then

Payne−1
1 (x) =

(
D 3×22m−2

5
(x,1)

)6

(12.1)

and Payne−1
1 (x) are o-polynomials.

12.3.6 Subiaco Oval Polynomials

The Subiaco o-polynomials are given in the following theorem [Cherowitzo, Pent-
tila, Pinneri and Royle (1996)].

Theorem 12.27. Define

Subiacoa(x) = ((a2(x4+x)+a2(1+a+a2)(x3+x2))(x4+a2x2+1)2m−2+x2m−1
,

where Tr(1/a) = 1 and d 6∈ GF(4) if m ≡ 2 mod 4. Then Subiacoa(x) is an o-
polynomial on GF(q).

As a corollary of Theorem 12.27, we have the following.

Corollary 12.28. Let m be odd. Then

Subiaco1(x) = (x+ x2 + x3 + x4)(x4 + x2 +1)2m−2 + x2m−1
(12.2)

is an o-polynomial over GF(q).
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12.4 A Family of Hyperovals from Extended Cyclic Codes

In Section 12.2, it was proved that constructing hyperovals is equivalent to con-
structing [q+ 2,3,q] MDS codes over GF(q), where q = 2m. In this section, we
present a family of extended cyclic codes, which are MDS codes over GF(q) with
parameters [q + 2,q− 1,4]. Their dual codes have parameters [q + 2,3,q] and
hence give a family of hyperovals.

Let q= 2m with m≥ 2. Let α be a generator of GF(q2)∗. Put β=αq−1. Then β
is a (q+1)-th root of unity in GF(q2). Let Mβi(x) denote the minimal polynomial
of βi over GF(q), and Cq the cyclic code over GF(q) length q+ 1 with generator
polynomial Mβ−1(x).

Theorem 12.29. The cyclic code Cq has parameters [q+ 1,q− 1,3] and its dual
C⊥q has parameters [q+1,2,q], where q≥ 4.

Proof. Notice that β−1 ∈ GF(q2) \GF(q). The degree of Mβ−1(x) is equal to 2.
Consequently, the dimension of Cq is q+1−2 = q−1. It then follows from the
Singleton bound that d ≤ 3. By the Delsarte Theorem, C⊥q is given by

C⊥q = {(Tr(βia)q
i=0 : a ∈ GF(q2))}. (12.3)

Obviously, d 6= 1. Suppose that d = 2. Then there are two integers i and j and
some u ∈ GF(q)∗ such that 0≤ i < j ≤ q and

Tr(aβi) = Tr(uaβ j)

for all a ∈GF(q2). This implies that β j−i = α(q−1)( j−i) = u−1 ∈GF(q)∗, which is
impossible as gcd(q−1,q+1) = 1 and 0 < j− i≤ q. As a result, d = 3. Thus, Cq

is an MDS code with parameters [q+1,q−1,3]. Since the dual of an MDS code
is also an MDS code, C⊥q has parameters [q+1,2,q].

Note that the code C⊥q in Theorem 12.29 is an irreducible cyclic code. Let Cq

denote the extended code of Cq. We have then the following.

Theorem 12.30. The code Cq has parameters [q+2,q−1,4] and its dual Cq
⊥

has
parameters [q+2,3,q], where q≥ 4.

Proof. A proof based on the expression of (12.3) can be given. The details are
left to the reader.

Any generator matrix of the code Cq
⊥ in Theorem 12.30 gives a hyperoval.

Therefore, the codes Cq
⊥ define a family of hyperovals, which are not new due to

the following result.
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Theorem 12.31 (Abdukhalikov and Ho (2021)). Any extended cyclic code over
GF(q) with parameters [q+2,3,q] is monomially-equivalent to an MDS code over
GF(q) obtained from a regular hyperoval.

It follows from Theorem 12.31 that not every MDS code over GF(q) with
parameters [q + 2,3,q] is an extended cyclic code, as there are hyperovals not
equivalent to the regular hyperovals.

12.5 Hyperoval Designs

Plugging all the o-polynomials described in Section 12.3 into Theorem 12.13, one
obtains a number of classes of hyperovals in PG(2,GF(2m)). In this section, we
show that these hyperovals can be employed to construct different classes of 2-
(22m−1− 2m−1,2m−1,1) Steiner systems. Throughout this section, we let q = 2m

with m≥ 2.
Theorem 12.15 says that any hyperoval O in PG(2,GF(q)) meets each line

either in 0 or 2 points. Hence, a hyperoval partitions the lines of PG(2,GF(q))
into two classes, i.e., interior and exterior lines (see Figure 12.2 for illustration).
This property allows us to define the so-called hyperoval designs as follows.

Let O be a hyperoval in the Desarguesian projective plane PG(2,GF(q)).
The hyperoval design W (q,O) is the incidence structure with points the lines of
PG(2,GF(q)) exterior to O and blocks the points of PG(2,GF(q)) not on the oval;
incidence is given by the incidence in PG(2,GF(q)). We have then the following
conclusion on the incidence structure W (q,O).

Theorem 12.32. The incidence structure W (q,O) defined by a hyperoval O in
PG(2,GF(q)) is a 2-((q−1)q/2,q/2,1) design, i.e., a Steiner system.

Proof. By definition, O has q+ 2 points and every pair of distinct points on O

determines a unique line. Thus, the total number of exterior lines is

v := q2 +q+1− (q+2)(q+1)
2

=
q(q−1)

2
,

which is the total number of points in the incidence structure W (q,O). In
PG(2,GF(q)), every point is on q+ 1 lines. Let p1 be a point that is not on O.
Between p1 and every point p2 on O there is an interior line, which intersects O on
another point by Theorem 12.15. It then follows that any point that is not on O is
on (q+2)/2 interior lines. Consequently, the point is on q+1− (q+2)/2 = q/2
exterior lines, i.e., the block size

k =
q
2
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for the incidence structure W (q,O). It is clear that every pair of distinct exterior
lines meet on one unique point that is not on O. This completes the proof.

Example 12.33. Let q = 4 and let w be a generator of GF(4)∗ with minimal poly-
nomial w2 +w+1 = 0. Then the point set of W (4,O) consist of

{(w2,0,1), (0,w2,1), (w,1,1), (1,1,0), (1,w,1)},
{(w2,0,1), (w,w,1), (1,w2,1), (0,1,1), (w2,1,0)},
{(1,0,1), (w2,w2,1), (w,1,1), (w2,1,0), (0,w,1)},
{(w2,w2,1), (w,1,0), (0,1,1), (w,0,1), (1,w,1)},
{(0,w2,1), (1,0,1), (w,1,0), (w,w,1), (w2,1,1)},
{(1,w2,1), (w2,1,1), (0,w,1), (1,1,0), (w,0,1)}.

The block set is composed of the following

(w2,w2,1), (w,0,1), (0,w,1), (w,w,1), (1,0,1),

(w2,0,1), (1,w,1), (w,1,0), (0,1,1), (w,1,1),

(0,w2,1), (1,1,0), (w2,1,0), (w2,1,1), (1,w2,1).

Clearly, W (4,O) is a trivial 2-(6,2,1) design.

The hyperoval design W (q,O) was first studied in Bose and Shrikhande
(1973). Another derivation of these designs was given in Wertheimer (1990). The
next theorem gives an upper bound on the 2-rank of the design W (q,O), i.e., the
rank of the incidence matrix over GF(2) of the design, and is due to Mackenzie
(1989).

Theorem 12.34. Let O be a hyperoval in PG(2,GF(q)). Then

rank2(W (q,O))≤ 3m−2m. (12.4)

It is conjectured that the equality in (12.4) holds in general. This conjecture is
proved to be true in the special case specified below. The following result is due
to Carpenter (1996).

Theorem 12.35. Let O be a regular hyperoval in PG(2,GF(q)). Then

rank2(W (q,O)) = 3m−2m.

Example 12.36. Let O be a translation hyperoval in PG(2,GF(2m)), i.e., the
hyperoval defined by the o-polynomial f (x) = x2. When m = 2, the code
CGF(2)(W (q,O)) has parameters [6,5,2] and its dual has parameters [6,1,6].
When m = 3, the code CGF(2)(W (q,O)) has parameters [28,19,4] and its dual
has parameters [28,9,10]. When m = 4, the code CGF(2)(W (q,O)) has parame-
ters [120,65,8] and its dual has parameters [120,55,18].
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12.6 Hadamard Designs from Hyperovals

Throughout this section, let q = 2m ≥ 4. Let O be a hyperoval in PG(2,GF(q)).
Let P be the set of q2 − 1 exterior points to O, i.e., the set of points in
PG(2,GF(q))\O. For each point x ∈ P , define a block

Bx = {y ∈ P \{x} : xy is a secant to O}∪{x}.

Define further B = {Bx : x ∈ P}. We have then the following conclusion.

Theorem 12.37. The incidence structure H (q,O) := (P ,B) is a symmetric 2-
(q2−1, 1

2 q2−1, 1
4 q2−1) design.

Proof. By definition, |P | is the number of exterior points to O and is q2−1. Let x
be any exterior point. There are altogether (q+2)(q+1)/2 secants. Out of them,
(q+ 2)/2 secants pass through the exterior point x. Each secant passing through
x has q+1−2−1 = q−2 exterior points other than x. Consequently,

|Bx|=
q+2

2
(q−2)+1 =

1
2

q2−1.

Since Bx consists of all the exterior points on the secants passing through x, Bx is
different from By for any pair of distinct exterior points x and y. Hence, the total
number of blocks is the same as the number of points. Let x and y be any pair of
distinct exterior points. Clearly, the total number of blocks Bu containing x and y
is independent of the choice of x and y, and is thus a constant λ. We have then

q2−1 = λ
(q2−1

2

)( 1
2 q2−1

2

) .
It then follows that

λ =
1
4

q2−1.

This completes the proof.

Example 12.38. Let q = 4 and let w be a generator of GF(4)∗ with minimal poly-
nomial w2 +w+1 = 0. Then the point set of H (4,O) consist of

(w2,w2,1), (w,0,1), (0,w,1), (w,w,1), (1,0,1),

(w2,0,1), (1,w,1), (w,1,0), (0,1,1), (w,1,1),

(0,w2,1), (1,1,0), (w2,1,0), (w2,1,1), (1,w2,1).

The block set has the following blocks:

{(0,w,1),(w2,w2,1),(w,0,1),(w,1,0),(w2,1,1),(w2,0,1),(1,0,1)},



November 17, 2021 14:14 ws-book9x6 Designs from Linear Codes designscodes page 342

342 Designs from Linear Codes

{(0,w2,1), (w,1,0), (w2,1,0), (w2,1,1), (1,1,0), (w,0,1), (1,w,1)},

{(0,w2,1), (1,0,1), (w,1,1), (0,1,1), (0,w,1), (w2,1,1), (1,1,0)},

{(w2,w2,1), (w,1,1), (w,w,1), (0,w,1), (1,1,0), (w,0,1), (1,w,1)},

{(w2,0,1), (0,w2,1), (w,1,0), (w,w,1), (0,1,1), (0,w,1), (1,w,1)},

{(0,w2,1), (w2,w2,1), (1,w2,1), (0,1,1), (w2,1,0), (0,w,1), (w,0,1)},

{(w2,0,1), (0,w2,1), (1,0,1), (w,1,1), (w,w,1), (w2,1,0), (w,0,1)},

{(1,1,0), (w2,w2,1), (0,1,1), (w,1,0), (1,0,1), (w2,1,0), (w,w,1)},

{(w2,0,1), (1,0,1), (1,w2,1), (0,1,1), (1,1,0), (w,0,1), (1,w,1)},

{(w,1,0), (w,1,1), (w,w,1), (1,w2,1), (0,1,1), (w2,1,1), (w,0,1)},

{(1,0,1), (w,w,1), (1,w2,1), (w2,1,0), (0,w,1), (w2,1,1), (1,w,1)},

{(w2,0,1), (0,w2,1), (w2,w2,1), (w,w,1), (1,w2,1), (w2,1,1), (1,1,0)},

{(w2,0,1), (w2,w2,1), (w,1,1), (0,1,1), (w2,1,0), (w2,1,1), (1,w,1)},

{(0,w2,1), (w2,w2,1), (1,0,1), (w,1,0), (w,1,1), (1,w2,1), (1,w,1)},

{(w2,0,1), (w,1,0), (w,1,1), (1,w2,1), (w2,1,0), (0,w,1), (1,1,0)}.

H (4,O) is a 2-(15,7,3) design.

The 2-rank of the Hadamard design H (q,O) is open. We have the following
conjecture [Mackenzie (1989)].

Conjecture 12.39. Let m≥ 2. Then

rank2(H (q,O)) = 2m−1m+1.

Partial information on the binary code of the Hadamard design H (q,O) is
summarised as follows [Carpenter (1996)].

Theorem 12.40. Let O be a regular hyperoval in the Desargusian projective plane
PG(2,GF(2m)). Then the code CGF(2)(H (q,O)) of the design H (q,O) contains a
copy of the punctured first-order Reed-Muller code R2(1,2m)∗.
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Example 12.41. Let O be a translation hyperoval in PG(2,GF(2m)), i.e., the
hyperoval defined by the o-polynomial f (x) = x2. When m = 2, the code
CGF(2)(H (q,O)) has parameters [15,5,7] and its dual has parameters [15,10,4].
When m = 3, the code CGF(2)(H (q,O)) has parameters [63,13,24] and its dual
has parameters [63,50,4]. When m = 4, the code CGF(2)(H (q,O)) has parameters
[255,33,80] and its dual has parameters [255,222,4].

Symmetric 2-(4n−1,2n−1,n−1) designs are traditionally called Hadamard
2-designs due to their association with Hadamard matrices (see Assmus and Key
(1992a)[Sections 7.2 and 7.12] or Ionin and Shrikhande (2006)[Chapter 6] for de-
tail). Any 3-(4n,2n,n−1) design is called a Hadamard 3-design. A Hadamard 2-
design can be extended into a Hadamard 3-design as follows (see Theorem 4.14).

Theorem 12.42. Let D= (P ,B) be a 2-(2k−1,k−1,λ) design with k > 2. Then
D can be extended into a 3-(2k,k,λ) design De.

Proof. We now define a new structure De = (P e,Be), where P e = P ∪{∞} and
∞ is a new symbol, and Be is defined by

Be = {P \B : B ∈ B}∪{B∪{∞} : B ∈ B}.

Note that the set {P \B : B ∈ B} consists of the complements of all the blocks in
B , and {B∪{∞} : B ∈ B} is composed of all the blocks adjoined by ∞ in B . It
is straightforward to verify that every 3-subset of P e is contained in λ blocks of
Be.

Let H (q,O)e denote the extended design of H (q,O). Then H (q,O)e

is a 3-(q2, 1
2 q2, 1

4 q2 − 1) design. Consequently, [q + 2,3,q] MDS codes over
GF(q) (equivalently, hyperovals in PG(2,GF(q))) give a number of classes of
3-(q2, 1

2 q2, 1
4 q2−1) designs.

12.7 Maximal Arc Codes and Their Designs

A maximal (n,h)-arc A in the projective plane PG(2,GF(q)) is a subset of n =

hq+h−q points such that every line meets A in 0 or h points. A line is called a
secant if it meets A , and external line otherwise. A line in PG(2,GF(q)) is said
to be external to a maximal arc A if it has no intersection with A . The set of lines
external to A is a maximal (n′,h′)-arc A ′ in the dual plane, where n′ = h′q+h′−q
and h′ = q/h. A ′ is called the dual of A .

When h = 2, maximal arcs in PG(2,GF(q)) become hyperovals, which were
treated in the forgoing section. Hence, in this section we are mainly interested in
maximal (n,h)-arcs with h > 2.
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Any point of PG(2,GF(q)) is a (1,1)-arc. The complement of any line is
a maximal (q2,q)-arc. These are called trivial arcs. It has been proved that only
trivial maximal arcs exist in PG(2,GF(q)) for odd q [Ball, Blokhuis and Mazzocca
(1997)]. For even q, we have the following conclusion [Hirschfeld (1998)].

Theorem 12.43. Let q > 2 be even. A maximal (n,h)-arc A in PG(2,GF(q))
exists if and only if h divides q, where 2≤ h < q.

In 1969 Denniston employed a special set of conics to construct maximal arcs
in the Desarguessian planes PG(2,GF(q)) for even q [Denniston (1969)]. Below
we introduce the Denniston arcs, and will assume that q > 2 is even.

Let X2 + βX + 1 be an irreducible polynomial over GF(q). It is known that
the total number of such irreducible polynomials over GF(q) is q/2 [Hirschfeld
(1998)][Sec. 1.3]. Define

Fλ := {(x,y,z) : λx2 + y2 +βyz+ z2 = 0}, λ ∈ GF(q)∪{∞}. (12.5)

Since X2 + βX + 1 is irreducible over GF(q), F0 is only the point (1,0,0), and
F∞ is the line x = 0. Every other conic Fλ is non-degenerate and has nucleus F0.
Further, this pencil of conics

{Fλ : λ ∈ GF(q)∪{∞}}

is a partition of the projective plane.
Let λ ∈ GF(q)∗. Then λx2 + y2 +βyz+ z2 = 0 if and only if

x = λ−
q
2

(
y+(βyz)

q
2 + z

)
.

It then follows that

Fλ :=
{(

λ−
q
2 ,1,0

)}
∪
{(

λ−
q
2

(
y+(βy)

q
2 +1

)
,y,1

)
: y ∈ GF(q)

}
for all λ ∈ GF(q)∗.

Example 12.44. Let q = 22. Let w be a generator of GF(q)∗ with w2 +w+1 = 0.
Then X2 +wX +1 is irreducible over GF(q). We haven then the following:

F0 = {(1,0,0)},
F1 = {(1,0,1),(w2,w2,1),(w2,1,1),(1,1,0),(1,w,1)},
Fw = {(w,1,0),(1,w2,1),(w,w,1),(1,1,1),(w,0,1)},

Fw2 = {(w,w2,1),(w2,0,1),(w,1,1),(w2,1,0),(w2,w,1)},
F∞ = {(0,0,1),(0,w2,1),(0,1,0),(0,1,1),(0,w,1)}.
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The following theorem documents Denniston arcs [Denniston (1969)]. The
reader is encouraged to work out a proof of it.

Theorem 12.45. Let A be an additive subgroup of GF(q) of order h. Then the
set of points of all conics Fλ for λ ∈ A form a maximal (n,h)-arc A , where n =

hq+h−q.

More families of maximal arcs were discovered and reported in Thas (1974),
Thas (1980) and Mathon (2002). Their relations with the Denniston arcs were
discussed in Hamilton and Penttila (2001).

Given a maximal (n,h)-arc A , the points in the arc define a 3×n matrix over
GF(q), where each column vector is a point in the arc. We use C (A) to denote the
code spanned by the rows of this matrix, which is called a maximal arc code (see
Section 2.15 for the general construction).

Theorem 12.46. Let q = 2m for any m ≥ 2 and h = 2i with 1 ≤ i < m. Let A be
a maximal (n,h)-arc in PG(2,GF(q)). Then the arc code C (A) has parameters
[n, 3, n−h] and weight enumerator

1+
(q2−1)n

h
zn−h +

(q3−1)h− (q2−1)n
h

zn, (12.6)

where n = hq+h−q.

Proof. By definition, A meets each line in either 0 or h points. Note that in
PG(2,GF(q)) lines and hyperplanes are the same. Let c = ∑3

j=1 uigi be a nonzero
codeword of C (A), where gi = (gi,1, . . . ,gi,n) are the row vectors of the generator
matrix of C (A). Then

c =

(
3

∑
j=1

g1, ju j,
3

∑
j=1

g2, ju j, . . . ,
3

∑
j=1

gn, ju j

)
.

Note that xu1 + yu2 + zu3 = 0 defines a hyperplane (also a line). It then follows
that the Hamming weight of c is either n or n− h. Thus, C (A) has only the
two nonzero weights n− h and n. Note that the dual code has minimum weight
at least 2. Solving the first two Pless power moments yields the desired weight
enumerator. Note that the conclusion can also be derived from Theorem 2.43.

Theorem 12.47. Let q = 2m for any m ≥ 2 and h = 2i with 1 ≤ i < m. Let A

be a maximal (n,h)-arc in PG(2,GF(q)). Then the supports of the codewords of
weight n−h in the code C (A) form a 2-design with parameters

2−
(

n, n−h,
(n−h)(n−h−1)

h(h−1)

)
,

where n = hq+h−q. Its complementary design is a 2-(n,h,1) Steiner system.
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Proof. It can be proved that C (A)⊥ has parameters [n,n − 3,d⊥] with the
MacWilliams Identity and the weight enumerator in (12.6), where d⊥ = 4 if h = 2
and d⊥ = 3 otherwise. It then follows from the Assmus-Mattson Theorem that the
supports of the codewords with weight n− h in the code C (A) form a 2-design.
Since n−h is the minimum distance of the code, the total number of blocks in the
design is given by

(q2−1)n
(q−1)h

=
(q+1)n

h
.

As a result,

λ =
(n−h)(n−1−h)

h(h−1)
.

The desired conclusion on the complementary design is obvious.

The supports of the codewords of weight 3 in the dual code C (A)⊥ also form
a 2-design. The parameters of this 2-design can be worked out with the weight
distribution formula given in (12.17).

The proof of Theorem 12.46 implies the following result.

Theorem 12.48. Let q = 2m ≥ 4 and h = 2i with 1≤ i < m. Let C be an [n, 3, n−
h] code over GF(q) with weight enumerator

1+
(q2−1)n

h
zn−h +

(q3−1)h− (q2−1)n
h

zn, (12.7)

where n = hq+h−q. Let G be a generator matrix of C . Then the set of all column
vectors of G is a maximal (n.h)-arc in PG(2,GF(q)).

Combining Theorems 12.46 and 12.48, we conclude that maximal (n,h)-arcs
in PG(2,GF(q)) and [n, 3, n−h] codes over GF(q) with the weight enumerator of
(12.7) are the same, in the sense that one can be derived from the other. Notice
that maximal (n,2)-arcs in PG(2,GF(q)) become hyperovals.

12.8 A Family of Extended Cyclic Codes and Their Designs

In the preceding section, we introduced maximal arcs, their codes and designs.
The objective of this section is to describe a family of extended cyclic codes and
their designs, which yield maximal arcs by Theorem 12.48. The materials of this
section come from De Winter, Ding and Tonchev (2019).

Let m and k be positive integers. Define

q = 2km, h = 2m, n′ = (q+1)(h−1), N = (q−1)/(h−1), r = q2.
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By definition,

N =
r−1

n′
=

q−1
h−1

= (2m)k−1 +(2m)k−2 + · · ·+2m +1.

It is straightforward to see that ordn′(q) = 2. Let α be a generator of GF(r)∗. Put
β = αN . Then the order of β is n′. Let Tr(·) denote the trace function from GF(r)
to GF(q).

The irreducible cyclic code of length n′ over GF(q) is defined by

C(q,2,n′) = {ca : a ∈ GF(r)}, (12.8)

where

ca = (Tr(aβ0),Tr(aβ1),Tr(aβ2), . . . ,Tr(aβn′−1)).

The complete weight distribution of some irreducible cyclic codes was deter-
mined in Baumert and McEliece (1972). However, the results in Baumert and
McEliece (1972) do not apply to the cyclic code C(q,2,n′) of (12.8), as our q is not
a prime. The weight distribution of C(q,2,n′) is given in the following theorem.

Theorem 12.49. The code C(q,2,n′) of (12.8) has parameters [n′, 2, n′−h+1] and
has weight enumerator

1+(q2−1)z(h−1)q.

Furthermore, the dual distance of C(q,2,n′) equals 3 if m = 1, and 2 if m > 1.

Proof. Since q is even, gcd(q+1,q−1) = 1. It then follows that

gcd
(

r−1
q−1

, N
)
= gcd

(
q+1,

q−1
h−1

)
= 1.

The desired conclusions regarding the dimension and weight enumerator of
C(q,2,n′) then follow from Theorem 15 in Ding and Yang (2013).

We now prove the conclusions on the minimum distance of the dual code of
C(q,2,n′). To this end, we define a linear code of length q+1 over GF(q) by

E(q,2,q+1) = {ea : a ∈ GF(r)}, (12.9)

where

ea = (Tr(aβ0),Tr(aβ1),Tr(aβ2), . . . ,Tr(aβq)).

Each codeword ca in C(q,2,n′) is related to the codeword ea in E(q,2,q+1) as follows:

ca = ea||β(q+1)ea||β(q+1)2ea|| · · · ||β(q+1)(h−2)ea, (12.10)

where || denotes the concatenation of vectors. It is easy to prove

{β(q+1)i : i ∈ {0,1, . . . ,h−2}}= GF(h)∗ ⊆ GF(q)∗.
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It then follows that E(q,2,q+1) has the same dimension as C(q,2,n′). Consequently,
the dimension of E(q,2,q+1) is 2, and the dual code E⊥(q,2,q+1) has dimension q−
1. It then follows from the Singleton bound that the minimum distance d⊥E of
E⊥(q,2,q+1) is at most 3. Obviously, d⊥E 6= 1. Suppose that d⊥E = 2. Then there
are an element u ∈ GF(q)∗ and two integers i, j with 0 ≤ i < j ≤ q such that
Tr(a(βi−uβ j)) = 0 for all a ∈ GF(r). It then follows that βi(1−uβ j−i) = 0. As
a result, β j−i = α(q−1)( j−i)/(h−1) = u−1 ∈ GF(q)∗, which is impossible, as 0 <

j− i≤ q and gcd(q+1,(q−1)/(h−1)) = 1. Hence, d⊥E = 3. Since E⊥(q,2,q+1) is
a [q+1,q−1,3] MDS code, E(q,2,q+1) is a [q+1,2,q] MDS code. When m = 1,
we have h = 2 and hence C(q,2,n′) = E(q,2,q+1). Consequently, the dual distance of
C(q,2,n′) is 3 when m = 1. When m > 1, we have h−1 > 1. In this case, by (12.10)
C⊥(q,2,n′) has the following codeword

(βq+1,0,1,0,0, . . . ,0,0),

which has Hamming weight 2, where 0 is the zero vector of length q. Hence,
C⊥(q,2,n′) has minimum distance 2 if m > 1. This completes the proof.

The code C(q,2,n′) is a one-weight code over GF(q). We need to study the
augmented code of C(q,2,n′). Let Z(a,b) denote the number of solutions x ∈GF(r)
of the equation

Trr/q(axN) = axN +aqxNq = b, (12.11)

where a ∈ GF(r) and b ∈ GF(q). A key result of this section is the following
lemma whose proof can be found in De Winter, Ding and Tonchev (2019).

Lemma 12.50. Let a ∈ GF(r)∗ and b ∈ GF(q). Then

Z(a,b) =
{
(h−1)N +1 if b = 0,
hN or 0 if b ∈ GF(q)∗.

Define

C̃(q,2,n′) = {ca +b1 : a ∈ GF(r), b ∈ GF(q)}, (12.12)

where 1 denotes the all-1 vector in GF(q)n′ . By definition, C̃(q,2,n′) is the aug-
mented code of C(q,2,n′).

Theorem 12.51. The cyclic code C̃(q,2,n′) has length n′, dimension 3 and only the
following nonzero weights:

n′−h, n′−h+1, n′.

The dual distance of C̃(q,2,n′) is 4 if m = 1, and 3 if m > 1.
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Proof. By definition, every codeword in C̃(q,2,n′) is given by ca + b1, where
a ∈ GF(r) and b ∈ GF(q). By Theorem 12.49, the codeword ca + b1 is the zero
codeword if and only if (a,b) = (0,0). Consequently, the dimension of C̃(q,2,n′) is
3.

When a = 0 and b 6= 0, the codeword ca +b1 has weight n′. When a 6= 0 and
b = 0, by Theorem 12.49, the codeword ca+b1 has weight n′−h+1. When a 6= 0
and b 6= 0, by Lemma 12.50, the weight of the codeword ca + b1 is either n′ or
n′−h, depending on Z(a,b) = 0 or Z(a,b) = hN.

The proof of the conclusions on the dual distance of C̃(q,2,n′) is left to the
reader.

Let C̃ (q,2,n′) denote the extended code of C̃(q,2,n′). The next theorem gives the
parameters of this extended code.

Theorem 12.52. Let mk ≥ 1, and let C̃ (q,2,n′) be a linear code over GF(q) with
parameters [n′+1, 3, n′+1−h] and nonzero weights n′+1−h and n′+1. Then

the weight enumerator of C̃ (q,2,n′) is given by

A(z) := 1+
(q2−1)(n′+1)

h
zn′+1−h +

(q3−1)h− (q2−1)(n′+1)
h

zn′+1.

Furthermore, the dual distance of the code is 3 when m > 1 and 4 when m = 1.

Proof. By definition, every codeword of C̃ (q,2,n′) is given by

(ca +b1, c̄),

where c̄ denotes the extended coordinate of the codeword. Note that ∑n′−1
i=0 βi = 0.

We have

c̄ = n′b = b.

When a 6= 0 and b = 0, by Theorem 12.49,

wt((ca +b1, c̄)) = wt(ca +b1) = n′+1−h.

When a 6= 0 and b 6= 0, by the proof of Theorem 12.51,

wt((ca +b1, c̄)) =
{

n′+1−h if Z(a,b) = hN,

n′+1 if Z(a,b) = 0.

When a = 0 and b 6= 0, it is obvious that wt((ca+b1, c̄)) = n′+1. We then deduce

that C̃ (q,2,n′) has only nonzero weights n′+ 1− h and n′+ 1. By Theorem 12.51,

the minimum distance of C̃
⊥
(q,2,n′) is at least 3. The weight enumerator of C̃ (q,2,n′)

is obtained by solving the first two Pless power moments.
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We now prove the conclusions on the dual distance of C̃ (q,2,n′). For simplicity,
we put

u =
(q2−1)(n′+1)

h
, v =

(q3−1)h− (q2−1)(n′+1)
h

.

By (12.13), the weight enumerator of C̃ (q,2,n′) is A(z) = 1+ uzn′+1−h + vzn′+1. It
then follows from the MacWilliams Identity that the weight enumerator A⊥(z) of

C̃
⊥
(q,2,n′) is given by

q3A⊥(z) = (1+(q−1)z)n′+1A
(

1− z
1+(q−1)z

)
= (1+(q−1)z)n′+1 +u(1− z)n′+1−h(1+(q−1)z)h + v(1− z)n′+1.

(12.13)

We have

(1+(q−1)z)n′+1 =
n′+1

∑
i=0

(
n′+1

i

)
(q−1)izi (12.14)

and

v(1− z)n′+1 =
n′+1

∑
i=0

(
n′+1

i

)
(−1)ivzi. (12.15)

It is straightforward to prove that

u(1− z)n′+1−h(1+(q−1)z)h =
n′+1

∑
ℓ=0

(
∑

i+ j=ℓ

(
n′+1−h

i

)(
h
j

)
(−1)i(q−1) j

)
uzℓ.

(12.16)

Combining (12.13), (12.14), (12.15) and (12.16), we obtain that

q3A⊥1 =

(
n′+1

1

)
[(q−1)− v]+[(

n′+1−h
0

)(
h
1

)
(−1)0(q−1)1 +

(
n′+1−h

1

)(
h
0

)
(−1)1(q−1)0

]
u

= (n′+1)[(q−1)− v]+ [h(q−1)− (n′+1−h)]u

= 0.
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Combining (12.13), (12.14), (12.15) and (12.16) again, we get that

q3A⊥2 =

(
n′+1

2

)
[(q−1)2 + v]+

(
n′+1−h

0

)(
h
2

)
(−1)0(q−1)2u+(

n′+1−h
1

)(
h
1

)
(−1)1(q−1)1u+

(
n′+1−h

2

)(
h
0

)
(−1)2(q−1)0u

=

(
n′+1

2

)
[(q−1)2 + v]+[(

h
2

)
(q−1)2− (n′+1−h)h(q−1)+

(
n′+1−h

2

)]
u

= 0.

Combining (12.13), (12.14), (12.15) and (12.16) the third time, we arrive at

q3A⊥3 =

(
n′+1

3

)
[(q−1)3− v]+[(

n′+1−h
0

)(
h
3

)
(−1)0(q−1)3 +

(
n′+1−h

1

)(
h
2

)
(−1)1(q−1)2

]
u+[(

n′+1−h
2

)(
h
1

)
(−1)2(q−1)1 +

(
n′+1−h

3

)(
h
0

)
(−1)3(q−1)0

]
u

=

(
n′+1

3

)
[(q−1)3− v]+[(

h
3

)
(q−1)3−

(
n′+1−h

1

)(
h
2

)
(q−1)2

]
u+[(

n′+1−h
2

)(
h
1

)
(q−1)−

(
n′+1−h

3

)]
u.

It then follows that

6q3A⊥3 = q6h3−4q6h2 +5q6h−2q6 +q5h3−3q5h2 +2q5h−
q4h3 +4q4h2−5q4h+2q4−q3h3 +3q3h2−2q3h

= (h−2)(h−1)q3(q2−1)(qh−q+h).

Thus,

A⊥3 =
(h−2)(h−1)(q2−1)(qh−q+h)

6
. (12.17)

When m > 1, we have h > 3. In this case, by (12.17) we have A⊥3 > 0. When
m = 1, by (12.17) we have A⊥3 = 0. As a result, the dual distance is at least 4 when
m = 1. On the other hand, the Singleton bound tells us that the dual distance is at
most 4 when m = 1. Whence, the dual distance must be 4 when m = 1.

Thus, in all cases, the extended code C̃ (q,2,n′) is projective, hence is associated
with a maximal (n′+1,h)-arc in PG(2,q).
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The designs held in C̃ (q,2,n′) are those documented in Theorem 12.47. Any

generator matrix of C̃ (q,2,n′) yields a maximal arc, which must be equivalent to
a Denniston arc [Abdukhalikov and Ho (2021); Hamilton and Penttila (2001)].
The extended cyclic code C̃ (q,2,n′) is monomially-equivalent to the Denniston code

[Abdukhalikov and Ho (2021)]. The parameters of the designs held in C̃ (q,2,n′) and
its dual were determined in Section 12.7.
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Chapter 13

Designs from Oviod Codes

In the preceding chapter, we treated designs from some MDS codes and hyper-
ovals, and observed a close connection between some MDS codes and hyperovals
in PG(2,GF(2e)). In this chapter we will deal with ovoids in PG(3,GF(q)), their
codes and 3-designs held in these codes. We will see that ovoids in PG(3,GF(q))
are equivalent to [q2 +1,4,q2−q] codes over GF(q).

13.1 Ovoids in PG(3,GF(q)) and Their Properties

Recall that a cap in PG(3,GF(q)) is a set of points in PG(3,GF(q)) such that no
three are collinear. We first have the following result about caps in PG(3,GF(q))
whose proof can be found in Beutelspacher and Rosenbaum (1998) and Payne
(2007)[Section 7.2], and whose development is documented in Bose (1947), Sei-
den (1950) and Qvist (1952).

Theorem 13.1. Let q > 2. For any cap V in PG(3,GF(q)), we have |V | ≤ q2+1.

In the projective space PG(3,GF(q)) with q > 2, an ovoid V is a set of q2 +1
points such that no three of them are collinear (i.e., on the same line). In other
words, an ovoid is a (q2 + 1)-cap (a cap with q2 + 1 points) in PG(3,GF(q)),
and thus a maximal cap by Theorem 13.1. Two ovoids are said to be equivalent
if there is a collineation (i.e., automorphism) of PG(3,GF(q)) that sends one to
the other. The automorphism group of an ovoid is the set of all collineations of
PG(3,GF(q)) that leave the ovoid invariant.

A tangent line to an ovoid V in PG(3,GF(q)) is a line which intersects V in
one point. The following theorem shows the existence of such tangent lines and
their properties [Payne (2007)][Section 7.2].

Theorem 13.2. Let V be an oviod in PG(3,GF(q)), q > 2. Then for a point
P ∈ V , the union of all the tangent lines on P is a plane, which is called the

353
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tangent plane at P of V .

The theorem below says that every plane in PG(3,GF(q)) meets an oviod
in some points ([Barlotti (1955)], [Barlotti (1965)], [Panella (1955)], [Payne
(2007)][Section 7.2]).

Theorem 13.3. Let V be an ovoid in PG(3,GF(q)), q > 2. Then exactly q2 + 1
planes of PG(3,GF(q)) meet V in a unique point, and the other q3 + q planes
meet V in an oval with q+1 points.

The q3 + q planes meeting V in an oval with q+ 1 points are called secant
planes. Below are two families of ovoids.

A classical ovoid V can be defined as the set of all points given by

V = {(0,0,1,0)}∪{(x, y, x2 + xy+ay2, 1) : x, y ∈ GF(q)}, (13.1)

where a ∈ GF(q) is such that the polynomial x2 + x+ a has no root in GF(q).
Such ovoid is called an elliptic quadric, as the points come from a non-degenerate
elliptic quadratic form.

For q = 22e+1 with e ≥ 1, there is an ovoid which is not an elliptic quadric,
and is called the Tits oviod [Tits (1960)]. It is defined by

T = {(0,0,1,0)}∪{(x, y, xσ + xy+ yσ+2, 1) : x, y ∈ GF(q)}, (13.2)

where σ = 2e+1.
For odd q, any ovoid is an elliptic quadric (see Barlotti (1955) and Panella

(1955)). For even q, Tits ovoids are the only known ones which are not elliptic
quadratics. In the case that q is even, the elliptic quadrics and the Tits ovoid are
not equivalent [Willems (1999)]. For further information about ovoids, the reader
is referred to O’Keefe (1996), Hirschfeld and Storme (1998) and Payne (2007).

13.2 Ovoids in PG(3,GF(q)) and [q2 +1,4,q2−q] Codes

Let V be an ovoid in PG(3,GF(q)) with q > 2. Denote by

V = {v1,v2, . . . ,vq2+1},

where each vi is a column vector in GF(q)4. Let CV be the linear code over GF(q)
with generator matrix

GV =
[
v1v2 · · ·vq2+1

]
. (13.3)

Note that V intersects each plane in either one point or q+1 points. It then follows
from Theorem 2.43 that CV has only the nonzero weights q2−q and q2. The code
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is clearly projective. Solving the first two Pless power moments, one obtains the
following weight enumerator of the code:

1+(q2−q)(q2 +1)zq2−q +(q−1)(q2 +1)zq2
. (13.4)

Hence, CV is a [q2 +1,4,q2−q] code over GF(q). Its dual is a [q2 +1,q2−3,4]
code. It then follows from Theorem 4.24 (i.e., the Assmus-Mattson Theorem)
that the minimum weight codewords in CV hold a 3-design. The dual code also
supports 3-designs. The parameters of the 3-designs will be described in Section
13.4.

Linear codes over GF(q) with parameters [q2 + 1,4,q2− q] are special and
attractive due to the following result [Bierbrauer (2017)][p. 192].

Lemma 13.4. Any linear code over GF(q) with parameters [q2+1,4,q2−q] must
have the weight enumerator of (13.4).

Combining Lemma 13.4 and the proof of Theorem 13.11, we then arrive at the
following.

Theorem 13.5. The dual of any linear code over GF(q) with parameters [q2 +

1,4,q2−q] must have parameters [q2 +1,q2−3,4].

The following conclusion then follows from Theorem 13.5.

Theorem 13.6. Let C be a [q2 +1,4,q2−q] code over GF(q). Let G be a gener-
ator matrix of C . Then the column vectors of G form an ovoid in PG(3,GF(q)).

Due to Theorems 13.6 and 13.5, linear codes over GF(q) with parameters
[q2 + 1,4,q2− q] are called ovoid codes. Another special feature of ovoid codes
is that they meet the Griesmer bound. Linear codes over GF(q) with parameters
[q2 + 1,q2 − 3,4] are almost MDS codes. Note that the weight distribution of
general almost MDS codes is not known, though that of MDS codes is determined.

Let λ ∈ GF(q)∗. A linear code C of length n over GF(q) is called a λ-
constacyclic code if (c0,c1, . . . ,cn−1) ∈ C implies that (λcn−1,c0, . . . ,cn−2) ∈ C .
By definition, 1-constacyclic codes are cyclic codes. Hence, constacyclic codes
contain cyclic codes as a subclass. It is also known that the dual of a λ-constacyclic
code is a λ−1-constacyclic code. Elliptic quadric codes are characterized in terms
of constacyclic codes as follows by Maruta (1995).

Theorem 13.7. Let V be an ovoid in PG(3,GF(q)). Then V is an elliptic quadric
if and only if CV is monomially-equivalent to a λ-constacyclic code.

When V is an elliptic quadric and q is odd, CV is monomially-equivalent to a
λ-constacyclic code, where λ cannot be 1. When V is an elliptic quadric and q is
even, CV is monomially-equivalent to a cyclic code.
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The following theorem was also proved in Maruta (1995).

Theorem 13.8. A constacyclic code over GF(q) with parameters [q2+1,q2−3,4]
is unique up to monomial equivalence. Equivalently, a constacyclic code over
GF(q) with parameters [q2 +1,4,q2−q] is unique up to monomial equivalence.

13.3 A Family of Cyclic Codes with Parameters [q2 +1,4,q2−q]

The objective of this section is to present a family of irreducible cyclic codes
over GF(q) with parameters [q2 + 1,4,q2− q], which give a family of ovoids in
PG(3,GF(q)) by Theorem 13.6.

Let r be a power of q and q be a power of a prime p. Let N > 1 be an integer
dividing r−1, and put n = (r−1)/N. Let α be a primitive element of GF(r) and
let θ = αN . The set

C (r,N) = {(Trr/q(β),Trr/q(βθ), ...,Trr/q(βθn−1)) : β ∈ GF(r)} (13.5)
is called an irreducible cyclic [n,m0] code over GF(q), where Trr/q is the trace
function from GF(r) onto GF(q), m0 is the multiplicative order of q modulo n and
m0 divides m.

Let ζp = e2π
√
−1/p, and χ(x) = ζ

Trr/p(x)
p , where Trr/p is the trace function from

GF(r) to GF(p). Then χ is an additive character of GF(r). Let α be a fixed
primitive element of GF(r). Define C(N,r)

i = αi〈αN〉 for i = 0,1, ...,N−1, where
〈αN〉 denotes the subgroup of GF(r)∗ generated by αN . The cosets C(N,r)

i are
called the cyclotomic classes of order N in GF(r). The Gaussian periods are
defined by

η(N,r)
i = ∑

x∈C(N,r)
i

χ(x), i = 0,1, ...,N−1,

where χ is the canonical additive character of GF(r). Recall that cyclotomic
classes and Gaussian periods were defined in Section 1.5.2.

To determine the weight distribution of some irreducible cyclic codes later, we
need the following lemma [Ding and Yang (2013)].

Lemma 13.9. Let e1 be a positive divisor of r− 1 and let i be any integer with
0≤ i < e1. We have the following multiset equality:{{

xy : y ∈ GF(q)∗,x ∈C(e1,r)
i

}}
= (q−1)gcd((r−1)/(q−1),e1)

e1
∗C(gcd((r−1)/(q−1),e1),r)

i ,

where (q−1)gcd((r−1)/(q−1),e1)
e1

∗C(gcd((r−1)/(q−1),e1),r)
i denotes the multiset in which

each element in the set C(gcd((r−1)/(q−1),e1),r)
i appears in the multiset with multi-

plicity exactly (q−1)gcd((r−1)/(q−1),e1)
e1

.
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Proof. We just prove the conclusion for i = 0. The proof is similar for i 6= 0 since

C(gcd((r−1)/(q−1),e1),r)
i = αiC(gcd((r−1)/(q−1),e1),r)

0 .

Note that every y ∈ GF(q)∗ can be expressed as y = α
r−1
q−1 ℓ for a unique ℓ with

0 ≤ ℓ < q− 1 and every x ∈ C(e1,r)
0 can be expressed as x = αe1 j for a unique j

with 0≤ j < (r−1)/e1. Then we have

xy = α
r−1
q−1 ℓ+e1 j.

It follows that

xy = α
r−1
q−1 ℓ+e1 j = (αgcd((r−1)/(q−1),e1))

r−1
(q−1)gcd((r−1)/(q−1),e1)

ℓ+
e1

gcd((r−1)/(q−1),e1)
j
.

Note that

gcd
(

r−1
(q−1)gcd((r−1)/(q−1),e1)

,
e1

gcd((r−1)/(q−1),e1)

)
= 1.

When ℓ ranges over 0≤ ℓ < q−1 and j ranges over 0≤ j < (r−1)/e1, xy takes
on the value 1 exactly q−1

e1
gcd((r−1)/(q−1),e1) times.

Let xi1 ∈C(e1,r)
0 for i1 = 1 and i1 = 2, and let yi2 ∈GF(q)∗ for i2 = 1 and i2 = 2.

Then x1
x2
∈C(e1,r)

0 and y1
y2
∈ GF(q)∗. Note that x1y1 = x2y2 if and only if x1

x2

y1
y2

= 1.
Then the conclusion of the lemma for the case i = 0 follows from the discussions
above.

Let N > 1 be an integer dividing r− 1, and put n = (r− 1)/N. Let α be
a primitive element of GF(r) and let θ = αN . Let Z(r,a) denote the number of
solutions x∈GF(r) of the equation Trr/q(axN) = 0. We have then by Lemma 13.9

Z(r,a) =
1
q ∑

y∈GF(q)
∑

x∈GF(r)
ζ

Trq/p(yTrr/q(axN))
p

=
1
q ∑

y∈GF(q)
∑

x∈GF(r)
χ(yaxN)

=
1
q

q+ r−1+N ∑
y∈GF(q)∗

∑
x∈C(N,r)

0

χ(yax)



=
1
q

q+ r−1+(q−1)gcd(
r−1
q−1

,N) · ∑
z∈C

(
gcd
(

r−1
q−1 ,N

)
,r
)

0

χ(az)

 .
Then the Hamming weight of the codeword

c(β) = (Trr/q(β),Trr/q(βθ), ...,Trr/q(βθn−1)) (13.6)
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in the irreducible cyclic code of (13.5) is equal to

n− Z(r,β)−1
N

=

(q−1)

(
r−1−gcd

(
r−1
q−1 ,N

)
η

(
gcd
(

r−1
q−1 ,N

)
,r
)

k

)
qN

. (13.7)

Below we present a family of two-weight cyclic codes which are in fact ovoid
codes.

Theorem 13.10. Let q = 2s, where s ≥ 2. Let m = 4 and N = q2− 1. Then the
code C (r,N) over GF(q) of (13.5) has parameters [q2 + 1,4,q2− q] and weight
enumerator

1+(q2−q)(q2 +1)zq2−q +(q−1)(q2 +1)zq2
. (13.8)

Proof. Let

N1 = gcd((r−1)/(q−1),N) = q+1.

It then follows from Theorem 1.38 that

η(N1,r)
0 =−(q2−q+1), η(N1,r)

i = q−1 for 1≤ i≤ q.

Let β ∈C(N1,r)
i , where 0≤ i≤ q. By (13.7), the Hamming weight of the codeword

c(β) in (13.6) is given by

wt(c(β)) =

(q−1)

(
r−1−gcd

(
r−1
q−1 ,N

)
η

(
gcd
(

r−1
q−1 ,N

)
,r
)

k

)
qN

=
(q−1)

(
r−1− (q+1)η(N1,r)

k

)
qN

=

{
q2 if i = 0,
q2−q if 1≤ i≤ q.

It is obvious that the dual code of C (r,N) has minimum distance at least 2. Let
w1 = q2−q and w2 = q2. Let Aw1 and Aw2 denote the number of codewords with
weight w1 and w2 in C (r,N), respectively. The first two Pless power moments
then become

Aw1 +Aw2 = q4−1 and w1Aw1 +w2Aw2 = q3(q−1)(q2 +1).

Solving this set of equations above yields

Aw1 = (q2−q)(q2 +1), Aw2 = (q−1)(q2 +1).

This completes the proof.
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The ovoid given by any generator matrix of the code C (r,N) is equivalent to
the elliptic quadrics (see Abdukhalikov and Ho (2021) for a proof). Hence, the
elliptic quadric has a cyclic-code construction when q is even.

Recall the BCH code C(q,n,δ,b) of length n over GF(q) defined in Section 3.7.
Let q ≥ 4 be even. One can prove that the narrow-sense BCH code C(q,q2+1,2,1)

has parameters [q2 + 1,q2− 3,4] and its dual C⊥
(q,q2+1,2,1) has parameters [q2 +

1,4,q2−q]. Hence, the code C (r,N) is the code C⊥
(q,q2+1,2,1) for a specific choice

of the (q2 +1)-th root of unity in the extension field GF(q4).

13.4 Designs from Ovoid Codes over GF(q)

Let C be a [q2 +1,4,q2−q] code over GF(q), i.e., an ovoid code. The task of this
section is to work out the designs held in C and its dual. We first determine the
weight distribution of C⊥.

Theorem 13.11. Let q ≥ 4, and let C be a [q2 + 1,4,q2− q] code over GF(q).
Then C⊥ has parameters [q2 +1,q2−3,4] and its weight distribution is given by

q4A⊥ℓ =

(
q2 +1

ℓ

)
(q−1)ℓ+u ∑

i+ j=ℓ

(
q2−q

i

)
(−1)i

(
q+1

j

)
(q−1) j +

v
[
(−1)ℓ

(
q2

ℓ

)
+(−1)ℓ−1(q−1)

(
q2

ℓ−1

)]
(13.9)

for all 4≤ ℓ≤ q2, and

q4A⊥q2+1 = (q−1)q2+1 +u(q−1)q+1 + v(q−1),

where

u = (q2−q)(q2 +1), v = (q−1)(q2 +1) (13.10)

and A⊥ℓ denotes the number of codewords of weight ℓ in C⊥.

Proof. By Theorem 13.10, the weight enumerator of C is

A(z) = 1+uzq2−q + vzq2
.

It then follows from the MacWilliams identity that

q4A⊥(z) = (1+(q−1)z)q2+1A
(

1− z
1+(q−1)z

)
= (1+(q−1)z)q2+1

[
1+u

(
1− z

1+(q−1)z

)q2−q

+ v
(

1− z
1+(q−1)z

)q2]
= P1(z)+P2(z)+P3(z),
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where

P1(z) = (1+(q−1)z)q2+1 =
q2+1

∑
ℓ=0

(
q2 +1

ℓ

)
(q−1)ℓ,

P2(z) = u(1− z)q2−q(1+(q−1)z)q+1

= u
q2+1

∑
ℓ=0

[
∑

i+ j=ℓ

(
q2−q

i

)
(−1)i

(
q+1

j

)
(q−1) j

]
zℓ

and

P3(z) = v(1− z)q2
(1+(q−1)z)

= v

[
1+

q2

∑
ℓ=1

[
(−1)ℓ

(
q2

ℓ

)
+(−1)ℓ−1(q−1)

(
q2

ℓ−1

)]
zℓ+(q−1)zq2+1

]
.

For the easiness of description, let

Pi(z) = ∑
ℓ

Pi, jzℓ

for all 1≤ i≤ 3. Obviously, the minimum distance d⊥ of C⊥ cannot be 1.
We first prove that A⊥2 = 0. By definition,

P1,2 =

(
q2 +1

2

)
(q−1)2

=
1
2

q6−q5 +q4−q3 +
1
2

q2,

P2,2 = u

[
∑

i+ j=2

(
q2−q

i

)
(−1)i

(
q+1

j

)
(q−1) j

]

= −1
2

q7 +q6−q5 +q4− 1
2

q3

and

P3,2 = v
[
(−1)2

(
q2

2

)
+(−1)2−1(q−1)

(
q2

2−1

)]
=

1
2

q7− 3
2

q6 +2q5−2q4 +
3
2

q3− 1
2

q2.

Consequently,

q4A⊥2 = P1,2 +P2,2 +P3,2 = 0

and A⊥2 = 0.
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We then prove that A⊥3 = 0. By definition,

P1,3 =

(
q2 +1

3

)
(q−1)3

=
1
6

q9− 1
2

q8 +
1
2

q7− 1
6

q6− 1
6

q5 +
1
2

q4− 1
2

q3 +
1
6

q2,

P2,3 = u

[
∑

i+ j=3

(
q2−q

i

)
(−1)i

(
q+1

j

)
(q−1) j

]

= −1
6

q8 +
1
6

q7 +
1
6

q4− 1
6

q3

and

P3,3 = v
[
(−1)3

(
q2

3

)
+(−1)3−1(q−1)

(
q2

3−1

)]
= −1

6
q9 +

2
3

q8− 2
3

q7 +
1
6

q6 +
1
6

q5− 2
3

q4 +
2
3

q3− 1
6

q2.

Consequently.

q4A⊥3 = P1,3 +P2,3 +P3,3 = 0

and A⊥3 = 0.
Finally, we compute A⊥4 . By definition,

P1,4 =

(
q2 +1

4

)
(q−1)4

=
1
24

q12− 1
6

q11 +
1
6

q10 +
1
6

q9− 1
2

q8 +
1
2

q7−

1
4

q6− 1
6

q5 +
11
24

q4− 1
3

q3 +
1
12

q2,

P2,4 = u

[
∑

i+ j=4

(
q2−q

i

)
(−1)i

(
q+1

j

)
(q−1) j

]

=
1
8

q10− 7
24

q9 +
1

12
q8 +

1
12

q7− 1
8

q6 +
7
24

q5− 1
12

q4− 1
12

q3

and

P3,4 = v
[
(−1)4

(
q2

4

)
+(−1)4−1(q−1)

(
q2

4−1

)]
=

1
24

q11− 5
24

q10 +
1
8

q9 +
3
8

q8− 11
24

q7 +
7

24
q6− 1

8
q5− 3

8
q4 +

5
12

q3− 1
12

q2.
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Consequently.

q4A⊥4 = P1,4 +P2,4 +P3,4

=
1
24

q12− 1
8

q11 +
1
12

q10− 1
24

q8 +
1
8

q7− 1
12

q6

=
(q−2)(q−1)2q6(q+1)(q2 +1)

24
.

We then deduce that

A⊥4 =
(q−2)(q−1)2q2(q+1)(q2 +1)

24
> 0 (13.11)

as q≥ 4. The desired general formula about A⊥ℓ follows from the fact that

q4A⊥ℓ = P1,ℓ+P2,ℓ+P3,ℓ

and the formulas for Pi,ℓ derived above.

We are now ready to describe the 3-designs held in C and its dual. Our main
result of this chapter is the following.

Theorem 13.12. Let q≥ 4 and let C be a [q2+1,4,q2−q] code over GF(q). Then
the supports of the codewords of weight q2−q in C form a design with parameters

3-(q2 +1, q2−q, (q−2)(q2−q−1)).

The complement of this design is a 3-(q2 +1,q+1,1) Steiner system.
Furthermore, the supports of all the codewords of weight 4 in C⊥ form a 3-

(q2 +1,4,q−2) design.

Proof. By Theorem 13.10, C is a two-weight code with the larger weight q2 >

(q2 + 1)− 2. In addition, by Theorem 13.10, the minimum weight of C⊥ is 4.
It then follows from Theorem 4.24 (i.e., the Assmus-Mattson Theorem) that the
supports of the codewords of weight q2−q in the code C form a 3-design, and the
supports of the codewords of weight 4 in the code C⊥ form also a 3-design.

By Theorem 13.10, Aq2−q = q(q− 1)(q2 + 1). Since q2− q is the minimum
weight of C , the number of supports of the codewords of weight q2−q is

b =
Aq2−q

q−1
= q(q2 +1).

It then follows that

b = λ
(q2+1

3

)(q2−q
3

) .
Consequently, λ = (q−2)(q2−q−1).
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Since 4 is the minimum weight of C⊥, by (13.11) the number of supports of
the codewords of weight 4 in C⊥ is

b⊥ =
A⊥4

q−1
=

(q−2)(q−1)q2(q+1)(q2 +1)
24

.

It then follows that

b⊥ = λ⊥
(q2+1

3

)(4
3

) .

Consequently, λ⊥ = q−2. This completes the proof.

13.5 Ovoids, Codes, Designs and Inversive Planes

In the previous sections of this chapter, we established the following:

(1) Ovoids in PG(3,GF(q)) and [q2+1,4,q2−q] codes over GF(q) are the same,
in the sense that one can be derived from the other.

(2) Every [q2 + 1,4,q2− q] code over GF(q) gives a 3-(q2 + 1,q+ 1,1] Steiner
system.

The purpose of this section is to show that the 3-(q2 +1,q+1,1] Steiner systems
are in fact finite inversive planes (also called Möbius planes). Hence, ovoids and
[q2 +1,4,q2−q] codes over GF(q) can produce inversive planes.

An incidence structure (P ,Z,∈) with point set P and a set Z of circles (i.e.,
blocks) is called an inversive plane or Möbius plane if the following axioms hold:

A1: For any three pairwise distinct points A, B and C, there is exactly one circle
that contains A,B,C.

A2: For any circle z, any point P ∈ z and Q 6∈ z, there exists exactly one circle z′

such that P ∈ z′, Q ∈ z′ and z∩ z′ = {P} (i.e., z and z′ touch each other at
point P).

A3: Every circle contains at least three points. There is at least one circle.

Four points A,B,C,D are said to be concyclic if there is a circle containing all of
them.

Example 13.13. The smallest inversive plane is the incidence structure (P ,Z,∈)
with P = {A,B,C,D,∞} and

Z = {z : z⊂ P , |z|= 3}.

The total number of circles is
(5

3

)
= 10.
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A

B

C

z

z z’

P

Q

Axiom A1 Axiom A2

Example 13.14. Let R denote the set of real numbers. In the affine plane
AG(2,R) the lines are described by the equations y = ax+ b and x = c, and a
circle is a set of points that fulfils an equation

(x− x0)
2 +(y− y0)

2 = r2, r > 0.

The geometry of lines and circles of the affine (also called Euclidean) plane can
be homogenized by embedding it into the incidence structure (P ,Z,∈) with

• P = R2∪{∞}, ∞ 6∈ R, the point set, and
• Z = {ℓ∪{∞} : ℓ a line in AG(2,R)}∪{k : k a circle of AG(2,R)}, the set of

circles.

The incidence structure (P ,Z,∈) is called the classical real Möbius plane.

An inversive plane is finite if the point set P is a finite set. It is not hard to
prove that in a finite inversive plane all circles have the same number of points.
For a finite inversive plane (P ,Z,∈) and a circle z ∈ Z, the integer n := |z|−1 is
called the order of the plane.

A proof of the next result could be found in Dembowski (1968)[Chapter 6].

Theorem 13.15. Let (P ,Z,∈) be a finite inversive plane with order n. Then
(P ,Z,∈) is a 3-(n2 +1,n+1,1) design.

Our main conclusion of this section is made in the following theorem.

Theorem 13.16. Let (P ,Z,∈) be a 3-(n2 +1,n+1,1) design with n≥ 4. If each
block is viewed as a circle, then (P ,Z,∈) is a finite inversive plane with order n.

Proof. Let D := (P ,Z,∈) be a 3-(n2 + 1,n+ 1,1) design with n ≥ 4. We now
view each block in Z as a circle, and prove that the three axioms for inversive
planes hold. By the definition of 3-(n2 + 1,n+ 1,1) designs, any three pairwise
distinct points A,B,C in Z are incident with exactly one block in Z. Hence, Axiom
A1 holds.
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Let z := {P1,P2, . . . ,Pn,P} be a block in Z and let Q be a point outside z. We
now consider the derived design D(P) with respect to the point P, which is defied
by

D(P) = (P \{P},{z\{P} : P ∈ z},∈).

It is known that D(P) is 2-(n2,n,1) design (see Section 4.1.6), i.e., an affine plane.
In the affine plane D(P), {P1,P2, . . . ,Pn} is a line (block), and Q is a point in D(P)
but not on the line {P1,P2, . . . ,Pn}. Hence, there is a unique line ℓ (block) in D(P)
containing Q that is parallel to {P1,P2, . . . ,Pn}. Thus,

{P1,P2, . . . ,Pn}∩ ℓ= /0.

Consequently, ℓ ∪ {P} is the unique circle in D that touches on the circle
{P1,P2, . . . ,Pn,P} at the unique point P. Hence, Axiom A2 holds.

Axiom A3 clearly holds. The proof is then completed.

Let q > 4 be even. Then the irreducible cyclic code of Theorem 13.12 pro-
duces an inversive plane.

If an ovoid is classical, the ovoid and the corresponding inversive plane is
classical or Miquelian. If V is an ovoid of PG(3,GF(q)), then the points of V

together with the intersections of π∩V , with π a nontangent plane of V (i.e., π
contains q+1 points of V ), form an inversive plane of order q. Such an inversive
plane is called egglike. Each inversive plane of even order is egglike [Dembowski
(1963)].

13.6 Designs Held in Punctured and Shortened Ovoid Codes

In this section, we describe 2-designs held in some punctured and shortened codes
of ovoid codes. We document the following results whose proofs can be found in
[Liu, Ding and Tang (2021)].

Theorem 13.17. Let q> 3 be a prime power, and let C be a [q2+1,4,q2−q] code
over GF(q). For any coordinate position i in C , let C{i} denote the code obtained
by shortening C at coordinate position i. Then C{i} is a [q2,3,q2− q] code over
GF(q) with weight enumerator

1+(q2−q)(q+1)zq2−q +(q−1)zq2
.

The dual code C⊥{i} has parameters [q2,q2−3,3].
The supports of all codewords of weight q2−q in the shortened code C{i} form

a 2-(q2,q2−q,q2−q−1) design D{i}. The complement of D{i} is a Steiner system
with parameters 2-(q2,q,1), i.e., an affine plane.
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It would be interesting to compare the affine planes in Theorem 13.17 with
those in the proof of Theorem 13.16. We now introduce 2-designs held in some
punctured codes of ovoid codes.

Theorem 13.18. Let q> 3 be a prime power, and let C be a [q2+1,4,q2−q] code
over GF(q). For any coordinate position i in C , let C {i} denote the code obtained
by puncturing C at coordinate position i. Then C {i} is a [q2,4,q2− q− 1] code
over GF(q) with weight enumerator

1+(q2−q)2zq2−q−1 +q(q2−1)zq2−q +q2(q−1)zq2−1 +(q−1)zq2
.

The dual code C⊥{i} has parameters [q2,q2−4,4].

The supports of all codewords of weight q2−q−1 in the punctured code C {i}

form a design with parameters

2–(q2,q2−q−1,(q−2)(q2−q−1)).

The complement of this design is a 2-(q2,q+1,q) design.
The supports of all codewords of weight q2− q in the punctured code C {i}

form a 2-(q2,q2−q,q2−q−1) design. The complement of this design is a Steiner
system with parameters 2-(q2,q,1), i.e., an affine plane.

Note that C{i} is a subcode of C {i}. The weight enumerators of C{i} and C {i}

tell us that the affine planes in Theorem 13.17 and those in Theorem 13.17 are the
same set of affine planes.

At the end of this section, we present the following two theorems but skip their
proofs.

Theorem 13.19. Let q = 2m ≥ 4. Define

D = {x ∈ GF(q4) : Trq4/q(x
q+1) = 1 and Trq4/q(x) = 0}

or

D = {x ∈ GF(q4) : Trq4/q(x
q+1 + x) = 1}.

Let CD denote the linear code over GF(q) defined in (2.15) in Section 2.14. Then
the code CD has parameters [q2,3,q2−q] and weight enumerator

1+(q2−q)(q+1)zq2−q +(q−1)zq2
.

The dual code C⊥D has parameters [q2,q2−3,3] and is AMDS.

The code CD in Theorem 13.19 has the same parameters and the same weight
enumerator as the code C{i} in Theorem 13.17. Hence, they support 2-designs
with the same parameters.
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Theorem 13.20. Let q = 2m ≥ 4. Define

D = {x ∈ GF(q4) : Trq4/q(x
q+1) = 1 and Trq4/q(x) 6= 0}

Let CD denote the linear code over GF(q) defined in (2.15) in Section 2.14. Then
the code CD has parameters [q3,4,q3−q2] and weight enumerator

1+(q4−q)zq3−q2
+(q−1)zq3

.

The dual code C⊥D has parameters [q3,q3−4,3]. The minimum weight codewords
in CD support a 2-(q3,q3−q2,q3−q2−1) design.
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Chapter 14

Quasi-Symmetric Designs from Bent Codes

Designs are often associated with optimal codes. Symmetric designs with the
symmetric difference property are a special type of symmetric designs and related
to Hadamard difference sets and a type of linear codes. Their derived and residual
designs are quasi-symmetric and have a close connection with a family of linear
codes meeting the Grey-Rankin bound. The objectives of this chapter is to give a
coding-theoretic construction of all quasi-symmetric SDP designs. It will be seen
that the linear codes holding quasi-symmetric designs are optimal with respect to
the Grey-Rankin bound (see Theorem 2.32).

14.1 Derived and Residual Designs of Symmetric Designs

The derived and residual designs with respect to a fixed point of a given design
were defined in Section 4.1.6. In this section, we define the derived and residual
designs of a symmetric design with respect to the complement of a fixed block,
and state their basic properties.

Theorem 14.1. Let D = {P , B} be a 2-(v,k,λ) symmetric design, where B =

{B1, B2, . . . , Bb} and b ≥ 2. Then (B1, {B2 ∩B1, B3 ∩B1, . . . , Bb ∩B1}) is a 2-
(k, λ, λ−1) design.

The proof of Theorem 14.1 is straightforward and left to the reader. The design
of Theorem 14.1 is called the derived design of D with respect to B1.

Theorem 14.2. Let D = {P , B} be a 2-(v,k,λ) symmetric design, where B =

{B1, B2, . . . , Bb} and b ≥ 2. Then (B̄1, {B2 ∩ B̄1, B3 ∩ B̄1, . . . ,Bb ∩ B̄1}) is a 2-
(v− k, k−λ, λ) design, where B̄1 = P \B1.

The proof of Theorem 14.2 is also straightforward and left to the reader. The
design of Theorem 14.2 is called the residual design of D with respect to B1.

369
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The b derived designs may be isomorphic or not. However, they have the same
parameters. Consequently, we call them collectively the derived design. For the
same reason, all the b residual designs are collectively called the residual design
of D. In this chapter, we use Dde and Dre to denote a derived and residual design
of a symmetric design D, respectively.

14.2 Symmetric and Quasi-Symmetric SDP Designs

If a symmetric design D has parameters

2− (2m, 2m−1−2(m−2)/2, 2m−2−2(m−2)/2), (14.1)

its derived design has parameters

2− (2m−1−2(m−2)/2, 2m−2−2(m−2)/2, 2m−2−2(m−2)/2−1), (14.2)

and its residual design has parameters

2− (2m−1 +2(m−2)/2, 2m−2, 2m−2−2(m−2)/2). (14.3)

A symmetric 2-design is said to have the symmetric difference property, or
to be a symmetric SDP design, if the symmetric difference of any three blocks is
either a block or the complement of a block.

Theorem 4.9 says that the block intersection numbers of symmetric 2-designs
are the same. This is a characterisation of such designs. A 2-design is quasi-
symmetric with intersection numbers x and y if any two distinct blocks intersect
in either x or y points for two fixed integers x and y with 0 ≤ x < y, and both
intersection numbers x and y are realised.1 A quasi-symmetric 2-design is said to
have the symmetric difference property, or to be an SDP design, if the symmetric
difference of any two blocks is either a block or the complement of a block.

14.3 The Roadmap of the Remaining Sections

Kantor constructed a very large number of symmetric SDP designs [Kantor (1975,
1983)]. Since then symmetric SDP designs and their codes, the derived and resid-
ual designs of symmetric SDP designs and their codes have been investigated
in Assmus and Key (1992b); Dillon and Schatz (1987); Jungnickel and Tonchev
(1991, 1992); Tonchev (1993).

1Here we require that x 6= y so that symmetric designs cannot be a subclass of quasi-symmetric
designs.
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Dillon and Schatz (1987) characterised all symmetric SDP designs of param-
eters of (14.1) with its binary code which is generated by the first-order Reed-
Muller code R (1,m) and the incidence vector of a Hadamard difference set with
the following parameters

(2m, 2m−1±2(m−2)/2, 2m−2±2(m−2)/2). (14.4)

This is the relation R.i depicted in Figure 14.1, which is documented in Theorem
14.6.

Jungnickel and Tonchev proved that the derived and residual designs of each
symmetric SDP design with parameters of (14.1) are quasi-symmetric, and have
the symmetric difference property and the parameters of (14.2) and (14.3), respec-
tively (see Theorem 14.13 in Jungnickel and Tonchev (1991, 1992)). Tonchev
showed that every quasi-symmetric SDP design with the parameters of (14.2) and
(14.3) must be a derived or residual design of a symmetric SDP design with the
parameters of (14.1). These are the relation R.ii depicted in Figure 14.1.

Symmetric SDP designs

designs as derived or 
Quasi−symmetric SDP 

residual designs

or bent functions
Difference sets 

Binary linear codes 

bound
meeting the Grey−Rankin

R.ii

R.iii

R.i

R.iv This chapter

Fig. 14.1 Some connections among designs and codes.

Combining Relations R.i and R.ii, we conclude that every quasi-symmetric
SDP design with the parameters of (14.2) or (14.3) comes from a Hadamard dif-
ference set with the parameters of (14.4). But we have the following question:

Problem 14.3. Given a Hadamard difference set in (GF(2m),+) with the param-
eters of (14.4), how does one construct the corresponding quasi-symmetric SDP
designs in a direct way?

Jungnickel and Tonchev observed that the binary code of the incidence matrix
of a quasi-symmetric SDP design is a binary self-complementary code meeting
the Grey-Rankin bound (see Theorem 2.32 in Jungnickel and Tonchev (1991)).
McQuire noticed a one-to-one correspondence between quasi-symmetric SDP
designs with the parameters of (14.2) and (14.3) with binary linear codes of
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certain parameters meeting the Grey-Rankin bound [McQuire (1997)]. Hence,
each quasi-symmetric SDP design is generated by a binary linear code meet-
ing the Grey-Rankin bound. As a result, every binary linear code of length
2m−1± 2(m−1)/2 meeting the Grey-Rankin bound comes from a Hadmard differ-
ence set in (GF(2m),+). The next question is as follows:

Problem 14.4. How does one construct binary linear codes of length 2m−1 ±
2(m−2)/2 meeting the Grey-Rankin bound using Hadamard difference sets in
(GF(2m),+) with the parameters of (14.4)?

The two problems above are the motivations of this chapter. The objectives of
this chapter are the following:

(a) We solve the two open questions above by presenting a general construction
of binary linear codes of length 2m−1 ± 2(m−2)/2 meeting the Grey-Rankin
bound with Hadmard difference sets in (GF(2m),+) having the parameters of
(14.4).

(b) We determine the specific parameters of many infinite families of 2-designs
held in the dual codes of binary linear codes of length 2m−1±2(m−2)/2 meeting
the Grey-Rankin bound.

(c) We determine the triple block intersection numbers of all quasi-symmetric
SDP designs, and the quadruple block intersection numbers of all symmetric
SDP designs.

By answering the two questions, we will show that the construction of all quasi-
symmetric SDP designs with the parameters in (14.2) and (14.3) and the con-
struction of binary linear codes of length 2m−1 ± 2(m−2)/2 meeting the Grey-
Rankin bound become the problem of constructing Hadamard difference sets in
(GF(2m),+) with the parameters of (14.4), or equivalently, bent functions on
GF(2m).

Combining R.ii and R.iii properly, Tonchev proved that every self-
complementary binary code of length 2m−1± 2(m−2)/2 meeting the Grey-Rankin
bound is the restriction of the code of a symmetric SDP design on the zero posi-
tions of a minimum codeword codeword or the complement of a minimum weight
codeword [Tonchev (1993)][Theorem 6]. This is Relation R.iv in Figure 14.1.

14.4 Bent Functions

Let f be a Boolean function from GF(2m) to GF(2). The support of f is defined
to be

D f = {x ∈ GF(2m) : f (x) = 1} ⊆ GF(2m).
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Put n f = |D f |.
The Walsh transform of f is defined by

f̂ (w) = ∑
x∈GF(2m)

(−1) f (x)+Tr(wx), (14.5)

where w ∈ GF(2m).
A function from GF(2m) to GF(2) is bent if | f̂ (w)| = 2m/2 for every w ∈

GF(2m). Bent functions exist only for even m. It is well known that a function f
from GF(2m) to GF(2) is bent if and only if D f is a difference set in (GF(2m),+)

with the parameters of (14.4).
Let f be bent. Then by definition f̂ (0) =±2m/2. It then follows that

n f = |D f |= 2m−1±2(m−2)/2. (14.6)

There are many constructions of bent functions. The reader is referred to
Carlet and Sihem (2016) for detailed information about bent functions.

14.5 Symmetric 2-(2m,2m−1 − 2
m−2

2 ,2m−2 − 2
m−2

2 ) Designs and Their
Codes

There are many symmetric designs with parameters of

2−
(

2m, 2m−1±2(m−2)/2, 2m−2±2(m−2)/2
)
. (14.7)

For example, the support of every bent function on GF(2m) is a difference set
with such parameters. If a design has one of the sets of parameters above, its
complement design has the other set of parameters. Hence, we usually consider
2-(v,k,λ) designs with k ≤ v/2.

It is known that the 2-rank of any symmetric design with the parameters of
(14.7) is at least m+ 2. There are many such designs with the minimum rank
m+2, which will be briefly treated in the next subsection. There are much more
symmetric designs with the parameters of (14.7) whose 2-ranks are larger than
m+2.

The following results are known ([Jungnickel and Tonchev (1991, 1992)],
[McQuire and Ward (1998)]).

Theorem 14.5. If D is a 2-(2m, 2m−1 − 2
m−2

2 , 2m−2 − 2
m−2

2 ) symmetric design,
then its derived and residual designs have 2-rank at least m+1.

Many designs with the parameters of (14.2) and (14.3) have the minimum
2-rank m+1. We will deal with some of them at due time.
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14.6 Symmetric 2-(2m,2m−1−2
m−2

2 ,2m−2−2
m−2

2 ) SDP Designs

Most symmetric designs with the parameters of (14.1) do not have the symmetric
difference property. For example, most difference set designs from bent functions
are not SDP designs. A lot of effort on characterising symmetric SDP designs with
the parameters of (14.1) has been made. A nice characterisation is summarized as
follows [Dillon and Schatz (1987); McQuire and Ward (1998)].

Theorem 14.6. A symmetric design D with the parameters of (14.1) has the sym-
metric difference property if and only if rank2(D) = m+2.

The binary code C2(D) of a symmetric SDP design D with the parameters of
(14.1) is generated by the first order Reed-Muller code R (1,m) and the charac-
teristic vector of a difference set with the parameters of (14.4). The code C2(D)

has parameters [2m,m+2,2m−1−2(m−2)/2] and weight enumerator

1+2mz2m−1−2(m−2)/2
+(2m+1−2)z2m−1

+2mz2m−1+2(m−2)/2
+ z2m

. (14.8)

The 2m codewords of weight 2m−1− 2(m−2)/2 in the code correspond to the row
vectors in the incidence matrix and the 2m codewords of weight 2m−1 + 2(m−2)/2

correspond to the complements of the row vectors in the incidence matrix.

Theorem 14.6 says that every symmetric SDP design D with the parameters
of (14.1) is a support design of a binary linear code with parameters [2m,m+

2,2m−1− 2(m−2)/2] and is formed by the supports of codewords with minimum
weight 2m−1− 2(m−2)/2 in the code. Notice that the symmetric SDP design D
with the parameters of (14.1) is not necessarily isomorphic to the development of
the difference set specified in Theorem 14.6. This is because the 2-rank of the
development of the difference set may be larger than m+ 2. In fact, we have the
following [Assmus and Key (1992b)].

Theorem 14.7. Let D be a difference set design with the parameters of (14.1).
Then the following holds:

• The code C2(D) contains the all-1 vector.
• rank2(D) ≤ 2m−1 + 1− 1

2

( m
m/2

)
. Furthermore, any two such designs with 2-

rank meeting this bound have equivalent binary codes.

The next result follows from Theorems 14.6 and 14.7.

Theorem 14.8. A difference set design D with the parameters of (14.1) has the
symmetric difference property if and only if rank2(D) = m+2.



November 17, 2021 14:14 ws-book9x6 Designs from Linear Codes designscodes page 375

Quasi-Symmetric Designs from Bent Codes 375

Many symmetric 2-designs do not have the symmetric difference property. In
order to better distinguish symmetric SDP designs from other symmetric designs,
we shall prove new properties of symmetric SDP designs. In the rest of this sub-
section, we denote by Dm a symmetric SDP design with the parameters of (14.1),
and by C2(Dm) the binary code generated by the incidence matrix of Dm. For
simplicity, we let

v = 2m, k = 2m−1−2(m−2)/2, λ = 2m−2−2(m−2)/2.

Lemma 14.9. For any two distinct blocks A and B in Dm, we have |A4B|= 2m−1

and σA+σB is a codeword of weight 2m−1 in the binary code C2(Dm), where A4B
denotes the symmetric difference of A and B, and σA is the codeword in C2(Dm)

corresponding to the block A in Dm.

Proof. By definition,

|A4B|= |A|+ |B|−2|A∩B|= 2(k−λ) = 2m−1.

Recall the binary code C2(Dm) of Dm and the characterisation in Theorem 14.6.
Let A and B be two distinct blocks in Dm. Obviously, σA+σB must be a codeword
c in the code C2(Dm). If c corresponds to a block C in Dm, then σA + σB =

σC. Consequently, A4B4C is the empty set, which contradicts the symmetric
difference property. If c corresponds to the complement C of a block C in Dm, then
σA +σB = σC +1, where 1 stands for the all-1 vector. Consequently, A4B4C is
the point set of the design, which contradicts the symmetric difference property.
Consequently, c must be a codeword of weight 2m−1.

Lemma 14.10. Let A, B and C be three pairwise distinct blocks in Dm. Then

4|A∩B∩C|= |A4B4C|+6λ−3k. (14.9)

Proof. Recall that A = P \A is the complement of the block A in Dm. It can be
verified that

A4B4C = (A∩B∩C)∪ (A∩B∩C)∪ (A∩B∩C)∪ (A∩B∩C). (14.10)

Note that the four sets inside the brackets in the right-hand side of (14.10) are
pairwise disjoint. We then deduce that

|A4B4C|= |A∩B∩C|+ |A∩B∩C|+ |A∩B∩C)|+ |A∩B∩C|. (14.11)

It is not hard to see that

|A∩B∩C|= |A|− |A∩C|− |A∩B|+ |A∩B∩C|. (14.12)

By symmetry,

|A∩B∩C|= |B|− |B∩C|− |A∩B|+ |A∩B∩C| (14.13)
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and

|A∩B∩C|= |C|− |B∩C|− |A∩C|+ |A∩B∩C|. (14.14)

Plugging (14.12), (14.13) and (14.14) into (14.11) yields

|A4B4C|= |A|+ |B|+ |C|−2(|A∩B|+ |A∩C|+ |B∩C|)+4|A∩B∩C|.
(14.15)

The desired conclusion then follows from

|A|= |B|= |C|= k

and

|A∩B|= |A∩C|= |B∩C|= λ.

The following theorem follows from the symmetric difference property and
Lemma 14.10.

Theorem 14.11. Let A, B and C be three pairwise distinct blocks in Dm. Then

|A∩B∩C|=
{

2m−3−2(m−2)/2 if A4B4C is a block,
2m−3−2(m−4)/2 if A4B4C is the complement of a block.

The triple block intersection numbers were settled in Theorem 14.11. We now
proceed to determine the quadruple block intersection numbers for the design Dm.
Our main result of this subsection is the following.

Theorem 14.12. Let m ≥ 6 be even. Let A, B, C and D be four pairwise distinct
blocks in Dm. Then |A∩B∩C∩D| takes on only numbers in the set{

0, 2m−4−2
m−2

2 , 2m−4−3×2
m−6

2 , 2m−4−2
m−4

2 ,

2m−4−2
m−6

2 , 2m−4, 2m−3−2
m−2

2

}
. (14.16)

Proof. Let A, B, C and D be four pairwise distinct blocks in Dm. We first have

(A4B4C)∩D = (A∩D)4(B∩D)4(C∩D). (14.17)

Applying (14.15) to the right-hand side of (14.17), we arrive at

|(A4B4C)∩D| = |(A∩D)4(B∩D)4(C∩D)|
= |A∩D|+ |B∩D|+ |C∩D|
−2(|A∩B∩D|+ |B∩C∩D|+ |A∩C∩D|)
+4|A∩B∩C∩D|.
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It then follows from Theorem 4.9 and Lemma 14.10 that

2|(A4B4C)∩D|
= 9k−12λ−2(|A4B4D|+ |B4C4D|+ |A4C4D|)

+8|A∩B∩C∩D|. (14.18)

On the other hand, we have

2|(A4B4C)∩D| = |A4B4C|+ |D|− |A4B4C4D|
= k+ |A4B4C|− |A4B4C4D|. (14.19)

Combining (14.18) and (14.19) leads to

8|A∩B∩C∩D| = (|A4B4C|+ |A4B4D|+ |A4C4D|+ |B4C4D|)

−|A4B4C4D|−2m−4×2
m−2

2 , (14.20)

which will be our key equation for proving the desired conclusion. We will con-
tinue our discussion by distinguishing the following cases.

Case I: We assume that A4B4C4D = /0. In this case, we have

A4B4C = D, A4B4D =C, A4C4D = B, B4C4D = A.

It then follows from (14.20) that

|A∩B∩C∩D|= 2m−3−2
m−2

2 .

Case II: We assume that A4B4C4D = P , which is the point set of Dm. In
this case, we have

A4B4C = D, A4B4D =C, A4C4D = B, B4C4D = A.

It then follows from (14.20) that

|A∩B∩C∩D|= 0.

Case III: We assume that A4B4C4D 6∈ {P , /0}. This case is further divided
into the following five subcases.

Subcase III.1: We assume that all of the following four sets

A4B4C, A4B4D, A4C4D, B4C4D (14.21)

are blocks in Dm. By the symmetric difference property and Lemma 14.9,

|A4B4C4D|= 2m−1.

It then follows from (14.20) that

|A∩B∩C∩D|= 2m−4−2
m−2

2 .
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Subcase III.2: We assume that all of the four sets of (14.21) are complements
of blocks. By the symmetric difference property and Lemma 14.9,

|A4B4C4D|= 2m−1.

It then follows from (14.20) that

|A∩B∩C∩D|= 2m−4.

Subcase III.3: We assume that two of the four sets of (14.21) are blocks and
the other two are complements of blocks in Dm. By the symmetric difference
property and Lemma 14.9,

|A4B4C4D|= 2m−1.

It then follows from (14.20) that

|A∩B∩C∩D|= 2m−4−2
m−4

2 .

Subcase III.4: We assume that one of the four sets of (14.21) is a block and
the other three are complements of blocks in Dm. By the symmetric difference
property and Lemma 14.9,

|A4B4C4D|= 2m−1.

It then follows from (14.20) that

|A∩B∩C∩D|= 2m−4−2
m−6

2 .

Subcase III.5: We assume that three of the four sets of (14.21) are blocks and
the other one is the complement of a block in Dm. By the symmetric difference
property and Lemma 14.9,

|A4B4C4D|= 2m−1.

It then follows from (14.20) that

|A∩B∩C∩D|= 2m−4−3×2
m−6

2 .

Summarising the results in all the cases above proves the desired conclusion.

It is observed that the quadruple block intersection number of a symmetric
SDP design may take on all the numbers in the set of (14.16) or only values in the
following subset{

0, 2m−4−2
m−2

2 , 2m−4−2
m−4

2 , 2m−4, 2m−3−2
m−2

2

}
. (14.22)

Those with the quadruple block intersection numbers of (14.22) form a special
subclass of symmetric SDP designs.
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14.7 Derived and Residual Designs of Symmetric SDP Designs

As seen in Section 14.6, symmetric SDP designs are very special in the sense that
they have the minimum 2-rank m+2 and their binary codes are related to the first-
order Reed-Muller codes. Naturally, their derived and residual designs must be
also special. Below we summarize results on the derived and residual designs of
symmetric SDP designs with the parameters:

2-(2m, 2m−1−2(m−2)/2, 2m−2−2(m−2)/2).

The conclusions of the following theorem were established in Jungnickel and
Tonchev (1992) and Tonchev (1993).

Theorem 14.13. Let Dm be a symmetric SDP design with the parameters of
(14.1). Then we have the following.

• The derived and residual designs of Dm are quasi-symmetric.
• The binary code C2(Dde

m ) of the derived design Dde
m has parameters[

2m−1−2(m−2)/2, m+1, 2m−2−2(m−2)/2
]

and weight enumerator

1+(2m−1)z2m−2−2(m−2)/2
+(2m−1)z2m−2

+ z2m−1−2(m−2)/2
.

The 2m−1 codewords of weight 2m−2−2(m−2)/2 in the code correspond to the
row vectors in the incidence matrix and the 2m−1 codewords of weight 2m−2

correspond to the complements of the row vectors in the incidence matrix.
The dual code C2(Dde

m )⊥ has minimum weight 4. The supports of the minimum
weight codewords in the code C2(Dde

m )⊥ form a 2-design with parameters

2−
(

2m−1−2(m−2)/2, 4, (2(m−4)/2−1)(2(m−2)/2 +1)
)
.

• The binary code C2(Dre
m ) of the residual design Dre

m has parameters[
2m−1 +2(m−2)/2, m+1, 2m−2

]
and weight enumerator

1+(2m−1)z2m−2
+(2m−1)z2m−2+2(m−2)/2

+ z2m−1+2(m−2)/2
.

The 2m − 1 codewords of weight 2m−2 in the code correspond to the row
vectors in the incidence matrix and the 2m− 1 codewords of weight 2m−2 +

2(m−2)/2 correspond to the complements of the row vectors in the incidence
matrix.
The dual code C2(Dre

m )
⊥ has minimum weight 4. The supports of the minimum

weight codewords in the code C2(Dre
m )
⊥ form a 2-design with parameters

2−
(

2m−1 +2(m−2)/2, 4, (2(m−4)/2 +1)(2(m−2)/2−1)
)
.



November 17, 2021 14:14 ws-book9x6 Designs from Linear Codes designscodes page 380

380 Designs from Linear Codes

Theorem 14.13 summarises some known properties of the derived and residual
designs of the symmetric SDP designs with the parameters of (14.1). There are
many symmetric designs with the parameters of (14.1) which do not have the
symmetric difference property but their residual and derived designs are not really
studied.

Lemma 14.11 tells us that the block intersection numbers in the derived design
of any symmetric SDP design with the parameters of (14.1) are 2m−3− 2(m−2)/2

and 2m−3−2(m−4)/2. To classify derived and residual designs of symmetric SDP
designs, we may use their triple intersection numbers.

Theorem 14.14. Let Dm be a symmetric SDP design with the parameters of
(14.1). Let Dde

m be a derived design of Dm. Then the size of the intersection of
any three pairwise distinct blocks in Dde

m takes on only numbers in the following
set {

0, 2m−4−2
m−2

2 , 2m−4−3×2
m−6

2 , 2m−4−2
m−4

2 ,

2m−4−2
m−6

2 , 2m−4, 2m−3−2
m−2

2

}
. (14.23)

Proof. It follows from the definition of the derived designs and Theorem 14.11.

Example 14.24 shows that sometimes all the numbers in the set in (14.23)
are taken, sometimes only a subset of these numbers is taken. This example also
demonstrates that the triple block intersection numbers can be employed to prove
the inequivalence of two designs with the same parameters.

By Theorem 14.11, the block intersection numbers of the residual design Dre
m

of Dm are 2m−3 and 2m−3 − 2(m−4)/2. The next theorem gives the triple block
intersection numbers.

Theorem 14.15. Let Dm be a symmetric SDP design with the parameters of
(14.1). Let Dre

m be a residual design of Dm. Then the size of the intersection of
any three pairwise distinct blocks in Dre

m takes on only numbers in the following
set {

0, 2m−4−3×2
m−6

2 , 2m−4−2
m−4

2 , 2m−4−2
m−6

2 ,

2m−4, 2m−4 +2
m−6

2 , 2m−3−2
m−4

2

}
. (14.24)

Proof. Let A, H, I and J be four pairwise distinct blocks in the design Dm. Then
Ā∩H, Ā∩ I and Ā∩ J are three pairwise distinct blocks in the residual design Dre

m
with respect to A. Clearly,

|(Ā∩H)∩ (Ā∩ I)∩ (Ā∩ J)|= |Ā∩H ∩ I∩ J|= |H ∩ I∩ J|− |A∩H ∩ I∩ J|.



November 17, 2021 14:14 ws-book9x6 Designs from Linear Codes designscodes page 381

Quasi-Symmetric Designs from Bent Codes 381

We consider the following cases.
When H4I4J is a block in Dm, by Theorem 14.11,

|H ∩ I∩ J|= 2m−3−2(m−2)/2.

In this case, only Cases I, III.1, III.3, III.4 and III.5 in the proof of Theorem 14.12
could happen. Hence, in this case |(Ā∩H)∩ (Ā∩ I)∩ (Ā∩ J)| can take on only
the following values:

0, 2m−4−3×2
m−6

2 , 2m−4−2
m−4

2 , 2m−4−2
m−6

2 , 2m−4.

When H4I4J is the complement of a block in Dm, by Theorem 14.11,

|H ∩ I∩ J|= 2m−3−2(m−4)/2.

In this case, only Cases II, III.2, III.3, III.4 and III.5 in the proof of Theorem 14.12
could happen. Hence, in this case |(Ā∩H)∩ (Ā∩ I)∩ (Ā∩ J)| can take on only
the following values:

2m−4−2
m−4

2 , 2m−4−2
m−6

2 , 2m−4, 2m−4 +2
m−6

2 , 2m−3−2
m−4

2 .

Summarising the discussions in the two cases above proves the desired con-
clusion.

Example 14.25 shows that sometimes all the numbers in the set in (14.24)
are taken, sometimes only a subset of these numbers is taken. This example also
demonstrates that the triple block intersection numbers can be employed to prove
the inequivalence of two designs with the same parameters.

At the end of this section, we present the following theorem but skip its proof.

Theorem 14.16. Let ℓ≥ 7 be odd. Define

D = {x ∈ GF(2ℓ) : Tr(x3) = 1 and Tr(x) = 1},
where Tr(x) denotes the absolute trace function on GF(2ℓ). Let CD denote the
binary code defined in (2.15) in Section 2.14.

If ℓ ≡ ±3 (mod 8), then CD has parameters [2ℓ−2 − 2(ℓ−3)/2, ℓ, 2ℓ−3 −
2(ℓ−3)/2] and weight enumerator

1+(2ℓ−1−1)
(

z2ℓ−3−2(ℓ−3)/2
+ z2ℓ−3

)
+ z2ℓ−2−2(ℓ−3)/2

.

The dual code C⊥D has parameters [2ℓ−2−2(ℓ−3)/2, 2ℓ−2−2(ℓ−3)/2− ℓ, 4].
If ℓ ≡ ±1 (mod 8), then CD has parameters [2ℓ−2 + 2(ℓ−3)/2, ℓ, 2ℓ−3] and

weight enumerator

1+(2ℓ−1−1)z2ℓ−3
+(2ℓ−1−1)z2ℓ−3+2(ℓ−3)/2

+ z2ℓ−2+2(ℓ−3)/2
.

The dual code C⊥D has parameters [2ℓ−2 +2(ℓ−3)/2, 2ℓ−2 +2(ℓ−3)/2− ℓ, 4].
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If ℓ≡±3 (mod 8), then the 2-design supported by the minimum weight code-
words in CD has the same parameters as the design Dde

ℓ−1 and the code CD has the
same parameters and the weight distribution of C2(Dde

ℓ−1) in Theorem 14.13. If
ℓ≡±1 (mod 8), then the 2-design supported by the minimum weight codewords
in CD has the same parameters as the design Dre

ℓ−1 and the code CD has the same
parameters and the weight distribution of C2(Dre

ℓ−1) in Theorem 14.13. The code
CD in Theorem 14.16 should be related to the code CD f in Theorem 14.18.

14.8 A General Construction of Linear Codes with Bent Functions

Let f be a Boolean function from GF(2m) to GF(2), and let D f be the support
of f . Denote D f = {d1, d2, . . . , dn f } ⊆ GF(2m). Let Tr denote the trace function
from GF(2m) onto GF(2) throughout this section. We define a binary linear code
of length n f by

CD f = {(Tr(xd1),Tr(xd2), . . . ,Tr(xdn f )) : x ∈ GF(2m)}, (14.25)

and call D f the defining set of this code CD f . This is a special case of a general
construction of linear codes introduced in Section 2.14, which has been intensively
and extensively investigated recently [Ding (2016)].

We have the following remarks on this general construction of linear codes
with Boolean functions.

(1) It is known that every binary linear code can be expressed as CD f for a suitable
Boolean function f from GF(2m) to GF(2) for some m.

(2) The weight distribution of CD f is completely determined by by the Walsh
spectrum of f [Ding (2016)].

The following was proved in Wolfmann (1999) and Ding (2015c).

Table 14.1 The weight distribu-
tion of the codes of Theorem 14.17

Weight w Multiplicity Aw

0 1
n f
2 −2

m−4
2

2m−1−n f 2−
m−2

2

2
n f
2 +2

m−4
2

2m−1+n f 2−
m−2

2

2

Theorem 14.17. Let f be a bent function from GF(2m) to GF(2), where m ≥ 4
and is even. Then CD f is an [n f , m, (n f − 2(m−2)/2)/2] two-weight binary code
with the weight distribution in Table 14.1, where n f is defined in (14.6).
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It is straightforward to see that the dual code C⊥D f
has minimum distance at

least 3. Unfortunately, the code CD f and its dual C⊥D f
do not hold 2-designs. How-

ever, we will show that their augmented codes hold infinite families of 2-designs.
Let f be a bent function from GF(2m) to GF(2), and let D f be the support of

f . Denote D f = {d1, d2, . . . , dn f } ⊆ GF(2m). We define a binary linear code of
length n f by

C̃D f = {(Tr(xd1), . . . ,Tr(xdn f ))+ y1 : x ∈ GF(2m), y ∈ GF(2)}, (14.26)

where 1 denote the vector (1,1, . . . ,1)∈GF(2)n f . This code C̃D f is the augmented
code of CD f .

We will prove the following, which gives an answer to Problem 14.4.

Table 14.2 The weight distribu-
tion of the codes of Theorem 14.18

Weight w Multiplicity Aw

0 1
n f
2 −2

m−4
2 2m−1

n f
2 +2

m−4
2 2m−1

n f 1

Theorem 14.18. Let f be a bent function from GF(2m) to GF(2), where m ≥ 6
and is even. Then C̃D f is an [n f , m+ 1, (n f − 2(m−2)/2)/2] three-weight binary
code with the weight distribution in Table 14.2, where n f is defined in (14.6).

Proof. Since the original code CD f does not contain the all-1 vector, the comple-
ment of any code in CD f is not a codeword of CD f . By definition, the augmented
code C̃D f is the union of CD f and its complement. The desired conclusions about
C̃D f then follow from Theorem 14.17.

Theorem 14.19. Let f be a bent function from GF(2m) to GF(2), where m ≥
6 and is even. When n f = 2m−1− 2(m−2)/2, the dual code C̃⊥D f

has parameters

[2m−1−2(m−2)/2, 2m−1−2(m−2)/2−m−1, 4] and weight distribution

A⊥2ℓ = 2
(

2m−1−2
m−2

2

2ℓ

)
+

(2m−1) ∑
i+ j=ℓ

0≤i≤2m−2−2
m−4

2

0≤ j≤2
m−4

2

(−1)i2
(

2m−2−2
m−2

2

i

)(
2

m−2
2

2 j

)
(14.27)
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for 2≤ ℓ≤ 2m−2−2(m−4)/2 and A⊥i = 0 for other i, where A⊥i denotes the number
of codewords of weight i in C̃⊥D f

.

When n f = 2m−1 + 2(m−2)/2, the dual code C̃⊥D f
has parameters [2m−1 +

2(m−2)/2, 2m−1 +2(m−2)/2−m−1, 4] and weight distribution

A⊥2ℓ = 2
(

2m−1 +2
m−2

2

2ℓ

)
+

(2m−1) ∑
i+ j=ℓ

0≤i≤2m−2

0≤ j≤2
m−4

2

(−1)i2
(

2m−2

i

)(
2

m−2
2

2 j

)
(14.28)

for 2≤ ℓ≤ 2m−2 +2(m−4)/2 and A⊥i = 0 for other i.

Proof. Assume that n f = 2m−1−2(m−2)/2. In this case, the code C̃D f has param-
eters [2m−1−2(m−2)/2, m+1] and weight enumerator

A(z) = 1+(2m−1)z2m−2−2
m−2

2 +(2m−1)z2m−2
+ z2m−1−2

m−2
2 . (14.29)

It then follows from Theorem 2.4 that

2m+1A⊥(z)

= (1+ z)2m−1−2
m−2

2 A
(

1− z
1+ z

)
= (1+ z)2m−1−2

m−2
2

×

1+(2m−1)

(1− z
1+ z

)2m−2−2
m−2

2

+

(
1− z
1+ z

)2m−2
+

(1+ z)2m−1−2
m−2

2

(
1− z
1+ z

)2m−1−2
m−2

2

= (1+ z)2m−1−2
m−2

2 +(1− z)2m−1−2
m−2

2

+(2m−1)(1− z2)2m−2−2
m−2

2

[
(1+ z)2

m−2
2 +(1− z)2

m−2
2

]
.

It is easily seen that

(1+ z)2m−1−2
m−2

2 +(1− z)2m−1−2
m−2

2 =
2m−2−2

m−4
2

∑
ℓ=0

2
(

2m−1−2
m−2

2

2ℓ

)
z2ℓ.
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We have similarly

(1− z2)2m−2−2
m−2

2

[
(1+ z)2

m−2
2 +(1− z)2

m−2
2

]

=

2m−2−2
m−2

2

∑
i=0

(−1)i
(

2m−2−2
m−2

2

i

)
z2i

2
m−4

2

∑
j=0

2
(

2
m−2

2

2 j

)
z2 j


=

2m−2−2
m−4

2

∑
ℓ=0

∑
i+ j=ℓ

0≤i≤2m−2−2
m−4

2

0≤ j≤2
m−4

2

(−1)i2
(

2m−2−2
m−2

2

i

)(
2

m−2
2

2 j

)
z2ℓ.

Combining the three equations above yields the desired conclusion on the weight
distribution of the dual code in this case. It can be checked that A⊥2 = 0 and

A⊥4 =
1
3

2
m−6

2 (2
m−4

2 −1)(2m−1)(2m−2−1). (14.30)

Therefore, the minimum distance of C̃⊥D f
is 4 as m≥ 6.

Assume that n f = 2m−1 +2(m−2)/2. In this case, the code C̃D f has parameters
[2m−1 +2(m−2)/2, m+1] and weight enumerator

A(z) = 1+(2m−1)z2m−2
+(2m−1)z2m−2+2(m−2)/2

+ z2m−1+2(m−2)/2
. (14.31)

The desired conclusions for this case can be similarly proved. The details are
omitted here.

Note that C̃D f contains CD f as a subcode. It will be shown in the next sec-
tion that C̃D f and its dual hold exponentially many infinite families of 2-designs,
though CD f and its dual do not hold 2-designs. In addition, the code C̃D f meets
the Grey-Rankin bound.

Two bent functions f and g on GF(2m) are said to be equivalent if g(x) =
f (σ(x) + b) for an automorphism σ ∈ Aut(GF(2m),+) and an element b ∈
GF(2m). Equivalently, two difference sets D1 and D2 in (GF(2m),+) are equiva-
lent if D2 = σ(D1)+b for an automorphism σ ∈ Aut(GF(2m),+) and an element
b ∈ GF(2m). Two binary codes are equivalent if one can be obtained from the
other by a coordinate permutation.

Problem 14.20. Let f and g be two bent functions on GF(2m). What is the re-
lationship between the equivalence of f and g and that of the two codes C̃D f and
C̃Dg?
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Even if Problem 14.20 is solved, we still face the equivalence problem of bent
functions, which has been a hard problem for many years. Below we show that
two inequivalent bent functions f may yield inequivalent binary codes C̃D f .

Example 14.21. Let w be a generator of GF(28)∗ with w8+w4+w3+w2+1 = 0.
It is known that f (x) = Tr(wx3) is a bent function on GF(28). The binary code
C̃D f has parameters [120,9,56] and weight enumerator 1+255z56+255z64+z120.
The automorphism group of C̃D f has size 47377612800.

The function g(x) = Tr(wx57) on GF(28) is bent and inequivalent to f . The
binary code C̃Dg has the same parameters and weight enumerator as C̃D f . But, the
size of the automorphism group of C̃Dg is only 12. Consequently, C̃D f and C̃Dg are
inequivalent.

The function g1(x) = Tr(wx57 +wx) on GF(28) is also bent. The binary code
C̃Dg1

has the same parameters and weight enumerator as C̃D f . But, the size of
the automorphism group of C̃Dg1

is only 1. Consequently, C̃D f , C̃Dg and C̃Dg1
are

pairwise inequivalent.

14.9 Infinite Families of 2-Designs from Bent Codes

It was known that binary codes with the weight distribution of Table 14.2 and
their duals hold 2-designs [Tonchev (1993); McQuire (1997)]. Our objective of
this section is to extend earlier results on the designs held in such linear codes by
determining the specific parameters of these designs.

The next theorem gives an answer to Problem 14.3.

Theorem 14.22. Let f be a bent function from GF(2m) to GF(2), where m ≥ 6
and is even. When

n f = 2m−1−2(m−2)/2,

the supports of codewords of weight 2m−2 − 2
m−2

2 in the code C̃D f of Theorem
14.18 form a quasi-symmetric SDP design with the following parameters:

2−
(

2m−1−2
m−2

2 , 2m−2−2
m−2

2 , 2m−2−2
m−2

2 −1
)
.

When

n f = 2m−1 +2(m−2)/2,

the supports of codewords of weight 2m−2 in the code C̃D f of Theorem 14.18 form
a quasi-symmetric SDP design with the following parameters:

2−
(

2m−1 +2
m−2

2 , 2m−2, 2m−2−2
m−2

2

)
.
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Proof. Combining Theorem 14.18 and Corollary 4.26 proves the 2-design prop-
erty of the two support designs held in C̃D f . Let D be any of the two support
designs. It is known that any design with parameters of (14.2) or (14.3) has min-
imum 2-rank m+ 1. Hence, the code C̃D f is also the code of the two support
designs.

Let B1 and B2 be any two distinct blocks and c1 and c2 be their corresponding
codewords in C̃D f , i.e., the supports of c1 and c2 are B1 and B2. It is clear now that

(B1∪B2)\ (B1∩B2) = Suppt(c1 + c2).

Note that c1 and c2 have the same weight and are distinct. Recall that both support
designs have rank m+ 1. As a result, |Suppt(c1 + c2)| takes on both n f

2 ± 2
m−4

2

with frequencies determined by the frequencies of the two weights when B1 and
B2 range over all pairs of distinct blocks. It then follows that the design is quasi-
symmetric. Note that the summer of the two weights is equal to the length n f of
the code and c1 +c2 is also a codeword with 0 < wt(c1 +c2)< n f . Consequently,
the symmetric difference of B1 and B2 is either a block or the complement of a
block. Thus, the design has the symmetric difference property.

It would be good if the following problem could be solved.

Problem 14.23. Let f and g be two bent functions. What is the relationship be-
tween the equivalence of f and g and that of the designs with the same parameters
held in the two codes C̃D f and C̃Dg?

In Example 14.21, we demonstrated that different bent functions f may give
inequivalent codes C̃D f . Below we show that two inequivalent bent functions f
may give non-isomorphic designs D( f ,±1), where ±1 corresponds to the sign in
n f = 2m−1±2(m−2)/2.

Example 14.24. Let w be a generator of GF(28)∗ with w8+w4+w3+w2+1 = 0.
It is known that f (x) = Tr(wx3) is a bent function on GF(28). The triple block
intersection numbers of the design D( f ,−1) are

{0,8,12,16,24}.

The function g(x) = Tr(wx57) on GF(28) is bent and inequivalent to f . The triple
block intersection numbers of the design D(g,−1) are

{0,8,10,12,14,16,24}.

Consequently, the two nonsymmetric designs D( f ,−1) and D(g,−1) from the
bent functions f and g are nonisomorphic.
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Example 14.25. Let w be a generator of GF(28)∗ with w8+w4+w3+w2+1 = 0.
It is known that f (x)=Tr(wx3)+1 is a bent function on GF(28). The code C2(D f )

has parameters [136,9,64] and weight enumerator 1+255z64+255z72+z136. The
triple block intersection numbers of the design D( f ,+1) are

{0,12,16,28}.

The function g(x) = Tr(wx57)+ 1 on GF(28) is also bent. The code C2(Dg) has
parameters [136,9,64] and weight enumerator 1+ 255z64 + 255z72 + z136. The
3-intersection numbers of the design D(g,+1) are

{0,10,12,14,16,18,28}.

Consequently, the two nonsymmetric designs from the bent functions f and g are
not isomorphic.

Theorem 14.26. Let f be a bent function from GF(2m) to GF(2), where m ≥ 6
and is even. When

n f = 2m−1−2(m−2)/2,

for each 2 ≤ ℓ ≤ 2m−2− 2(m−4)/2 with A⊥2ℓ 6= 0, the supports of all codewords of
weight 2ℓ in the code C̃⊥D f

form a 2-(2m−1−2(m−2)/2, 2ℓ,λ⊥) design, where

λ⊥ =
A⊥2ℓ
(2ℓ

2

)(2m−1−2(m−2)/2

2

)
and A⊥2ℓ is given in (14.27).

When

n f = 2m−1 +2(m−2)/2,

for each 2 ≤ ℓ ≤ 2m−2 + 2(m−4)/2 with A⊥2ℓ 6= 0, the supports of all codewords of
weight 2ℓ in the code C̃⊥D f

form a 2-(2m−1 +2(m−2)/2, 2ℓ,λ⊥) design, where

λ⊥ =
A⊥2ℓ
(2ℓ

2

)(2m−1+2(m−2)/2

2

)
and A⊥2ℓ is given in (14.28).

Proof. As demonstrated in the proof of Theorem 14.22, the conditions in the
Assmus-Mattson Theorem are met. Hence, the supports of codewords of each
fixed nonzero weight form a 2-design. Since the code and its dual are binary, it is
well known that the supports of every nonzero weight in the dual code also form
a 2-design.
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The next result was presented in Tonchev (1993). For completeness, we
present a proof.

Corollary 14.27. Let f be a bent function from GF(2m) to GF(2), where m ≥ 6
and is even. When

n f = 2m−1−2(m−2)/2,

the supports of all codewords of weight 4 in the code C̃⊥D f
form a 2-(2m−1 −

2(m−2)/2, 4,λ⊥) design, where

λ⊥ = (2(m−4)/2−1)(2(m−2)/2 +1).

When

n f = 2m−1 +2(m−2)/2,

the supports of all codewords of weight 4 in the code C̃⊥D f
form a 2-(2m−1 +

2(m−2)/2, 4,λ⊥) design, where

λ⊥ = (2(m−4)/2 +1)(2(m−2)/2−1).

Proof. The conclusion of the first part follows from (14.30) and Theorem 14.26.
When n f = 2m−1 +2(m−2)/2, with the weight distribution formula in (14.28), one
obtains that

A⊥4 =
1
3

2
m−6

2 (2
m−4

2 −1)(2m−1)(2m−2−1). (14.32)

The desired conclusion then follows from Theorem 14.26.

Corollary 14.28. Let f be a bent function from GF(2m) to GF(2), where m ≥ 6
and is even. When

n f = 2m−1−2(m−2)/2,

the supports of all codewords of weight 6 in the code C̃⊥D f
form a 2-(2m−1 −

2(m−2)/2, 6,λ⊥) design, where

λ⊥ =
1
6
(2

m−2
2 +1)(2

5m−10
2 −3×22m−4−5×2

3m−8
2 +25×2m−3 +2

m
2 −16).

When

n f = 2m−1 +2(m−2)/2,

the supports of all codewords of weight 6 in the code C̃⊥D f
form a 2-(2m−1 +

2(m−2)/2, 6,λ⊥) design, where

λ⊥ =
1
6
(2

m−2
2 −1)(2

5m−10
2 +3×22m−4−5×2

3m−8
2 −25×2m−3 +2

m
2 +16).
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Proof. When

n f = 2m−1−2(m−2)/2,

with the weight distribution formula in (14.27), one obtains that

A⊥6 =
1
45

2
m−6

2 (2m−1)(2m−2−1)(2
5m−10

2 −3×22m−4−5×2
3m−8

2 +

25×2m−3 +2
m
2 −16).

The desired conclusion then follows from Theorem 14.26.
When

n f = 2m−1 +2(m−2)/2,

with the weight fotmula in (14.28), one obtains that

A⊥6 =
1
45

2
m−6

2 (2m−1)(2m−2−1)(2
5m−10

2 +3×22m−4−5×2
3m−8

2 −

25×2m−3 +2
m
2 +16).

The desired conclusion then follows from Theorem 14.26.

14.10 Notes

The total number of bent functions on GF(2m) (equivalently, the total number
of Hadamard difference sets in (GF(2m),+)), denoted by Nm, has the following
lower and upper bounds [Tokareva (2011)]:

22(m/2)+log2(m−2)−1
≤ Nm ≤ 22m−1+ 1

2 (
m

m/2). (14.33)

By now, the total number of bent functions constructed is the lower bound above,
which is a huge number. They belong to many families (see Carlet and Sihem
(2016)). Plugging them into the construction framework of Section 14.8, we can
obtain

• 22(m/2)+log2(m−2)−1
binary linear codes of length 2m−1 ± 2(m−2)/2 meeting the

Grey-Rankin bound; and
• 22(m/2)+log2(m−2)−1

pairs of quasi-symmetric SDP designs with the parameters
of (14.2) and (14.3).

It is open if the codes are equivalent and the designs are isomorphic. This problem
is related to the classification of bent functions and Hadamard difference sets into
equivalence classes, which is a very hard problem. Bent functions with different 2-
ranks are inequivalent. Many families of bent functions have different 2-ranks, and
are thus inequivalent [Weng, Feng, Qiu (2007); Weng, Feng, Qiu, Zheng (2008)].
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Of course, the automorphism groups of the linear codes meeting the Grey-
Rankin bound and quasi-symmetric SDP designs could be employed to distinguish
among these codes and designs. Another way to do this is to use the triple block
intersection numbers of quasi-symmetric designs determined earlier. A classifica-
tion of quasi-symmetric 2-designs was done in Neumaier (1982).

In this chapter, we treated only quasi-symmetric 2-designs. In genera, a t-
design is quasi-symmetric with intersection numbers x and y (x < y) if any two
distinct blocks intersect in either x or y points. Below we provide the reader
with information on quasi-symmetric t-designs with t ≥ 3, which is taken from
Shrikhande (2007).

Theorem 14.29. If D is a quasi-symmetric 3-(v,k,λ) design with x = 0, then y =
λ+1 and one of the following holds:

(1) v = 4(λ+1), k = 2(λ+1);
(2) v = (λ+1)(λ2 +5λ+5), k = (λ+1)(λ+2); or
(3) v = 496, k = 40, λ = 3.

Theorem 14.30. If D is a quasi-symmetric 3-(v,k,λ) design with x = 1, then D
is the 4-(23,7,1) design of Section 10.5.2 or its residual design, which is a 3-
(22,7,4) design.

Theorem 14.31. If D is a quasi-symmetric 4-(v,k,λ), then D is the 4-(23,7,1)
design of Section 10.5.2 or its complement.

Theorem 14.32. Quasi-symmetric t-designs do not exit for t ≥ 5.

An excellent reference on quasi-symmetric designs is Shrikhande and Sane
(1991). Information on quasi-symmetric designs could also be found in Ionin and
Shrikhande (2006).
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Chapter 15

Almost MDS Codes and Their Designs

An [n,k,n−k+1] code is said to be MDS. An [n,k,n−k] code is said to be almost
MDS. The support designs of MDS codes are complete (see Theorem 4.29), and
thus not interesting. The task of this chapter is introduce almost MDS codes, their
properties and their support designs. The most remarkable work of this chapter is
an infinite family of near MDS codes supporting an infinite family of 4-designs.
It shows the importance of almost MDS codes.

15.1 Almost MDS Codes

The Singleton defect of an [n,k,d] code C is defined by def(C ) = n− k + 1−
d. Thus, MDS codes are codes with defect 0. A code C is said to be almost
MDS (AMDS for short) if it has defect 1. Hence, AMDS codes have parameters
[n,k,n− k]. AMDS codes of dimension 1, n− 2, n− 1 and n are called trivial.
Since it is easy to construct trivial AMDS codes of arbitrary lengths, we will
consider only nontrivial AMDS codes.

The following theorem summarises some basic properties of AMDS codes
(see Dodunekov and Landgev (1995) and Faldum and Willems (1997) for a proof).

Theorem 15.1. Let C be an [n,k,n−k] AMDS code over GF(q). Then the follow-
ing hold.

(1) If k ≥ 2, then n≤ k+2q.
(2) If k ≥ 2 and n− k > q, then k ≤ 2q.
(3) If n− k > q, then C⊥ is also AMDS.
(4) If k ≥ 2, then C is generated by its codewords of weight n− k and n− k+1.
(5) If k≥ 2 and n−k > q, then C is generated by its minimum weight codewords.

Unlike MDS codes, the dual of an AMDS code may not be AMDS. Recall
the generalised Hamming weights dr(C ) introduced in Section 2.16. Then we

393
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have the next result ([Dodunekov and Landgev (1995)] and [Faldum and Willems
(1997)]).

Theorem 15.2. Let C be an [n,k,n− k] AMDS code over GF(q). Then C⊥ is
AMDS if and only if d2(C ) = n− k+2.

The weight distributions of MDS codes over GF(q) are given in Theorem 2.25
and are totally determined by their length, dimension and q. However, this is not
true for AMDS codes. Partial information on the weight distribution of an AMDS
code is given in the following theorem

Theorem 15.3 (Faldum and Willems (1997)). Let C be an [n,k,n− k] AMDS
code and let C⊥ be an [n,n−k,d⊥] code over GF(q). Then the weight distribution
A0,A1, . . . ,An of C satisfies

An−d⊥+r =
k

∑
j=d⊥

(
j

d⊥− r

)( j

∑
i=d⊥

(−1)i−d⊥+r
(

j−d⊥+ r
j− i

))
An− j +

(
n

d⊥− r

) r−1

∑
i=0

(−1)i
(

n−d⊥+ r
i

)(
qk−d⊥+r−i−1

)
(15.1)

for r = 1,2, . . . ,d⊥.
In particular, Ad , . . . ,An−d⊥ completely determine the weight distribution of

C .

Theorem 15.3 indicates that two [n,k,n− k] AMDS codes over GF(q) may
have different weight distributions. This will be demonstrated with an example in
the next section.

15.2 Near MDS Codes

A code C is said to be near MDS (NMDS for short) if both C and C⊥ are AMDS.
By definition, C is near MDS if and only if C⊥ is so. By definition and Theorem
15.2, we have the following.

Theorem 15.4. An [n,k,n− k] AMDS code is NMDS if and only if d2(C ) = n−
k+2.

The next theorem follows from the definition of NMDS codes.

Theorem 15.5. An [n,k] code C over GF(q) is NMDS if and only if d(C ) +

d(C⊥) = n, where d(C ) denotes the minimum distance of C .
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The next theorem then follows from Theorem 2.50 [Dodunekov and Landgev
(1995)].

Theorem 15.6. An [n,k] code C over GF(q) is NMDS if and only if a parity-check
matrix, say H, (and consequently every parity-check matrix of C ) satisfies the
following conditions:

(a) any n− k−1 columns of H are linearly independent;
(b) there exist n− k linearly dependent columns; and
(c) any n− k+1 columns of H are of rank n− k.

Theorem 15.6 is equivalent to the following.

Theorem 15.7. An [n,k] code C over GF(q) is NMDS if and only if a genera-
tor matrix, say G, (and consequently every generator matrix of C ) satisfies the
following conditions:

(a) any k−1 columns of G are linearly independent;
(b) there exist k linearly dependent columns; and
(c) any k+1 columns of G are of rank k.

As a corollary of Theorem 15.3, we have the following weight distribution
formulas for AMDS codes.

Theorem 15.8 (Dodunekov and Landgev (1995)). Let C be an [n,k,n− k]
NMDS code. Then the weight distributions of C and C⊥ are given by

An−k+s =

(
n

k− s

) s−1

∑
j=0

(−1) j
(

n− k+ s
j

)
(qs− j−1)+(−1)s

(
k
s

)
An−k (15.2)

for s ∈ {1,2, . . . ,k}, and

A⊥k+s =

(
n

k+ s

) s−1

∑
j=0

(−1) j
(

k+ s
j

)
(qs− j−1)+(−1)s

(
n− k

s

)
A⊥k (15.3)

for s ∈ {1,2, . . . ,n− k}.

Note that ∑n
i=0 Ai = qk and ∑n

i=0 A⊥i = qn−k. The An−k in (15.2) and A⊥k in
(15.3) cannot be determined by these two equations and Equations (15.2) and
(15.3). It is possible that two [n,k,n− k] NMDS codes over GF(q) have different
weight distributions. Thus, the weight distribution of an [n,k,n− k] NMDS code
over GF(q) depends on not only n, k and q, but also some other parameters of the
code. This is a major difference between MDS codes and NMDS codes.
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Example 15.9. The [11,6,5] ternary Golay code C3 has weight enumerator

1+132z5 +132z6 +330z8 +110z9 +24z11.

Take a generator matrix G3 of the ternary Golay code C3. When G3 is viewed as
a matrix over GF(9), it generates a linear code C9 over GF(9) with parameters
[11,6,5] and weight enumerator

1+528z5 +528z6 +15840z7 +40920z8 +129800z9 +198000z10 +145824z11.

The dual code C⊥9 has parameters [11,5,6]. Hence, the code C9 over GF(9) is
NMDS.

The extended code C(9,10,3,1) of the narrow-sense BCH code C(9,10,3,1) over
GF(9) has parameters [11,6,5] and weight enumerator

1+240z5 +2256z6 +11520z7 +46680z8 +125480z9 +199728z10 +145536z11.

Its dual has parameters [11,5,6]. Thus, C(9,10,3,1) is an NMDS code over GF(9),
which has the same parameters as C9. However, the two codes have distinct weight
enumerators.

It follows from Theorem 15.8 that An−k = A⊥k for any [n,k,n−k] NMDS code.
Consequently, any [2k,k,k] NMDS code C and its dual are formally self-dual.

The following results follow from Theorem 15.8 [Dodunekov and Landgev
(1995)].

Corollary 15.10. For an [n,k,n− k] NMDS code over GF(q), it holds

An−k ≤
(

n
k−1

)
q−1

k
, (15.4)

with equality if and only if An−k+1 = 0. By duality,

A⊥k ≤
(

n
k+1

)
q−1
n− k

, (15.5)

with equality if and only if A⊥k+1 = 0.

For an [n,k,n− k] NMDS code over GF(q), we deduce from (15.4) that

An−k

q−1
≤
(

n
k−1

)
1
k
=

(
n

n− k

)
n− k

n− k+1
<

(
n

n− k

)
.

Therefore, if the minimum weight codewords of an [n,k,n− k] NMDS code over
GF(q) support a t-design, then the t-design cannot be the complete design.

It will be shown in Section 15.3 that an [n,k,n−k] NMDS code C over GF(q)
with An−k+1 = 0 or A⊥k+1 = 0 yields t-designs for some positive integer t, and are



November 17, 2021 14:14 ws-book9x6 Designs from Linear Codes designscodes page 397

Almost MDS Codes and Their Designs 397

thus very attractive. One basic question is whether such code exists. We will look
into this existence problem in Section 15.3.

The following result follows from Corollary 15.10 [Dodunekov and Landgev
(1995)].

Corollary 15.11. For any [n,k,n− k] NMDS code over GF(q) with An−k+1 = 0,
we have k ≤ n/2.

NMDS codes have nice properties. In particular, up to a multiple, there is
a natural correspondence between the minimum weight codewords of an NMDS
code C and its dual C⊥, which follows from the next result [Faldum and Willems
(1997)].

Theorem 15.12. Let C be an NMDS code. Then for every minimum weight code-
word c in C , there exists, up to a multiple, a unique minimum weight codeword c⊥

in C⊥ such that Suppt(c)∩Suppt(c⊥) = /0. In particular, C and C⊥ have the same
number of minimum weight codewords.

The following result says that infinite families of NMDS codes do exist.

Theorem 15.13 (Tsfasman and Vladut (1991)). Algebraic geometric [n,k,n−k]
NMDS codes over GF(q), q = pm, do exist for every n with

n≤
{

q+ d2√qe if p divides d2√qe and m is odd,
q+ d2√qe+1 otherwise,

and arbitrary k ∈ {2,3, . . . ,n−2}.

While it is easy to construct NMDS codes, we are interested in only NMDS
codes holding t-designs. We will treat such NMDS codes in Section 15.3.

We now deal with extremal NMDS codes. Let n(k,q) denote the maximum
possible length of an NMDS code of fixed dimension k over a fixed field GF(q).
Then we have the following [Dodunekov and Landgev (1995)].

Lemma 15.14. Let notation be the same as before. Then n(k,q) ≤ 2q+ k. For
any [2q+ k,k,2q] NMDS code over GF(q), A2q+1 = 0.

Proof. The first part is the first conclusion of Theorem 15.1. We now prove it. It
follows from (15.2) that

An−k+2 =

(
n

k−2

)
(q−1)(q+ k−n−1)+

(
k
2

)
An−k.
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By Inequality (15.4), we have
q−1

2

(
n

k−2

)
(2q+ k−n)

=

(
n

k−2

)
(q−1)(q+ k−n−1)+

(
k
2

)(
n

k−1

)
q−1

k
≥ An−k+2 ≥ 0.

Whence, n≤ 2q+ k.
If n = 2q+ k, the above inequality implies that

An−k =

(
n

k−1

)
q−1

k
.

It then follows from Corollary 15.10 that An−k+1 = 0.

An NMDS code meeting the bound of Lemma 15.14 is said to be extremal, i.e.,
any [2q+k,k,2q] NMDS code over GF(q) is extremal. The dual and the extended
code of the [11,6,5] ternary Golay code are extremal. NMDS codes over GF(q)
with parameters [2q+ k,k+1,2q−1] are said to be almost extremal.

Theorem 15.15 (De Boer (1996)). If C is a [2q+ k,k,2q] extremal NMDS code
over GF(q) with k > q, then C⊥ must be one of the following codes:

(a) the [7,4,3] Hamming code over GF(2);
(b) the [8,4,4] extended Hamming code over GF(2) (which is self-dual);
(c) a [10,6,4] punctured Golay code over GF(3);
(d) the [11,6,5] Golay code over GF(3); and
(e) the [12,6,6] extended Golay code over GF(3).

In spite of Theorem 15.15, [2q+ k,k,2q] extremal NMDS codes over GF(q)
with k≤ q may exist. It will be shown that extremal NMDS codes yield t-designs
for some t. Thus, we are very much fond of extremal NMDS codes.

Theorem 15.16 (De Boer (1996)). If C is a [2q+k,k+1,2q−1] almost extremal
NMDS code over GF(q) with k ≥ q, then C⊥ must be one of the following codes:

(a) a [6,3,3] punctured Hamming code over GF(2);
(b) the [7,3,4] Simplex code over GF(2);
(c) a [9,5,4] shortened punctured Golay code over GF(3);
(d) a [10,5,5] shortened Golay code over GF(3); and
(e) the [11,5,6] dual code of the Golay [11,6,5] code over GF(3).

In spite of Theorem 15.16, [2q+k,k+1,2q−1] almost extremal NMDS codes
over GF(q) with k < q may exist. It is open if almost extremal NMDS codes hold
t-designs in general or not.
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15.3 Designs from Near MDS Codes

Near MDS codes were discovered 70 years ago. The ternary [11,6,5] Golay code
and its extended code were discovered by Golay (1949). They hold a Steiner
system S(4,5,11) and S(5,6,12), respectively. Sporadic NMDS codes holding
t-designs for t ≥ 2 were discovered in the past 70 years. On the other hand, many
infinite families of NMDS codes were constructed in the literature. However,
the question as to whether there is an infinite family of NMDS codes holding
an infinite family of t-designs for t ≥ 2 remained open for 70 years. This long-
standing problem was finally settled by Ding and Tang (2020). A major task
of this section is to introduce two infinite families of NMDS codes holding an
infinite family of Steiner systems S(3,4,3s+1) and an infinite family of 2-designs
discovered by Ding and Tang (2020). It had been a 71-year-old open problem
whether there is an infinite family of linear codes holding an infinite family of
4-designs. This long-standing problem was also solved by Tang and Ding (2021).
Another major task of this section is to introduce this breakthrough.

15.3.1 A General Theorem about t-Designs from NMDS Codes

First, we point out that some NMDS codes do not hold simple designs at all.
Below is an example.

Example 15.17. The extended code C(9,10,3,1) of the narrow-sense BCH code
C(9,10,3,1) over GF(9) has parameters [11,6,5]. Its dual has parameters [11,5,6].

Both C(9,10,3,1) and its dual C(9,10,3,1)
⊥ do not hold simple 1-designs according to

our Magma computations.

Second, some NMDS codes may hold t-designs. The following theorem is
very interesting, as it shows that some near MDS codes could hold t-designs.

Theorem 15.18 (Dodunekov and Landgev (1995)). Let C be an [n,k,n− k]
NMDS code over GF(q). If there exists an integer s ≥ 1 such that An−k+s = 0,
then the supports of the codewords of weight k in C⊥ form a (k− s)-design. In
particular, the supports of all the minimum weight codewords in the dual of an
extremal NMDS code form a Steiner system S(k−1,k,2q+ k).

Proof. Set t = k− s. The desired first conclusion then follows from the Assmus-
Mattson Theorem and Theorem 15.8. Note that in the design from the minimum
weight codewords in the dual of an extremal NMDS code, each (k−1)-subset of
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the point set is contained in

λ =
A⊥k

q−1

( k
k−1

)(2q+k
k−1

) = 1

block. This proves the second conclusion.

To apply Theorem 15.18, we have to find NMDS codes satisfying An−k+s = 0
for some s < k. The [11,6,5] ternary Golay code and its duals as well as their
extended codes are such NMDS codes. There are also several examples of such
NMDS codes. But we are really interested in infinite families of such NMDS
codes. In Section 15.3.2, we will present such infinite family of ternary codes.

15.3.2 Infinite Families of NMDS Codes Holding Infinite Families of
t-Designs

Throughout this section, let q = ps, where p is a prime and s is a positive integer.
In this section, we consider the narrow-sense BCH code C(q,q+1,3,1) over GF(q)
and its dual, and prove that they hold 3-designs when p = 3 and 2-designs when
p = 2 and s is even.

We will need the following lemma whose proof is straightforward.

Lemma 15.19. Let x,y,z ∈ GF(q2)∗. Then∣∣∣∣∣∣
x−1 y−1 z−1

x y z
x2 y2 z2

∣∣∣∣∣∣= (x− y)(y− z)(z− x)
xyz

(xy+ yz+ zx).

We will also need the following lemma shortly.

Lemma 15.20. Let Uq+1 denote the set of all (q+1)-th roots of unity in GF(q2).
Suppose that x,y,z are three pairwise distinct elements in Uq+1 such that∣∣∣∣∣∣

x−1 y−1 z−1

x y z
x2 y2 z2

∣∣∣∣∣∣= 0. (15.6)

Then (x/y)3 = 1, which implies that 3 divides q+1.

Proof. It follows from Lemma 15.19 that

xy+ yz+ zx = 0. (15.7)

Raising both sides of (15.6) to the q-th power yields∣∣∣∣∣∣
x−q y−q z−q

xq yq zq

x2q y2q z2q

∣∣∣∣∣∣= 0. (15.8)
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Notice that x,y,z ∈Uq+1. Equation (15.8) is the same as∣∣∣∣∣∣
x y z
x−1 y−1 z−1

x−2 y−2 z−2

∣∣∣∣∣∣= 0. (15.9)

It then follows from Lemma 15.19 and (15.9) that

0 =
1
xy

+
1
yz

+
1
zx

=
x+ y+ z

xyz
.

Consequently,

x+ y+ z = 0. (15.10)

Combining (15.7) and (15.10) gives that x2 + xy + y2 = 0. Thus x3 = y3 and
(x/y)3 = 1. Note that (x/y)q+1 = 1 and x/y 6= 1. We deduce that 3 divides q+1.
This completes the proof.

We are now ready to prove the following result about the code C(q,q+1,3,1).

Theorem 15.21. Let q = ps ≥ 5 with s being a positive integer. Then the narrow-
sense BCH code C(q,q+1,3,1) over GF(q) has parameters [q+ 1,q− 3,d], where
d = 3 if 3 divides q+1 and d ≥ 4 if 3 does not divide q+1.

Proof. Put n = q+ 1. Let α be a generator of GF(q2)∗ and β = αq−1. Then
β is an n-th root of unity in GF(q2). Let g1(x) and g2(x) denote the minimal
polynomial of β and β2 over GF(q), respectively. Note that g1(x) has only roots
β and βq and g2(x) has roots β2 and βq−1. We deduce that g1(x) and g2(x) are
distinct irreducible polynomials of degree 2. By definition, g(x) := g1(x)g2(x) is
the generator polynomial of C(q,q+1,3,1). Therefore, the dimension of C(q,q+1,3,1) is
q+1−4. Note that g(x) has only roots β,β2,βq−1 and βq. By the BCH bound, the
minimum weight of C(q,q+1,3,1) is at least 3. Put γ= β−1. Then γq+1 = β−(q+1) = 1.
It then follows from Delsarte’s theorem that the trace expression of C⊥(q,q+1,3,1) is
given by

C⊥(q,q+1,3,1) = {c(a,b) : a,b ∈ GF(q2)}, (15.11)

where c(a,b) = (Trq2/q(aγi +bγ2i))
q
i=0.

Define

H =

[
1 γ1 γ2 · · · γq

1 γ2 γ4 · · · γ2q

]
. (15.12)

It is easily seen that H is a parity-check matrix of C(q,q+1,3,1), i.e.,

C(q,q+1,3,1) = {c ∈ GF(q)q+1 : cHT = 0}.
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Assume that 3 divides q+ 1. Notice that γ is a primitive (q+ 1)-th root of
unity. It then follows from γq+1 = 1 that

1+ γ
q+1

3 + γ
q+1

3 2 = 0.

Define a vector c = (c0,c1, . . . ,cq) ∈ GF(q)q+1, where

ci =

{
1 if i ∈

{
0, q+1

3 , 2(q+1)
3

}
,

0 otherwise.

Then c ∈ C(q,q+1,3,1). Consequently, d = 3.
Assume now that 3 does not divide q+ 1. We first prove that d 6= 3. On the

contrary, suppose d = 3. Then there are three pairwise distinct elements x,y,z in
Uq+1 such that

a
[

x
x2

]
+b
[

y
y2

]
+ c
[

z
z2

]
= 0, (15.13)

where a,b,c ∈ GF(q)∗. Raising to the q-th power both sides of the equation ax+
by+ cz = 0 yields

ax−1 +by−1 + cz−1 = 0. (15.14)

Combining (15.13) and (15.14) gives

a

 x−1

x
x2

+b

 y−1

y
y2

+ c

 z−1

z
z2

= 0.

It then follows that ∣∣∣∣∣∣
x−1 y−1 z−1

x y z
x2 y2 z2

∣∣∣∣∣∣= 0.

By Lemma 15.20, 3 divides q+1. This is contrary to our assumption that 3 does
not divide q+1. This completes the proof.

The theorem below made a breakthrough in 70 years in the sense that it
presents the first family of linear codes meeting the condition of Theorem 15.18
and holding an infinite family of 3-designs after the discovery of the first near
MDS code (i.e., the [11,6,5] ternary Golary code) by Golay (1949).
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Theorem 15.22 (Ding and Tang (2020)). Let q= 3s with s≥ 2. Then the narrow-
sense BCH code C(q,q+1,3,1) over GF(q) has parameters [q+ 1,q− 3,4], and its
dual C⊥(q,q+1,3,1) has parameters [q+1,4,q−3] and weight enumerator

1+
(q−1)2q(q+1)

24
zq−3 +

(q−1)q(q+1)(q+3)
4

zq−1 +

(q2−1)(q2−q+3)
3

zq +
3(q−1)2q(q+1)

8
zq+1.

Further, the minimum weight codewords in C⊥(q,q+1,3,1) support a 3-(q+1,q−3,λ)
design with

λ =
(q−3)(q−4)(q−5)

24
,

and the minimum weight codewords in C(q,q+1,3,1) support a 3-(q+1,4,1) design,
i.e., a Steiner quadruple system S(3,4,3s +1).

Proof. We follow the notation of the proof of Theorem 15.21. Since 3 does not
divide q+1 = 3s +1, by Theorem 15.21 the minimum distance d of C(q,q+1,3,1) is
at least 4. We now prove that d = 4 and the codewords of weight 4 in C(q,q+1,3,1)
support a 3-(q+1,4,1) design.

Let x,y,z be three pairwise distinct elements in Uq+1. We conclude that x+
y+ z 6= 0. Suppose on the contrary that x+ y+ z = 0. We have then

0 = (x+ y+ z)q = xq + yq + zq =
1
x
+

1
y
+

1
z
=

xy+ yz+ zx
xyz

.

In summary, we have {
x+ y+ z = 0,
xy+ yz+ zx = 0,

which is the same as [
x
x2

]
+

[
y
y2

]
+

[
z
z2

]
= 0.

This means that C(q,q+1,3,1) has a codeword of weight 3, which is contrary to
Theorem 15.21.

We now prove that there is a unique w ∈Uq+1 \{x,y,z} such that∣∣∣∣∣∣∣∣
x−2 y−2 z−2 w−2

x−1 y−1 z−1 w−1

x y z w
x2 y2 z2 w2

∣∣∣∣∣∣∣∣
=

(z−w)(y−w)(y− z)(x−w)(x− z)(x− y)
(xyzw)2 (xy+ xz+ xw+ yz+ yw+ zw)

= 0. (15.15)
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Note that (z−w)(y−w)(y− z)(x−w)(x− z)(x− y) 6= 0. It follows from (15.15)
that

w =−xy+ yz+ zx
x+ y+ z

. (15.16)

We need to prove that w ∈Uq+1. Note that

w =−xyz
1
x +

1
y +

1
z

x+ y+ z
=−xyz

(x+ y+ z)q

x+ y+ z
.

We then have

wq+1 = (−xyz)q+1(x+ y+ z)q2−1 = 1.

By definition, w ∈Uq+1.
We now prove that w 6= x. Suppose on the contrary that w = x, then

x =−xy+ yz+ zx
x+ y+ z

,

which yields

(x− z)(x− y) = 0.

Whence, x = z or x = z, which is contrary to our assumption that x,y,z are three
pairwise distinct elements in Uq+1. Due to symmetry, w 6= y and w 6= z. The
uniqueness of w is justified by (15.16).

Note that Uq+1 = {1,γ,γ2, · · · ,γq}. Let {x,y,z,w} be any 4-subset of Uq+1

such that (15.15) holds. Without loss of generality, assume that

x = γi1 , y = γi2 , z = γi3 , w = γi4 ,

where 0≤ i1 < i2 < i3 < i4 ≤ q. Since d ≥ 4, the rank of the matrix
x−2 y−2 z−2 w−2

x−1 y−1 z−1 w−1

x y z w
x2 y2 z2 w2

 (15.17)

equals 3. Let (ui1 ,ui2 ,ui3 ,ui4) denote a nonzero solution of
x−2 y−2 z−2 w−2

x−1 y−1 z−1 w−1

x y z w
x2 y2 z2 w2




ui1
ui2
ui3
ui4

= 0.

Since the rank of the matrix of (15.17) is 3, all these ui j 6= 0. Define a vector
c = (c0,c1, . . . ,cq) ∈ GF(q)q+1, where ci j = ui j for j ∈ {1,2,3,4} and ch = 0 for
all h ∈ {0,1, . . . ,q}\{i1, i2, i3, i4}. It is easily seen that c is a codeword of weight
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4 in C(q,q+1,3,1). The set {ac : a ∈ GF(q)∗} consists of all such codewords of
weight 4 with nonzero coordinates in {i1, i2, i3, i4}. Therefore, we have d = 4.
Conversely, every codeword of weight 4 in C(q,q+1,3,1) with nonzero coordinates
in {i1, i2, i3, i4} must correspond to the set {x,y,z,w}. Hence, every codeword of
weight 4 and its nonzero multiples in C(q,q+1,3,1) correspond to such set {x,y,z,w}
uniquely. We then deduce that the codewords of weight 4 in C(q,q+1,3,1) support a
3-(q+1,4,1) design. As a result,

A4 = (q−1)

(q+1
3

)(4
3

) =
(q−1)2q(q+1)

24
.

Note that C(q,q+1,3,1) has parameters [q+ 1,q− 3,4]. We now prove that the
minimum distance d⊥ of C⊥(q,q+1,3,1) is equal to q−3. Recall that

C⊥(q,q+1,3,1) = {c(a,b) : a,b ∈ GF(q2)},

where c(a,b) = (Trq2/q(aγi +bγ2i))
q
i=0. Let u ∈Uq+1. Then

Trq2/q(au+bu2) = au+bu2 +aqu−1 +bqu−2 = u−2(bu4 +au3 +aqu+bq).

Hence, there are at most four u ∈Uq+1 such that Trq2/q(au+bu2) = 0 if (a,b) 6=
(0,0). As a result, for (a,b) 6= (0,0) we have

wt(c(a,b))≥ q+1−4 = q−3.

This means that d⊥ ≥ q−3. If d = q−2, then C⊥(q,q+1,3,1) would be an MDS code
and C(q,q+1,3,1) would also be an MDS code, which leads to a contradiction. We
then conclude that d⊥ = q−3. Now both C(q,q+1,3,1) and its dual are AMDS. By
definition, both C(q,q+1,3,1) and its dual are NMDS. It then follows from Theorem
15.12 that

A⊥q−3 = A4 =
(q−1)2q(q+1)

24
.

Applying Theorem 15.8, we obtain the desired weight enumerator of C⊥(q,q+1,3,1).

In particular, A⊥q−2 = 0. It then follows from the Assmus-Mattson Theorem that
the minimum weight codewords in C⊥(q,q+1,3,1) support a 3-(q+1,q−3,λ) design
with

λ =
(q−3)(q−4)(q−5)

24
.
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The proof of Theorem 15.22 also proved the following theorem.

Theorem 15.23. Let q = 3s with s≥ 2. Let α be a generator of GF(q2)∗, and put
γ = α−(q−1). Define Uq+1 = {1,γ,γ2, . . . ,γq} and

B =

{
{x,y,z,w} ∈

(
Uq+1

4

)
: xy+ xz+ xw+ yz+ yw+ zw = 0

}
.

Then (Uq+1,B) is a Steiner system S(3,4,3s+1), and is isomorphic to the Steiner
system supported by the minimum weight codewords of the code C(q,q+1,3,1).

It is known that a Steiner quadruple system S(3,4,v) exists if and only if v ≡
2,4 (mod 6) [Hanani (1960)]. There are two different constructions of an infinite
family of Steiner systems S(3,q+1,qs +1) for q being a prime power and s≥ 2.
The first produces the spherical geometry designs due to Witt (1937), which is
based on the action of PGL2(GF(qs)) on the base block GF(q)∪{∞} (see Section
4.7 for detail). The automorphism group of the spherical geometry design contains
the group PΓL2(GF(qs)). The second construction was proposed by Key and
Wagner (1986), and is based on affine spaces. The Steiner systems S(3,q+1,qs+

1) from the two constructions are not isomorphic [Key and Wagner (1986)].
When q = ps for p > 3 and 3 does not divide q+ 1, the code C(q,q+1,3,1) of

Theorem 15.22 is still NMDS, but it does not hold 2-designs according to Magma
experiments. The case q = 3s is really special. The reader is informed that the
Steiner quadruple system S(3,4,3s + 1) of Theorem 15.22 is isomorphic to the
spherical geometry design with the same parameters (see Section 15.5). The first
contribution of Theorem 15.22 is a coding-theoretic construction of the spherical
geometry design S(3,4,3s+1). The second contribution is that the codes of Theo-
rem 15.22 were the first infinite family of NMDS codes holding an infinite family
of 3-designs since the first NMDS ternary code discovered 70 years ago by Golay
(1949).

It was shown that the total number of nonisomorphic cyclic Steiner quadruple
systems S(3,4,28) is 1028387 [Chang, Fan, Feng, Holt and Östergåd (2017)],
which is a big number. This number indicates that it is a hard problem to classify
Steiner quadruple systems.

A family of NMDS codes may not satisfy the condition of Theorem 15.18 (i.e.,
the conditions in the Assmus-Mattson theorem), but could still hold 2-designs.
The next theorem introduces a family of such NMDS codes and their designs.

Theorem 15.24 (Ding and Tang (2020)). Let q = 2s with s≥ 4 being even. Then
the narrow-sense BCH code C(q,q+1,3,1) over GF(q) has parameters [q+ 1,q−
3,4], and its dual code C⊥(q,q+1,3,1) has parameters [q + 1,4,q− 3] and weight
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enumerator

1+
(q−4)(q−1)q(q+1)

24
zq−3 +

(q−1)q(q+1)
2

zq−2 +
(q+1)q2(q−1)

4
zq−1

+
(q−1)(q+1)(2q2 +q+6)

6
zq +

3q4−4q3−3q2 +4q
8

zq+1.

Further, the codewords of weight 4 in C(q,q+1,3,1) support a 2-(q+1,4,(q−4)/2)
design, and the codewords of weight q−3 in the dual code C⊥(q,q+1,3,1) support a

2-(q+1,q−3,λ⊥) design with

λ⊥ =
(q−4)2(q−3)

24
.

Proof. Recall that q = 2s with s ≥ 4. We follow the notation of the proof of
Theorem 15.22. Let x,y,z,w be four pairwise distinct elements in Uq+1. It can be
verified that∣∣∣∣∣∣∣∣

x−2 y−2 z−2 w−2

x−1 y−1 z−1 w−1

x y z w
x2 y2 z2 w2

∣∣∣∣∣∣∣∣
=

(z−w)(y−w)(y− z)(x−w)(x− z)(x− y)
(xyzw)2 (xy+ xz+ xw+ yz+ yw+ zw).

(15.18)

Notice that 3 does not divide 2s + 1, as s is even. It can be similarly proved that
C(q,q+1,3,1) over GF(q) has parameters [q+1,q−3,4], and its dual code C⊥(q,q+1,3,1)
has parameters [q+1,4,q−3]. Thus, they are NMDS.

With arguments similar to the proof of Theorem 15.22, we can prove that every
codeword of weight 4 in C(q,q+1,3,1) and its nonzero multiples correspond uniquely
to a set {x,y,z,w} of four pairwise distinct elements x,y,z,w in Uq+1 such that the
matrix

M(x,y,z,w) :=


x−2 y−2 z−2 w−2

x−1 y−1 z−1 w−1

x y z w
x2 y2 z2 w2


has rank 3.

Let x,y be two distinct elements in Uq+1. We now consider the total number of
choices of z and w in Uq+1 such the matrix M(x,y,z,w) has rank 3. Using (15.18)
we can verify that M(x,y,z,w) has rank 3 if and only if

z 6∈
{

x,y,x2y−1,y2x−1,(xy)22s−1
}
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and

w =
xy+ yz+ zx

x+ y+ z
. (15.19)

Note that the elements in {
x,y,x2y−1,y2x−1,(xy)22s−1

}
are pairwise distinct. It can be verified that if (z,w) is a choice, so is (w,z). Thus,
the total number of choices of x and z such the matrix M(x,y,z,w) has rank 3 is
equal to

q+1−5
2

=
q−4

2
.

Since this number is independent of the elements x and y, the codewords of weight
4 in C(q,q+1,3,1) support a 2-(q+1,4,(q−4)/2) design. Consequently,

A4 =
(q−4)(q−1)q(q+1)

24
.

It then follows from Theorem 15.12 that

A⊥q−3 = A4 =
(q−4)(q−1)q(q+1)

24
.

Applying Theorem 15.8, we obtain the desired weight enumerator of C⊥(q,q+1,3,1).

By Theorem 15.12, the minimum weight codewords in C⊥(q,q+1,3,1) support a
2-design which is the complementary design of the design supported by all the
minimum weight codewords in C(q,q+1,3,1). This completes the proof.

With Theorem 15.8 and the expression of A4, we can verify that Ai > 0 for
all i with 4 ≤ i ≤ q+ 1. Notice that A⊥i > 0 for all i with q− 3 ≤ i ≤ q+ 1. The
conditions in the Assmus-Mattson Theorem and the condition of Theorem 15.18
are not satisfied. But the codes still hold simple 2-designs.

We remark the code C(q,q+1,3,1) supports simple t-designs for t ≥ 2 only when
p = 3 or p = 2 and s is even. This makes this class of codes very special.

The proof of Theorem 15.24 also proved the following theorem.

Theorem 15.25. Let q = 2s with s ≥ 4 being even. Let α be a generator of
GF(q2)∗, and put γ = α−(q−1). Define Uq+1 = {1,γ,γ2, . . . ,γq} and

B =

{
{x,y,z,w} ∈

(
Uq+1

4

)
: xy+ xz+ xw+ yz+ yw+ zw = 0

}
.

Then (Uq+1,B) is a 2-(q+ 1,4,(q− 4)/2) design, and is isomorphic to the 2-
design supported by the minimum weight codewords of the code C(q,q+1,3,1).
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Below we provide information on the subfield subcodes of the two families of
near MDS codes documented in Theorems 15.22 and 15.24.

Let q = ps, where p is a prime. We now consider the narrow-sense BCH code
C(q,q+1,3,1) and its subfield subcode C(q,q+1,3,1)|GF(p). We follow the notation in
the proof of Theorem 15.21. By the Delsarte Theorem, we have

C(q,q+1,3,1)|GF(p) =
(

Trq/p

(
C⊥(q,q+1,3,1)

))⊥
. (15.20)

By the proof of Theorem 15.21,
C⊥(q,q+1,3,1) = {(Trq2/q(aγi +bγ2i))

q
i=0 : a, b ∈ GF(q2)}. (15.21)

Combining (15.20) and (15.21) yields

C(q,q+1,3,1)|GF(p) =
(
{(Trq2/p(aγi +bγ2i))

q
i=0 : a, b ∈ GF(q2)}

)⊥
.

Again by the Delsarte Theorem, we obtain
C(q,q+1,3,1)|GF(p) = C(p,q+1,3,1). (15.22)

This equality will be useful for deriving the parameters of the subfield subcode.

Theorem 15.26. Let s ≥ 4 be an even integer. Then the binary subfield subcode
C(2s,2s+1,3,1)|GF(2) has parameters [2s +1,2s +1−2s,5].

Proof. Let q = 2s and n = q+ 1 = 2s + 1. We follow the notation in the proofs
of Theorems 15.21 and 15.24. Note that the 2-cyclotomic coset C1 modulo n is
given by

C1 = {1,2, . . . ,2s−1,−1,−2, . . . ,−2s−1} mod n.
By definition, the minimal polynomial Mβ(x) of β over GF(2) is given by

Mβ(x) = ∑
i∈C1

(x−βi).

By the definition of BCH codes, C(2,2s+1,3,1) has generator polynomial Mβ(x) with
degree 2s, and is the Zetterberg code. It is known that this code has minimum
distance 5 [Schoof and van der Vlugt (1991)].

Using the sphere packing bound, we can verify that the subfield subcode
C(2s,2s+1,3,1)|GF(2) is dimension-optimal. In addition, this binary code is also
distance-optimal when s ∈ {2,4,6,8}. This makes the original code C(2s,2s+1,3,1)
very interesting.

We inform the reader that d(C(2s,2s+1,3,1)|GF(2)) = 3 if s is odd, which follows
from the fact that

1+ γ(q+1)/3 + γ2(q+1)/3 = 0.
This is why we are not interested in this code for the case s being odd.

Theorem 15.27. Let s≥ 4 be an even integer. Then the code (C(2s,2s+1,3,1)|GF(2))
⊥

has parameters [2s +1,2s,2s−1−2s/2 +2].
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Proof. (C(2s,2s+1,3,1)|GF(2))
⊥ is the dual of the Zetterberg code whose parameters

are from Lachaud and Wolfmann (1990)[Theorem 6.6].

When s = 2, (C(2s,2s+1,3,1)|GF(2))
⊥ has parameters [5,4,2], and is MDS. When

s = 4, the code has parameters [17,8,6], and is distance-optimal. When s = 4, the
code has parameters [65,12,26], and has the best known parameters and is an op-
timal cyclic code [Ding (2015a)][Appendix]. Thus, the code (C(2s,2s+1,3,1)|GF(2))

⊥

is very interesting.

Theorem 15.28. Let s≥ 2. Then the code C(3s,3s+1,3,1)|GF(3) has parameters [3s+

1,3s +1−4s,d ≥ 4].

Proof. Let q = 3s and n = q+ 1 = 3s + 1. We follow the notation in the proofs
of Theorems 15.21 and 15.22. Note that the 3-cyclotomic coset C1 modulo n is
given by

C1 = {1,3, . . . ,3s−1,−1,−3, . . . ,−3s−1} mod n.

Similarly, the 3-cyclotomic coset C2 modulo n is given by C2 = 2C1 mod n. It is
easily verified that C1∩C2 = /0 and |C1|= |C2|= 2s.

By definition, the minimal polynomial Mβ j(x) of β j over GF(3) is given by

Mβ j(x) = ∑
i∈C j

(x−βi)

for j ∈ {1,2}. By the definition of BCH codes, C(3,3s+1,3,1) has generator poly-
nomial Mβ(x)Mβ2(x). Therefore, the dimension of the code C(3,3s+1,3,1) is given
by

dim(C(3,3s+1,3,1)) = 3s +1−4s.

By (15.22), C(3s,3s+1,3,1)|GF(3) has the same dimension and generator polynomial
as C(3,3s+1,3,1).

By Theorem 15.22, the code C(3s,3s+1,3,1) has minimum distance 4. It then
follows from the definition of subfield subcodes that the minimum distance
d(C(3s,3s+1,3,1)|GF(3))≥ 4. This completes the proof.

The minimum distance of the code C(3s,3s+1,3,1)|GF(3)) is indeed 4 when s = 3.
We have the following examples of the code C(3s,3s+1,3,1)|GF(3):

s C(q,q+1,3,1)|GF(3) (C(q,q+1,3,1)|GF(3))
⊥

2 [10,2,5] [10,8,2]
3 [28,16,4] [28,12,8]
4 [82,66,6] [82,16,36]
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C(q,q+1,3,1)|GF(3) and (C(q,q+1,3,1)|GF(3))
⊥ both are distance-optimal cyclic codes

when s= 2 and s= 3 according to Ding (2015a)[Appendix]. The distance optimal-
ity of these subfield subcodes make the original codes C(q,q+1,3,1) and C⊥(q,q+1,3,1)
very interesting.

It would be worthy to settle the minimum distances of C(q,q+1,3,1)|GF(3) and
C(q,q+1,3,1)|GF(3))

⊥. The reader is invited to attack this open problem.

15.3.3 An Infinite Family of Near MDS Codes Holding 4-Designs

The ideas and techniques of this section are an extension of those of Section
15.3.2. The materials presented in this section are mainly from Tang and Ding
(2021).

15.3.3.1 Combinatorial t-Designs Constructed with Some Elementary
Symmetric Polynomials

The task of this section is to construct 3-designs and 4-designs with elementary
symmetric polynomials. These results would play a crucial role in proving that
the codes constructed in the next section support 3-designs or 4-designs.

We define [k] := {1,2, · · · ,k}. The elementary symmetric polynomial (ESP) of
degree ℓ in k variables u1,u2, · · · ,uk, written σk,ℓ, is defined by

σk,ℓ(u1, · · · ,uk) = ∑
I⊆[k],|I|=ℓ

∏
j∈I

u j. (15.23)

The elementary symmetric polynomials are a type of basic building blocks for
symmetric polynomials, as every symmetric polynomial can be expressed as a
polynomial in elementary symmetric polynomials. Throughout this section, we
use σk,ℓ to abbreviate σk,ℓ(u1, · · · ,uk) when u1, . . . ,uk are clear from the context.

Let q = 2m throughout this section. Let Uq+1 be the subgroup of GF(q2)∗ of
order q+ 1, that is, Uq+1 = {u ∈ GF(q2)∗ : uq+1 = 1}. For any integer k with
1≤ k ≤ q+1, let

(Uq+1
k

)
denote the set of all k-subsets of Uq+1. Define

Bσk,ℓ,q+1 =

{
{u1, · · · ,uk} ∈

(
Uq+1

k

)
: σk,ℓ(u1, · · · ,uk) = 0

}
. (15.24)

Then the incidence structure Dσk,ℓ,q+1 := (Uq+1,Bσk,ℓ,q+1) may be a t-(q+1,k,λ)
design for some λ, where Uq+1 is the point set, and the incidence relation is the
set membership. In this case, we say that the ESP σk,ℓ supports a t-(q+ 1,k,λ)
design. The ESP σk,ℓ always supports a 1-design, but may not support 2-designs.
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Define the block sets B0
σ6,3,q+1 and B1

σ6,3,q+1 by

B0
σ6,3,q+1 =


{u1,u2,u3,u4,u5,u6} ∈ Bσ6,3,q+1 :
{ui1 ,ui2 ,ui3 ,ui4 ,ui5} ∈ Bσ5,2,q+1

for some {i1, i2, · · · , i5} with
1≤ i1 < i2 < i3 < i4 < i5 ≤ 6

 , (15.25)

and

B1
σ6,3,q+1 = Bσ6,3,q+1 \B0

σ6,3,q+1. (15.26)

The three theorems and corollary below are the main results of this section.
They show an interesting application of ESPs in the theory of t-designs.

Theorem 15.29. Let m≥ 5 be odd. Then the incidence structure (Uq+1,Bσ6,3,q+1)

is a 4-
(

q+1,6, q−8
2

)
design, where the block set Bσ6,3,q+1 was given by (15.24).

Theorem 15.30. Let m ≥ 4 be an even integer. Then the incidence structure
(Uq+1,Bσ5,2,q+1) is a Steiner system S(3,5,q+ 1), where the block set Bσ5,2,q+1

is given by (15.24).

Theorem 15.31. Let m ≥ 4 be an even integer. Then the incidence structure
(Uq+1,B0

σ6,3,q+1) is a 3-(q+1,6,2(q−4)) design, and the incidence structure

(Uq+1,Bσ6,3,q+1) is a 3-
(

q+1,6, (q−4)2

6

)
design.

The following corollary follows immediately from the previous theorem.

Corollary 15.32. Let m ≥ 4 be an even integer. Then the incidence structure
(Uq+1,B1

σ6,3,q+1) is a 3-
(

q+1,6, (q−4)(q−16)
6

)
design.

From Theorems 15.29, 15.30 and 15.31, we get∣∣∣Bσ5,2,q+1

∣∣∣={ 1
10

(q+1
3

)
, if m is even,

0, if m is odd,

and ∣∣∣Bσ6,3,q+1

∣∣∣={ (q−4)2

120

(q+1
3

)
, if m is even,

q−8
30

(q+1
4

)
, if m is odd.

In general, it is difficult to determine
∣∣∣Bσk,ℓ,q+1

∣∣∣. It would be interesting to settle
the following problem.

Problem 15.33. Let k, ℓ be two integers with 1≤ ℓ≤ k
2 . Determine the cardinality

of the set Bσk,ℓ,q+1 given by (15.24) for (k, ℓ) 6= (6,3) and (5,2).
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To prove Theorems 15.29, 15.30, and 15.31, we need the following lemmas.
The first one is on quadratic equations over finite fields of characteristic 2 [Lidl
and Niederreiter (1997)], and is documented below.

Lemma 15.34. Let f (T ) = T 2 +aT +b ∈GF(q)[T ] be a polynomial of degree 2.
Then

(1) f has exactly one root in GF(q) if and only if a = 0;

(2) f has exactly two roots in GF(q) if and only if a 6= 0 and Trq/2

(
b
a2

)
= 0; and

(3) f has exactly two roots in GF(q2) \ GF(q) if and only if a 6= 0 and

Trq/2

(
b
a2

)
= 1.

Lemma 15.35. Let {u1,u2}∈
(Uq+1

2

)
. Then u1u2

u2
1+u2

2
∈GF(q) and Trq/2

(
u1u2

u2
1+u2

2

)
= 1.

Proof. Let a = u1u2
u2

1+u2
2
. Then aq =

u−1
1 u−1

2
u−2

1 +u−2
2

= a. Thus a ∈ GF(q). Note that 1
a =

u+ 1
u , where u = u1

u2
∈Uq+1. We have

(au)2 +(au)+a2 = 0, (15.27)

where au∈GF(q2)\GF(q). Hence, the equation T 2+T +a2 = 0 has two roots in
GF(q2)\GF(q). It then follows from Lemma 15.34 that Trq/2(a) = Trq/2(a2) = 1.
This completes the proof.

Lemma 15.36. Let {u1,u2,u3,u4} ∈
(Uq+1

4

)
. Then we have the following.

(1) u1 +u2 +u3 +u4 6= 0.
(2) If m is even, then u1 +u2 +u3 6= 0.

Proof. Suppose that u1 +u2 +u3 +u4 = 0. We have then

1
u1

+
1
u2

+
1
u3

+
1
u4

= (u1 +u2 +u3 +u4)
q = 0.

It follows from u4 = u1 +u2 +u3 that

1
u1

+
1
u2

+
1
u3

+
1

u1 +u2 +u3
= 0.

Multiplying both sides of the previous equation by u1u2u3(u1 +u2 +u3) yields

(u1 +u2 +u3)(u1u2 +u2u3 +u3u1)+u1u2u3 = 0,

which is the same as

(u1 +u2)(u2 +u3)(u3 +u1) = 0,
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which is contrary to our assumption that u1,u2,u3 are pairwise distinct. Thus,
u1 +u2 +u3 +u4 6= 0.

Let m be even. Suppose that u1 + u2 + u3 = 0. Then 1
u1+u2

= 1
u3

= 1
u1

+
1
u2

= u1+u2
u1u2

. We then have u2
1 + u1u2 + u2

2 = 0. Thus, u3
1 = u3

2. Since m is even ,
gcd(3,q+1) = 1. It then follows from u3

1 = u3
2 that u1 = u2, which is contrary to

our assumption that u1 6= u2. This completes the proof.

Lemma 15.37. Let σ3,1,σ3,2,σ3,3 be the ESPs given by (15.23) with {u1,u2,u3} ∈(Uq+1
3

)
. Then the following hold.

(1) σ3,1σ3,2 +σ3,3 = (u1 +u2)(u2 +u3)(u3 +u1).
(2) σ3,1σ3,2 +σ3,3 6= 0.

(3) σ2
3,2 +σ3,1σ3,3 = σ2

3,3

(
σ2

3,1 +σ3,2

)q
.

Proof. The proofs are straightforward and omitted.

Lemma 15.38. Let m be even. Let σ3,1,σ3,2,σ3,3 be the ESPs given by (15.23)
with {u1,u2,u3} ∈

(Uq+1
3

)
. Then

(1) σ2
3,1 +σ3,2 6= 0; and

(2) σ2
3,2 +σ3,1σ3,3 6= 0.

Proof. Suppose that σ2
3,1 +σ3,2 = 0, that is

u2
1 +u2

2 +u2
3 +u1u2 +u2u3 +u3u1 = 0.

Multiplying both sides of the previous equation by u1 +u2 +u3 yields

u3
1 +u3

2 +u3
3 +u1u2u3 = 0.

It then follows that |{u3
1,u

3
2,u

3
3,u1u2u3}|= 3 from Lemma 15.36, which is contrary

to the assumption that m is even. Combining Part 1 and Lemma 15.37 gives Part
2. This completes the proof.

Lemma 15.39. Let u j ∈Uq+1 such that σ5,2 = 0, where j ∈ {1,2,3,4,5}. Then{
(σ2

3,1 +σ3,2)(u4 +u5) = σ3,1σ3,2 +σ3,3,

(σ2
3,1 +σ3,2)u4u5 = σ2

3,2 +σ3,1σ3,3,

where σ3,1,σ3,2,σ3,3 and σ5,2 are the ESPs given by (15.23).

Proof. Observe first that

u4u5 +σ3,1(u4 +u5)+σ3,2 = 0. (15.28)
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Raising to the q-th power both sides of Equation (15.28) yields

u−1
4 u−1

5 +σq
3,1(u

−1
4 +u−1

5 )+σq
3,2 = 0,

which is the same as

σ3,1u4u5 +σ3,2(u4 +u5)+σ3,3 = 0. (15.29)

The desired conclusion then follows from Equations (15.28) and (15.29). This
completes the proof.

Lemma 15.40. Let m be even and {u1,u2,u3,u4,u5,u6} ∈ B0
σ6,3,q+1. Let A and A′

be two 5-subsets of {u1,u2,u3,u4,u5,u6} such that A,A′ ∈ Bσ5,2,q+1. Then A = A′.

Proof. Suppose that A 6= A′. Due to symmetry, let A = {u1,u2,u3,u4,u5} ∈
Bσ5,2,q+1 and A′ = {u1,u2,u3,u4,u6} ∈ Bσ5,2,q+1. It then follows from Lemma
15.39 that

(σ2
3,1 +σ3,2)(u4 +u5) = σ3,1σ3,2 +σ3,3 = (σ2

3,1 +σ3,2)(u4 +u6),

which gives

(σ2
3,1 +σ3,2)(u5 +u6) = 0.

It then follows from Lemma 15.38 that u5 + u6 = 0, which is contrary to the as-
sumption that u5 6= u6.

The following result is an immediate consequence of Lemmas 15.37, 15.38
and 15.39.

Lemma 15.41. Let {u1,u2,u3} ∈
(Uq+1

3

)
and u4,u5 ∈ Uq+1 such that σ5,2 = 0.

Then none of σ2
3,1 +σ3,2,σ3,1σ3,2 +σ3,3 and σ2

3,2 +σ3,1σ3,3 equals zero, and u4 6=
u5.

Lemma 15.42. Let {u1,u2,u3} ∈
(Uq+1

3

)
such that (σ2

3,1 + σ3,2)(σ3,1σ3,2 +

σ3,3)(σ2
3,2 + σ3,1σ3,3) 6= 0. Put a =

σ3,1σ3,2+σ3,3
σ2

3,1+σ3,2
and b =

σ2
3,2+σ3,1σ3,3

σ2
3,1+σ3,2

. Then

b ∈Uq+1,
b
a2 ∈ GF(q) and Trq/2

(
b
a2

)
≡ 1+m (mod 2).

Proof. First, it follows from Part 3 of Lemma 15.37 that b ∈Uq+1. Next, observe
that

b
a2 =

u1u2

(u1 +u2)2 +
u2u3

(u2 +u3)2 +
u3u1

(u3 +u1)2 +1. (15.30)

The desired conclusion then follows from Lemma 15.35 and Equation (15.30).
This completes the proof.
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Lemma 15.43. Let the notation and assumption be the same as in Lemma 15.42.
Let f (u) be the quadratic polynomial u2 + au+ b ∈ GF(q)[u]. Then we have the
following.

(1) If m is odd, then f has no root in Uq+1 \
{√

b
}

.
(2) If m is even, then f has exactly two roots in Uq+1.

Proof. Let m be odd. Suppose that there exists an u ∈ Uq+1 \
{√

b
}

such that
f (u) = 0. Then (

u√
b

)2

+
a√
b

(
u√
b

)
+1 = 0.

From Lemma 15.34 and u√
b
∈ Uq+1 \ {1} ⊆ GF(q2) \ GF(q), we have that

Trq/2

(
b
a2

)
= 1, which is contrary to the result of Lemma 15.42.

Let m be even. By Lemmas 15.34 and 15.42, there exists u′ ∈GF(q2)\GF(q)
such that u′,u′q are exactly the two solutions of the quadratic equation T 2+ a√

b
T +

1 = 0. It is easily checked that u4 =
√

bu′ and u5 =
√

bu′q are the two roots of f .
Then the result follows from u′q+1 = 1. This completes the proof.

Combining Lemmas 15.41, 15.39, and 15.43 gives the following.

Lemma 15.44. Let m be odd and {u1,u2,u3,u4,u5} ∈
(Uq+1

5

)
. Then σ5,2 6= 0.

Lemma 15.45. Let m be even and {u1,u2,u3} ∈
(Uq+1

3

)
. Let u4,u5 be the two

solutions of the quadratic equation u2 + au+ b = 0, where a =
σ3,1σ3,2+σ3,3

σ2
3,1+σ3,2

and

b =
σ2

3,2+σ3,1σ3,3

σ2
3,1+σ3,2

. Then

{u1,u2,u3,u4,u5} ∈ Bσ5,2,q+1.

Proof. First, employing Lemmas 15.37, 15.38, and 15.43, we have that u4,u5 ∈
Uq+1 and u4 6= u5. Using σ5,2 = u4u5 +(u4 +u5)σ3,1 +σ3,2 and Vieta’s formulas
yields

σ5,2 =
σ2

3,2 +σ3,1σ3,3

σ2
3,1 +σ3,2

+
σ3,1σ3,2 +σ3,3

σ2
3,1 +σ3,2

σ3,1 +σ3,2 = 0.

Suppose that u4 = ui and u5 = u j for some i, j ∈ {1,2,3}. By symmetry, let
(i, j) = (3,2). Then

σ5,2 = u3u4 +u2u5 = u2
2 +u2

3 = 0,

which is contrary to u2 6= u3. Thus, |{u1,u2,u3}∩{u4,u5}| 6= 2.
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Suppose that |{u1,u2,u3}∩{u4,u5}| = 1. By the symmetry of u1,u2,u3,
let u5 = u3 and u4 6∈ {u1,u2,u3}. Then σ5,2(u1,u2,u4,u5,u3) = 0. Note that
{u1,u2,u4} ∈

(Uq+1
3

)
and u5 = u3, which is contrary to Lemma 15.41. Thus,

|{u1,u2,u3}∩{u4,u5}| 6= 1. Hence, {u1,u2,u3,u4,u5} ∈
(Uq+1

5

)
. This completes

the proof.

Lemma 15.46. Let {u1,u2,u3,u4} ∈
(Uq+1

4

)
. Then σ4,3σ4,1 6= 0 and (σ4,3 +

uiσ4,2)(σ4,2 +uiσ4,1) 6= 0, where i ∈ {1,2,3,4}.

Proof. Note that

σ4,3σ4,1 = σ4,4σq+1
4,1 .

By Part 1 of Lemma 15.36, we have σ4,3σ4,1 6= 0.
Note that (σ4,3 + uiσ4,2)(σ4,2 + uiσ4,1) = uiσ4,4(σ4,2 + uiσ4,1)

q+1. We only
need to prove that σ4,2 +uiσ4,1 6= 0. On the contrary, suppose that σ4,2 +uiσ4,1 =

0. Using the symmetry of u1,u2,u3,u4, choose ui = u4. Then σ3,2 + u2
4 =

u1u2 + u2u3 + u3u1 + u2
4 = 0, which is contrary to Part 1 of Lemma 15.36 if

u2
4 6∈ {u1u2,u2u3,u3u1}. If u2

4 ∈ {u1u2,u2u3,u3u1}, due to symmetry suppose that
u2

4 = u1u2. It then follows from u1u2 +u2u3 +u3u1 +u2
4 = 0 that u1 = u2, which

contradicts the assumption that u1 6= u2. This completes the proof.

The following result is a direct consequence of Lemma 15.46.

Lemma 15.47. Let {u1,u2,u3,u4} ∈
(Uq+1

4

)
. Then

√
σ4,3
σ4,1

,
σ4,3+uiσ4,2
σ4,2+uiσ4,1

∈ Uq+1,

where i ∈ {1,2,3,4}.

Lemma 15.48. Let {u1,u2,u3,u4} ∈
(Uq+1

4

)
. Then

σ6,3

(
u1,u2,u3,u4,

√
σ4,3

σ4,1
,

√
σ4,3

σ4,1

)
= 0

and

σ6,3

(
u1,u2,u3,u4,

σ4,3 +uiσ4,2

σ4,2 +uiσ4,1
,ui

)
= 0,

where i ∈ {1,2,3,4}.

Proof. Set u5 = u6 =
√

σ4,3
σ4,1

. Then

σ6,3 (u1,u2,u3,u4,u5,u6) = σ4,3 +(u5 +u6)σ4,2 +u5u6σ4,1

= σ4,3 +u2
5σ4,1

= 0.
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Thus, σ6,3

(
u1,u2,u3,u4,

√
σ4,3
σ4,1

,
√

σ4,3
σ4,1

)
= 0.

Choose σ5 =
σ4,3+uiσ4,2
σ4,2+uiσ4,1

and σ6 = ui. Then

σ6,3 = σ4,3 +(u5 +u6)σ4,2 +u5u6σ4,1

= σ4,3 +

(
σ4,3 +uiσ4,2

σ4,2 +uiσ4,1
+ui

)
σ4,2 +

σ4,3 +uiσ4,2

σ4,2 +uiσ4,1
uiσ4,1

= 0.

This completes the proof.

Lemma 15.49. Let {u1,u2,u3,u4} ∈
(Uq+1

4

)
such that σ5,2(u1,u2,u3,u4,u5) 6= 0

for any u5 ∈Uq+1 \{u1,u2,u3,u4}. Let S be the subset of Uq+1 given by{
σ4,3 +uiσ4,2

σ4,2 +uiσ4,1
: i = 1,2,3,4

}
∪{ui : i = 1,2,3,4}∪

{√
σ4,3

σ4,1

}
.

Then |S|= 9.

Proof. First, we prove that
√

σ4,3
σ4,1
6= u4. On the contrary, suppose that

√
σ4,3
σ4,1

= u4.
Then

σ4,1u2
4 +σ4,3 = 0,

which is the same as

u3
4 +σ3,1u2

4 +σ3,2u4 +σ3,3 = 0.

Then,

(u4 +u1)(u4 +u2)(u4 +u3) = 0,

which is contrary to the assumption that {u1,u2,u3,u4} ∈
(Uq+1

4

)
. Thus

√
σ4,3
σ4,1
6=

u4. By the symmetry of u1,u2,u3,u4,√
σ4,3

σ4,1
6= ui for all i. (15.31)

Suppose that σ4,3+u4σ4,2
σ4,2+u4σ4,1

= u4. Then u4 =
√

σ4,3
σ4,1

, which is contrary to Inequal-

ity (15.31). Thus, σ4,3+u4σ4,2
σ4,2+u4σ4,1

6= u4. By the symmetry of u1,u2,u3,u4,

σ4,3 +uiσ4,2

σ4,2 +uiσ4,1
6= ui for all i. (15.32)
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Suppose that σ4,3+u4σ4,2
σ4,2+u4σ4,1

= u3. Then σ4,3 + u4σ4,2 + u3(σ4,2 + u4σ4,1) = 0,

which is the same as (u3 + u4)
2(u1 + u2) = 0. This is contrary to our assump-

tion that {u1,u2,u3,u4} ∈
(Uq+1

4

)
. Thus, σ4,3+u4σ4,2

σ4,2+u4σ4,1
6= u3. By the symmetry of

u1,u2,u3,u4,
σ4,3 +uiσ4,2

σ4,2 +uiσ4,1
6= u j for all i 6= j. (15.33)

Suppose that σ4,3+uiσ4,2
σ4,2+uiσ4,1

=
√

σ4,3
σ4,1

for some i ∈ {1,2,3,4}. Put u5 =
√

σ4,3
σ4,1

. It

follows from Inequality (15.31) that u5 6∈ {u1,u2,u3,u4}. By Lemma 15.48, we
have {

σ6,3 (u1,u2,u3,u4,u5,ui) = 0,

σ6,3

(
u1,u2,u3,u4,u5,

√
σ4,3
σ4,1

)
= 0.

By the assumption of this lemma, σ5,2(u1,u2,u3,u4,u5) 6= 0. Thus,ui =
σ5,3
σ5,2

,√
σ4,3
σ4,1

=
σ5,3
σ5,2

,

which is contrary to Inequality (15.31). Hence,

σ4,3 +uiσ4,2

σ4,2 +uiσ4,1
6=
√

σ4,3

σ4,1
. (15.34)

Assume that σ4,3+uiσ4,2
σ4,2+uiσ4,1

=
σ4,3+u jσ4,2
σ4,2+u jσ4,1

for some i, j ∈ {1,2,3,4}. Put

u5 =
σ4,3+uiσ4,2
σ4,2+uiσ4,1

. It follows from Inequalities (15.32) and (15.33) that u5 6∈
{u1,u2,u3,u4}. By Lemma 15.48, we have{

σ6,3 (u1,u2,u3,u4,u5,ui) = 0,
σ6,3 (u1,u2,u3,u4,u5,u j) = 0.

By the assumption of this lemma, σ5,2(u1,u2,u3,u4,u5) 6= 0. Thus,{
ui =

σ5,3
σ5,2

,

u j =
σ5,3
σ5,2

.

Then i = j. Hence,

σ4,3 +uiσ4,2

σ4,2 +uiσ4,1
6=

σ4,3 +u jσ4,2

σ4,2 +u jσ4,1
, for i 6= j. (15.35)

The desired conclusion then follows from Inequalities (15.31), (15.32),
(15.33), (15.34) and (15.35). This completes the proof.
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Lemma 15.50. Let m be even, and let {u′1,u′2,u′3,u′4,u′5} ∈ Bσ5,2,q+1 and u5,u6 ∈
Uq+1 such that σ6,3(u′1,u

′
2,u
′
3,u
′
4,u5,u6) = 0. Then u′5 ∈ {u5,u6}.

Proof. Suppose that u′5 6∈ {u5,u6}. From Lemmas 15.38 and 15.39, it follows that
σ5,2(u′1,u

′
2,u
′
3,u
′
4,u5) 6= 0. We have{

σ6,3
(
u′1,u

′
2,u
′
3,u
′
4,u5,u′5

)
= 0,

σ6,3 (u′1,u
′
2,u
′
3,u
′
4,u5,u6) = 0,

which is the same as u′5 =
σ5,3(u′1,u

′
2,u
′
3,u
′
4,u5)

σ5,2(u′1,u
′
2,u
′
3,u
′
4,u5)

,

u6 =
σ5,3(u′1,u

′
2,u
′
3,u
′
4,u5)

σ5,2(u′1,u
′
2,u
′
3,u
′
4,u5)

.

This is contrary to our assumption that u′5 6∈ {u5,u6}. This completes the proof.

Lemma 15.51. Let {u1,u2,u3,u4} ∈
(Uq+1

4

)
such that σ5,2(u1,u2,u3,u4,u5) 6= 0

for any u5 ∈Uq+1 \{u1,u2,u3,u4}. Then

σ5,3

(
u1,u2,u3,u4,

√
σ4,3
σ4,1

)
σ5,2

(
u1,u2,u3,u4,

√
σ4,3
σ4,1

) =

√
σ4,3

σ4,1
,

and

σ5,3

(
u1,u2,u3,u4,

σ4,3+uiσ4,2
σ4,2+uiσ4,1

)
σ5,2

(
u1,u2,u3,u4,

σ4,3+uiσ4,2
σ4,2+uiσ4,1

) = ui,

where i ∈ {1,2,3,4}.

Proof. The claim follows from Lemma 15.48.

We will need the following lemma whose proof is straightforward.

Lemma 15.52. Let the set {u1,u2,u3,u4} ∈
(Uq+1

4

)
and u5 ∈ Uq+1 such that

σ5,2 (u1,u2,u3,u4,u5) 6= 0. Let u6 =
σ5,3(u1,u2,u3,u4,u5)

σ5,2(u1,u2,u3,u4,u5)
. Then we have the following.

(1) If u6 = u5, then u5 =
√

σ4,3
σ4,1

.

(2) If u6 = ui, then u5 =
σ4,3+uiσ4,2
σ4,2+uiσ4,1

, where i ∈ {1,2,3,4}.
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Lemma 15.53. Let m be an even integer and {u1,u2,u3,u4} ∈
(Uq+1

4

)
such that

σ5,2(u1,u2,u3,u4,u5) 6= 0 for any u5 ∈Uq+1 \{u1,u2,u3,u4}. Let S be the subset
of Uq+1 given by{

σ4,3 +uiσ4,2

σ4,2 +uiσ4,1
: i = 1,2,3,4

}
∪{ui : i = 1,2,3,4}∪

{√
σ4,3

σ4,1

}
.

Let ũ4 and ũ5 be the two solutions of the quadratic equation u2+au+b= 0, where

a =
σ3,1σ3,2+σ3,3

σ2
3,1+σ3,2

and b =
σ2

3,2+σ3,1σ3,3

σ2
3,1+σ3,2

. Then ũ4 6∈ S and ũ5 6∈ S.

Proof. By the definition of ũ4, ũ5 and Lemma 15.39, u4 6∈ {ũ4, ũ5}. Suppose that
ũ4 =

√
σ4,3
σ4,1

. From Lemma 15.48 or 15.51, we get

σ6,3

(
u1,u2,u3,u4, ũ4,

√
σ4,3

σ4,1

)
= 0.

From Lemma 15.50 and ũ5 6= u4, it follows that ũ5 =
√

σ4,3
σ4,1

= ũ4, which is contrary

to a 6= 0. Thus, ũ4 6=
√

σ4,3
σ4,1

. By the symmetry of ũ4 and ũ5, ũ5 6=
√

σ4,3
σ4,1

.

Suppose that ũ4 =
σ4,3+uiσ4,2
σ4,2+uiσ4,1

. From Lemma 15.48 or 15.51, we have

σ6,3 (u1,u2,u3,u4,ui, ũ4) = 0.
From Lemma 15.50 and ũ5 6= u4, it follows that ũ5 = ui, which is contrary to the
definition of ũ5. Thus, ũ4 6=

σ4,3+uiσ4,2
σ4,2+uiσ4,1

. By the symmetry of ũ4 and ũ5, ũ5 6=
σ4,3+uiσ4,2
σ4,2+uiσ4,1

. This completes the proof.

Proof of Theorem 15.29. Recall Theorem 15.29 first. Let {u1,u2,u3,u4} be a
fixed 4-subset of Uq+1. Set

S =

{
σ4,3 +uiσ4,2

σ4,2 +uiσ4,1
: i = 1,2,3,4

}
∪{ui : i = 1,2,3,4}∪

{√
σ4,3

σ4,1

}
.

For any u5 6∈ {ui : i = 1,2,3,4}, σ5,2(u1,u2,u3,u4,u5) 6= 0 from Lemma 15.44.
Define

T =

{{
u5,

σ5,3(u1,u2,u3,u4,u5)

σ5,2(u1,u2,u3,u4,u5)

}
: u5 ∈Uq+1 \S

}
.

From Lemmas 15.51 and 15.52, it follows that σ5,3(u1,u2,u3,u4,u5)

σ5,2(u1,u2,u3,u4,u5)
6∈ S if u5 6∈ S. By

Lemma 15.49, |T | = (q+1−9)
2 . From Lemma 15.52 and σ5,3(u1,u2,u3,u4,u5)

σ5,2(u1,u2,u3,u4,u5)
∈Uq+1,

we deduce that {u1,u2,u3,u4,u5,u6} ∈ Bσ6,3,q+1 for any {u5,u6} ∈ T .
On the other hand, let {u1,u2,u3,u4,u5,u6} ∈ Bσ6,3,q+1. Employing Lemma

15.51, {u5,u6} ∈ T . Thus, {u1,u2,u3,u4,u5,u6} ∈ Bσ6,3,q+1 if and only if

{u5,u6} ∈ T . Hence, (Uq+1,Bσ6,3,q+1) is a 4-
(

q+1,6, q−8
2

)
design. This com-

pletes the proof.
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Proof of Theorem 15.30. Recall Theorem 15.30 first. Let {u1,u2,u3} be a fixed
3-subset of Uq+1. By Lemmas 15.39 and 15.45, {u1,u2,u3,u4,u5} ∈ Bσ6,3,q+1 if
and only if u4 and u5 are the two solutions of the quadratic equation u2+au+b= 0

in Uq+1, where a =
σ3,1σ3,2+σ3,3

σ2
3,1+σ3,2

and b =
σ2

3,2+σ3,1σ3,3

σ2
3,1+σ3,2

. Hence, (Uq+1,Bσ5,2,q+1) is

a Steiner System S(3,5,q+1). This completes the proof.

Proof of Theorem 15.31. Recall Theorem 15.31 first. For a 3-subset {u1,u2,u3}
of Uq+1, let Q(u1,u2,u3) denote the 2-subset{

u ∈Uq+1 : u2 +au+b = 0
}
,

where a =
σ3,1σ3,2+σ3,3

σ2
3,1+σ3,2

and b =
σ2

3,2+σ3,1σ3,3

σ2
3,1+σ3,2

. Next, let {u1,u2,u3} be fixed. Set

T 0
1 =

{
S0∪{u6} : u6 ∈Uq+1 \S0} ,

and

T 0
i, j =

{
{u1,u2,u3,u4}∪Q(ui,u j,u4) : u4 ∈Uq+1 \S0} ,

where 1 ≤ i < j ≤ 3 and S0 = {u1,u2,u3}∪Q(u1,u2,u3). Let T 0 = T 0
1 ∪T 0

1,2 ∪
T 0

1,3 ∪T 0
2,3. It is easily checked that {u1,u2,u3,u4,u5,u6} ∈ B0

σ6,3,q+1 if and only

if {u1,u2,u3,u4,u5,u6} ∈ T 0. Note that |T 0
1 | = q− 4 and |T 0

i,i| =
q−4

3 , where
1 ≤ i < j ≤ 3. From Lemma 15.40, it follows that T 0

1 , T 0
1,2, T 0

1,3 and T 0
2,3 are

pairwise disjoint. Then (Uq+1,B0
σ6,3,q+1) is a 3-(q+1,6,2(q−4)) design.

Let {u1,u2,u3} be a fixed 3-subset of Uq+1. Define

T 1 =
{
{u1,u2,u3,u4,u5,u6} : u4 ∈Uq+1 \S0,u5 ∈Uq+1 \ (S0∪S1)

}
,

where S0 = {u1,u2,u3}∪Q(u1,u2,u3), S1 =
{

σ4,3+uiσ4,2
σ4,2+uiσ4,1

: 1≤ i≤ 4
}∪{√σ4,3

σ4,1

}
,

and

u6 =
σ5,3(u1,u2,u3,u4,u5)

σ5,2(u1,u2,u3,u4,u5)
.

Let T = T 0
1 ∪T 1. It is easily checked that B∈Bσ6,3,q+1 if and only if B∈ T . Note

that |T 0
1 |= q−4 and |T 1|= (q+1−|S0|)(q+1−|S0∪S1|)

6 . By Lemmas 15.49 and 15.53,
|S0∪S1|= 11. From Lemma 15.40, it follows that T 0

1 and T 1 are disjoint. Then

(Uq+1,Bσ6,3,q+1) is a 3-
(

q+1,6, (q−4)2

6

)
design. This completes the proof.
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15.3.3.2 Infinite Families of BCH Codes Holding t-Designs for t ∈
{3,4}

Throughout this section, let q = 2m, where m is a positive integer. We consider the
narrow-sense BCH code C(q,q+1,4,1) over GF(q) and its dual, and prove that they
are almost MDS, and support 4-designs when m ≥ 5 is odd and 3-designs when
m≥ 4 is even.

For a positive integer ℓ, define a 6× ℓ matrix Mℓ by

u−3
1 u−3

2 · · · u−3
ℓ

u−2
1 u−2

2 · · · u−2
ℓ

u−1
1 u−1

2 · · · u−1
ℓ

u+1
1 u+1

2 · · · u+1
ℓ

u+2
1 u+2

2 · · · u+2
ℓ

u+3
1 u+3

2 · · · u+3
ℓ


, (15.36)

where these u1, · · · ,uℓ ∈ Uq+1. For r1, · · · ,ri ∈ {±1,±2,±3}, let Mℓ[r1, · · · ,ri]

denote the submatrix of Mℓ obtained by deleting the rows (ur1
1 ,ur1

2 , · · · ,ur1
ℓ ), · · · ,

(uri
1 ,u

ri
2 , · · · ,u

ri
ℓ ) of the matrix Mℓ.

Lemma 15.54. Let Mℓ be the matrix given by (15.36) with {u1, · · · ,uℓ} ∈
(Uq+1

ℓ

)
.

Consider the system of homogeneous linear equations defined by

Mℓ(x1, · · · ,xℓ)T = 0. (15.37)

Then Equation (15.37) has a nonzero solution (x1, · · · ,xℓ) in GF(q)ℓ if and only if
rank(Mℓ)< ℓ, where rank(Mℓ) denotes the rank of the matrix Mℓ.

Proof. It is obvious that rank(Mℓ)< ℓ if Equation (15.37) has a nonzero solution
(x1, · · · ,xℓ) in GF(q)ℓ.

Conversely, assume that rank(Mℓ) < ℓ. Then there exists a nonzero vector
x′ = (x′1, · · · ,x′ℓ) ∈ GF(q2)ℓ such that Mℓx′T = 0. Choose an i0 ∈ {1, · · · , ℓ} such
that x′i0 6= 0. Put

x = (x′′1 + x′′q1 , · · · ,x′′i0 + x′′qi0 , · · · ,x
′′
ℓ + x′′qℓ ),

where (x′′1 , · · · ,x′′ℓ ) =
α

x′i0
x′ and α is a primitive element of GF(q2). It is easily

checked that MℓxT = 0 and x ∈ GF(q)ℓ \{0}. This completes the proof.

Lemma 15.55. Let M4 be the matrix given by (15.36) with {u1,u2,u3,u4} ∈(Uq+1
4

)
. Then rank(M4) = 4.

Proof. Suppose that rank(M4) < 4. Then det(M4[2,3]) =
∏1≤i< j≤4(ui+u j)

σ3
4,4

(u1 +

u2+u3+u4)=0, which is contrary to Lemma 15.36. This completes the proof.
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Lemma 15.56. Let M5 be the matrix given by (15.36) with {u1, · · · ,u5} ∈
(Uq+1

5

)
.

Then rank(M5) = 4 if and only if σ5,2(u1, · · · ,u5) = 0.

Proof. First, note that

det(M5[3]) =
∏1≤i< j≤5(ui+u j)

σ3
5,5

σ5,2,

det(M5[2]) =
∏1≤i< j≤5(ui+u j)

σ3
5,5

(
σ5,1σ5,2 +σ5,5σq

5,2

)
,

det(M5[1]) =
∏1≤i< j≤5(ui+u j)

σ3
5,5

(
σ5,1σ5,5σq

5,2 +σ2
5,2

)
,

det(M5[−3]) = ∏1≤i< j≤5(ui+u j)

σ5,5
σq

5,2,

det(M5[−2]) = ∏1≤i< j≤5(ui+u j)

σ5,5

(
σq

5,1σq
5,2 +σq

5,5σ5,2

)
,

det(M5[−1]) = ∏1≤i< j≤5(ui+u j)

σ5,5

(
σq

5,1σq
5,5σ5,2 +σ2q

5,2

)
.

The desired conclusion then follows from Lemma 15.55. This completes the
proof.

Lemma 15.57. Let M6 be the matrix given by (15.36) with {u1, · · · ,u6} ∈
(Uq+1

6

)
.

Then rank(M6)< 6 if and only if σ6,3(u1, · · · ,u6) = 0.

Proof. Note that

det(M6) =
∏1≤i< j≤6(ui +u j)

σ3
6,6

σ6,3,

which completes the proof.

Lemma 15.58. Let m be even and M6 be the matrix given by (15.36) with
{u1, · · · ,u6} ∈

(Uq+1
6

)
. Let {u1, · · · ,u6} ∈ B1

σ6,3,q+1, where B1
σ6,3,q+1 was defined

by (15.26). Then the set of all solutions of the system M6(x1, · · · ,x6)
T = 0 over

GF(q)6 is

{(ax1, · · · ,ax6) : a ∈ GF(q)} ,

where (x1, · · · ,x6) is a vector in (GF(q)∗)6.

Proof. Let {u1, · · · ,u6} ∈B1
σ6,3,q+1. By Lemma 15.57, rank(M6)< 6. By Lemma

15.54, there exists a nonzero (x1, · · · ,x6) ∈GF(q)6 such that M6(x1, · · · ,x6)
T = 0.

Suppose that there is an i (1 ≤ i ≤ 6) such that xi = 0. Then the submatrix of
the matrix M6 obtained by deleting the i-th column has rank less than 5, which is
contrary to Lemma 15.56 and the definition of B1

σ6,3,q+1. Thus, for any nonzero

solution (x1, · · · ,x6) ∈ GF(q)6, we have xi 6= 0, where 1 ≤ i ≤ 6. The desired
conclusion then follows. This completes the proof.
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Lemma 15.59. Let m be even and M6 be the matrix given by (15.36) with
{u1, · · · ,u6} ∈

(Uq+1
6

)
. If there exists a vector (x1, · · · ,x6) ∈ (GF(q)∗)6 such that

M6(x1, · · · ,x6)
T = 0, then {u1, · · · ,u6} ∈B1

σ6,3,q+1, where B1
σ6,3,q+1 was defined by

(15.26).

Proof. From Lemma 15.57, it follows that {u1, · · · ,u6} ∈ Bσ6,3,q+1. Suppose that
{u1, · · · ,u6} ∈ B0

σ6,3,q+1. Without loss of generality, let σ5,2(u1, · · · ,u5) = 0. By

Lemmas 15.54 and 15.56, there exists a nonzero (x′1, · · · ,x′5) ∈ GF(q)5 such that
M5(x′1, · · · ,x′5)T = 0, that is, M6(x′1, · · · ,x′5,0)T = 0. Note that

M6

(
x1 +

x1

x′1
x′1, · · · ,x5 +

x1

x′1
x′5,x6 +

x1

x′1
0
)T

= 0.

Applying Lemma 15.56, we have σ5,2(u2, · · · ,u6) = 0, which is contrary to
Lemma 15.40 and σ5,2(u1, · · · ,u5) = 0. This completes the proof.

Lemma 15.60. Let f (u) = Trq2/q
(
au3 +bu2 + cu

)
where (a,b,c) ∈ GF(q2)3 \

{0}. Define zero( f ) =
{

u ∈Uq+1 : f (u) = 0
}

. Then |zero( f )| ≤ 6. More-
over, |zero( f )| = 6 if and only if a = τ√σ6,6

, b =
τσ6,1√σ6,6

and c =
τσ6,2√σ6,6

, where
{u1, · · · ,u6} ∈ Bσ6,3,q+1 and τ ∈ GF(q)∗.

Proof. When u ∈Uq+1, we have

f (u) =
1
u3

(
au6 +bu5 + cu4 + cqu2 +bqu+aq

)
. (15.38)

Thus, |zero( f )| ≤ 6.
Assume that |zero( f )| = 6. From (15.38), there exists {u1, · · · ,u6} ∈ Uq+1

such that f (u) = a∏6
i=1(u+ui)

u3 . By Vieta’s formula, b = aσ6,1, c = aσ6,2, 0 = σ6,3,
cq = aσ6,6σq

6,2, bq = aσ6,6σq
6,1 and aq = aσ6,6. We obtain a = τ√σ6,6

from aq−1 =

σ6,6, where τ ∈ GF(q)∗. Then b =
τσ6,1√σ6,6

and c = τσ6,2√σ6,6
.

Conversely, assume that a = τ√σ6,6
, b =

τσ6,1√σ6,6
and c =

τσ6,2√σ6,6
, where

{u1, · · · ,u6} ∈ Bσ6,3,q+1 and τ ∈ GF(q)∗. Then f (u) =
a∏6

i=1(u+ui)

u3 . Thus,
zero( f ) = {u1, · · · ,u6} and |zero( f )|= 6.

We are now ready to prove the following result about the code C(q,q+1,4,1).

Theorem 15.61. Let m ≥ 4 be an integer. Then the narrow-sense BCH code
C(q,q+1,4,1) over GF(q) has parameters [q+ 1,q− 5,d], where d = 6 if m is odd
and d = 5 if m is even.
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Proof. Put n = q+ 1. Let α be a generator of GF(q2)∗ and β = αq−1. Then
β is a primitive n-th root of unity in GF(q2), that is, β is a generator of the
cyclic group Uq+1. Let gi(x) denote the minimal polynomial of βi over GF(q),
where i ∈ {1,2,3}. Note that gi(x) has only the roots βi and β−i. We deduce that
g1(x), g2(x) and g3(x) are pairwise distinct irreducible polynomials of degree 2.
By definition, g(x) := g1(x)g2(x)g3(x) is the generator polynomial of C(q,q+1,4,1).
Therefore, the dimension of C(q,q+1,4,1) is q+ 1− 6. Note that g(x) has only the
roots β−3,β−2,β−1,β,β2 and β3. By the BCH bound, the minimum weight of
C(q,q+1,4,1) is at least 4. Put γ = β−1. Then γq+1 = β−(q+1) = 1. It then follows
from Delsarte’s theorem that the trace expression of C⊥(q,q+1,4,1) is given by

C⊥(q,q+1,4,1) = {c(a,b,c) : a,b,c ∈ GF(q2)}, (15.39)

where c(a,b,c) = (Trq2/q(aγi +bγ2i + cγ3i))
q
i=0.

Define

H =



1 γ−3 γ−6 γ−9 · · · γ−3q

1 γ−2 γ−4 γ−6 · · · γ−2q

1 γ−1 γ−2 γ−3 · · · γ−q

1 γ+1 γ+2 γ+3 · · · γ+q

1 γ+2 γ+4 γ+6 · · · γ+2q

1 γ+3 γ+6 γ+9 · · · γ+3q


. (15.40)

It is easily seen that H is a parity-check matrix of C(q,q+1,4,1), i.e.,

C(q,q+1,4,1) = {c ∈ GF(q)q+1 : cHT = 0}. (15.41)

Let m be odd. Note that d ≥ 4. Suppose that d = 4. Then there exist
{u1, · · · ,u4} ∈

(Uq+1
4

)
and (x1, · · · ,x4) ∈ (GF(q)∗)4 such that M4(x1, · · · ,x4)

T = 0.
Thus rank(M4) < 4, which is contrary to Lemma 15.55. Suppose that d = 5.
Then there exist {u1, · · · ,u5} ∈

(Uq+1
5

)
and (x1, · · · ,x5) ∈ (GF(q)∗)5 such that

M5(x1, · · · ,x5)
T = 0. By Lemma 15.56, rank(M5)< 5 and σ5,2 = 0, which is con-

trary to Lemma 15.44. Thus, d ≥ 6. By Theorem 15.29, Bσ6,3,q+1 6= /0. Choose
{u1, · · · ,u6} ∈ Bσ6,3,q+1. By Lemma 15.54, there exists (x1, · · · ,x6) ∈ (GF(q)∗)6

such that M6(x1, · · · ,x6)
T = 0. Set c = (c1, · · · ,cq+1) where

ci =

{
x j, if i = i j,

0, otherwise,
(15.42)

where γi j is given by u j = γi j ( j ∈ {1, · · · ,6}). By (15.41), c ∈ C(q,q+1,4,1) and
wt(c) = 6. Thus, d = 6.

The proof for the even m case is similar to that for the odd m case and the
detail is omitted. This completes the proof.
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Theorem 15.62. Let m≥ 4 and C⊥(q,q+1,4,1) be the dual of the narrow-sense BCH

code C(q,q+1,4,1) over GF(q). Then C⊥(q,q+1,4,1) has parameters [q+1,6,q−5]. In
particular, C(q,q+1,4,1) is a near MDS code if m is odd.

Proof. From Theorems 15.29 and 15.31, Bσ6,3,q+1 6= /0. The desired conclusion
then follows from Lemma 15.60 and Equation (15.39). This completes the proof.

Theorem 15.63. Let m≥ 5 be odd. Then the incidence structure(
P
(
C(q,q+1,4,1)

)
,B6

(
C(q,q+1,4,1)

))
of the minimum weight codewords in C(q,q+1,4,1) is isomorphic to (Uq+1,Bσ6,3,q+1).

Proof. With the help of Lemma 15.57, the desired conclusion then follows by a
similar discussion as in the proof of Theorem 15.61. This completes the proof.

The theorem below made a breakthrough in 71 years, as it presented the first
family of linear codes supporting an infinite family of 4-designs after the first
linear code holding a 4-design discovered by Golay (1949).

Theorem 15.64 (Tang and Ding (2021)). Let m ≥ 5 be odd. Then the minimum
weight codewords in C(q,q+1,4,1) support a 4-(q+ 1,6,(q− 8)/2) design and the
minimum weight codewords in C⊥(q,q+1,4,1) support a 4-(q+1,q−5,λ) design with

λ =
q−8

30

(
q−5

4

)
.

Proof. The desired conclusion follows from Theorems 15.63, 15.29 and 15.12.
This completes the proof.

Example 15.65. Let m = 5. Then C(q,q+1,4,1) has parameters [33,27,6]. The dual
C⊥(q,q+1,4,1) has parameters [33,6,27] and weight distribution

1+1014816z27 +1268520z28 +20296320z29 +64609952z30 +

210132384z31 +399584823z32 +376835008z33.

The codewords of weight 6 in C(q,q+1,4,1) supports a 4-(33,6,12) design, and the
codewords of weight 27 in C⊥(q,q+1,4,1) support a 4-(33,27,14040) design.

In Example 15.65, the code C(q,q+1,4,1) has a codeword of weight i for all i
with 6 ≤ i ≤ 33. Hence, the Assmus-Mattson Theorem cannot be used to prove
that the codes in Theorem 15.64 support 4-designs. It is an open problem whether
the generalised Assmus-Mattson theorem (i.e., Theorem 16.28) can be used to
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prove that the codes in Theorem 15.64 support 4-designs. It looks impossible to
prove that the codes in Theorem 15.64 support 4-designs with the automorphism
groups of the codes due to the following:

(1) Except the Mathieu groups M11, M12, M23, M24, the alternating group An

and the symmetric group Sn, no finite permutation groups are more than 3-
transitive.

(2) No infinite family of 4-homogeneous permutation groups is known.

It would be a very interesting problem to determine the automorphism groups of
the codes in Theorem 15.64.

Theorem 15.66 (Yan and Zhou (2021)). Let m≥ 5 be odd. Then the codewords
of weight 7 in C(q,q+1,4,1) support a 4-(q+1,7,λ) design with

λ =

(
q−3

3

)
− 7(q−5)(q−8)

6
.

The codewords of weight q− 4 in C⊥(q,q+1,4,1) support a 4-(q + 1,q− 4,
(q−4

4

)
)

design whose complementary design has parameters 4-(q+1,5,5).

To present an infinite class of linear codes supporting Steiner systems
S(3,5,4m +1), we prove the following theorem.

Theorem 15.67. Let m≥ 4 be even. Then the incidence structure(
P
(
C(q,q+1,4,1)

)
,B5

(
C(q,q+1,4,1)

))
of the minimum weight codewords in C(q,q+1,4,1) is isomorphic to (Uq+1,Bσ5,2,q+1),
and the incidence structure(

P
(
C(q,q+1,4,1)

)
,B6

(
C(q,q+1,4,1)

))
is isomorphic to (Uq+1,B1

σ6,3,q+1). Moreover, the incidence structure(
P
(

C⊥(q,q+1,4,1)

)
,Bq−5

(
C⊥(q,q+1,4,1)

))
is isomorphic to the complementary incidence structure of (Uq+1,Bσ6,3,q+1).

Proof. Using Lemma 15.56, by a similar discussion as in the proof of Theorem
15.61, we can prove that the incidence structure(

P
(
C(q,q+1,4,1)

)
,B5

(
C(q,q+1,4,1)

))
is isomorphic to (Uq+1,Bσ5,2,q+1). Employing Lemma 15.59, we can prove that(

P
(
C(q,q+1,4,1)

)
,B6

(
C(q,q+1,4,1)

))
is isomorphic to (Uq+1,B1

σ6,3,q+1). The last statement then follows from Equation
(15.39) and Lemma 15.60. This completes the proof.
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The following theorem documents an infinite class of linear codes supporting
Steiner systems S(3,5,4m +1).

Theorem 15.68 (Tang and Ding (2021)). Let m ≥ 4 be an even integer. Then
the minimum weight codewords in C(q,q+1,4,1) support a 3-(q+1,5,1) design, i.e.,
a Steiner system S(3,5,q+1), and the minimum weight codewords in C⊥(q,q+1,4,1)
support a 3-(q+1,q−5,λ) design with

λ =
(q−4)2

120

(
q−5

3

)
.

Furthermore, all the codewords of Hamming weight 6 in C(q,q+1,4,1) support a

3-
(

q+1,6, (q−4)(q−16)
6

)
design if m≥ 6.

Proof. The desired conclusion follows from Theorems 15.67, 15.30, 15.31 and
Corollary 15.32. This completes the proof.

The Steiner system S(3,5,4m + 1) documented in Theorem 15.68 is isomor-
phic to the spherical geometry design with the same parameters (see Section 15.5).
The contribution of Theorem 15.68 is a coding-theoretic construction of the spher-
ical geometry design S(3,5,4m +1).

Example 15.69. Let m= 4. Then C(q,q+1,4,1) has parameters [17,11,5] and weight
distribution

1+1020z5 +224400z7 +3730650z8 +55370700z9 +669519840z10 +

6378704640z11 +47857084200z12 +276083558100z13 +1183224112800z14 +

3549668972400z15 +6655630071165z16 +5872614694500z17.

The codewords of weight 5 in C(q,q+1,4,1) support a Steiner system S(3,5,17).
The dual C⊥(q,q+1,4,1) has parameters [17,6,11] and weight distribution

1+12240z11 +35700z12 +244800z13 +1203600z14 +

3292560z15 +6398715z16 +5589600z17.

The codewords of weight 11 in C⊥(q,q+1,4,1) support a 3-(17,11,198) design.

This example shows that the Assmus-Mattson Theorem cannot be used to
prove that the codes C(q,q+1,4,1) and C⊥(q,q+1,4,1) support 3-designs. It is an open
question if the generalised Assmus-Mattson theorem (i.e., Theorem 16.28) can be
used to prove that the codes in Theorem 15.68 support 4-designs.

Theorem 15.70 (Yan and Zhou (2021)). Let m≥ 4 be even. Then the codewords
of weight 7 in C(q,q+1,4,1) support a 3-(q+1,7,λ) design with

λ =

(
q−2

4

)
− 7(q−4)(q−5)(q−10)

24
.
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15.4 Sporadic Designs from Near MDS Codes

Below are two near MDS codes holding 3-designs and 4-designs. It is open if they
belong to an infinite family of near MDS codes holding 3-designs and 4-designs,
respectively.

Example 15.71. Let q = 9. The extended narrow-sense BCH code C(9,19,2,1) has
parameters [20,10,10] and weight enumerator

1+10,98496z10 +358720z11 +2416800z12 +12366720z13 +

49211520z14 +155149440z15 +393012720z16 +734679840z17 +

982376000z18 +826436160z19 +330677984z20.

The code is formally self-dual, but not self-dual. The code holds simple designs
with the following parameters

3-(20,10,1296) and 3-(20,11,6490).

Example 15.72. Let q = 32. The narrow-sense BCH code C(q,q+1,4,1) has param-
eters [33,27,6]. The dual code C⊥(q,q+1,4,1) has parameters [33,6,27] and weight
enumerator

1+1014816z27 +1268520z28 +20296320z29 +64609952z30 +

210132384z31 +399584823z32 +376835008z33.

Hence, C(q,q+1,4,1) and C⊥(q,q+1,4,1) are NMDS. Their minimum weight codewords
support a 4-(33,6,12) design and a 4-(33,27,14040) design, respectively.

15.5 Designs from Almost MDS Codes

In this section, we summarise AMDS codes which are not NMDS but hold t-
designs. We treat only infinite families of such codes. Unfortunately, for such
AMDS codes we do not have a general theorem like Theorem 15.18 for NMDS
codes. The following is a list of such families of AMDS codes holding t-designs:

(a) The Hamming code over GF(q) with parameters [q2 + q + 1,q2 + q− 2,3]
whose dual is the [q2 + q+ 1,3,q2] Simplex code, which is not AMDS for
q > 3. The codes hold 2-designs (see Section 10.5.4).

(b) The dual of the [q2 + 1,4,q2 − q] ovoid code over GF(q) with parameters
[q2 + 1,q2− 3,4], where q is even. The codes hold 3-designs (see Section
13.4).
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(c) The extended narrow-sense primitive BCH code C(q,q2−1,2,1) with parameters

[q2,q2− 3,3]. The dual code C(q,q2−1,2,1)
⊥ has parameters [q2,3,q2− q] and

weight enumerator 1+ (q3− q)zq2−q + (q− 1)zq2
, and is not AMDS when

q > 3. The dual code C(q,q2−1,2,1)
⊥ is the generalised first-order Reed-Muller

code. The codes hold 2-designs.
(d) A family of [q2,q2−4,4] AMDS codes over GF(q) supporting 2-designs. The

dual codes have parameters [q2,4,q2−q−1] [Heng, Wang and Ding (2020)].
(e) The AMDS code C⊥

(22s,22s+1,4,1) with parameters [22s +1,6,22s−5] for s ≥ 2
in Theorem 15.68. The minimum weight codewords of this code support a
3-(22s +1,22s−5,λ) design with

λ =
(22s−4)2

120

(
22s−5

3

)
.

The following theorem was developed by Ding, Tang and Tonchev (2020).

Theorem 15.73. Let q = 2m and m≥ 4 be even. Then the following hold.

(a) The BCH code C(q,q+1,3,(q−4)/2) has parameters [q+ 1,q− 3,4] (an AMDS
code). Its minimum weight codewords support a 3-(q+1,4,2) design.

(b) The dual code C⊥(q,q+1,3,(q−4)/2) has parameters [q+ 1,4,q− 4] (not AMDS).
Its minimum weight codewords support a 3-(q+1,q−4,λ) design, where

λ =
(q−4)(q−5)(q−6)

60
,

whose complement is a Steiner system S(3,5,q+1).

As a generalisation of Theorems 15.22 and 15.68, we have the following
coding-theoretic construction of the spherical geometry designs.

Theorem 15.74 (Liu, Ding, Mesnager, Tang and Tonchev (2021)). Let r ≥ 3
be a power of a prime p and let m ≥ 2 be an integer. Then the narrow-sense
BCH code C(rm,rm+1,r,1) has parameters [rm + 1,rm− 2r + 3,r + 1] and the dual
code C⊥(rm,rm+1,r,1) has parameters [rm + 1,2r− 2,rm− 2r+ 3]. Furthermore, the
minimum weight codewords in C(rm,rm+1,r,1) support a 3-(rm + 1,r+ 1,1) design
which is isomorphic to the spherical geometry design with the same parameters
and has p-rank rm +1.
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Chapter 16

Beyond the Assmus-Mattson Theorem

The Assmus-Mattson theorem was developed in 1969 and has been one of the two
major tools for constructing t-designs from linear codes. In Section 8.5, it was
shown that some linear codes holding t-designs do not satisfy the conditions in
the Assmus-Mattson theorem and their automorphism groups are not t-transitive
or t-homogeneous. Another family of such codes was given by Ding, Munemasa
and Tonchev (2019). To prove that these codes hold t-designs in a uniform way,
Tang, Ding and Xiong (2019) generalized the old Assmus-Mattson theorem and
demonstrated the usefulness of the generalized Assmus-Mattson theorem. The
objective of this chapter is to introduce the work of Tang, Ding and Xiong (2019),
which also gives a different proof of the Assmus-Mattson theorem. The reader
is warned that t-designs in this chapter are not simple in general, but are simple
under certain conditions. Notice that in other chapters only simple designs are
treated.

16.1 Introduction of Notation and Notions for This Chapter

Let P be a set of ν elements and B a multiset of b k-subsets of P , where ν ≥ 1,
b ≥ 0 and 1 ≤ k ≤ ν. Let t be a positive integer satisfying 1 ≤ t ≤ ν. The pair
D= (P ,B) is called a t-(ν,k,λ) design, or simply t-design, if every t-subset of P

is contained in exactly λ elements of B . The elements of P are called points, and
those of B are referred to as blocks.

When B = /0, i.e., b = 0, we put λ = 0 and call (P , /0) a t-(ν,k,0) design for
any t and k with 1 ≤ t ≤ ν and 0 ≤ k ≤ ν. A t-(ν,k,λ) design with t > k must
have λ = 0 and must be the design (P , /0). These designs are called trivial designs.
We will use the following conventions for the ease of description in the sequel. A
t-(ν,k,λ) design (P ,B) is also said to be trivial if every k-subset of P is a block.
Notice that trivial designs of this chapter have more types and are broader.

433
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A t-design is called simple if B does not contain repeated blocks. A t-(ν,k,λ)
design is called a Steiner system and denoted by S(t,k,ν) if t ≥ 2 and λ = 1. The
parameters of a t-(ν,k,λ) design satisfy:(

ν
t

)
λ =

(
k
t

)
b.

Let C be a [ν,k,d] linear code over GF(q). Let Ai := Ai(C ), which denotes
the number of codewords with Hamming weight i in C , where 0 ≤ i ≤ ν. The
sequence (A0,A1, · · · ,Aν) is called the weight distribution of C , and ∑ν

i=0 Aizi is
referred to as the weight enumerator of C . Then the q-ary linear code C may
induce a t-design under certain conditions, which is formed by the supports of
codewords of a fixed Hamming weight in C . Let P (C ) = {0,1, . . . ,ν−1} be the
set of the coordinate positions of C , where ν is the length of C . For a codeword
c = (c0, . . . ,cν−1) in C , the support of c is defined by

Supp(c) = {i : ci 6= 0, i ∈ P (C )}.
Let Bw(C ) = 1

q−1{{Supp(c) : wt(c) = w and c ∈ C}}, here and hereafter {{}} is
the multiset notation and 1

q−1 S denotes the multiset obtained after dividing the
multiplicity of each element in the multiset S by q− 1. For some special C ,
(P (C ),Bw(C )) is a t-(ν,w,λ) design with b blocks, where

b =
1

q−1
Aw,

λ =

(w
t

)
(q−1)

(ν
t

)Aw, (16.1)

which follow from the definition of the block set Bw(C ).
If (P (C ),Bw(C )) is a t-design for any 0 ≤ w ≤ ν, we say that the code C

supports t-designs. This terminology has also a special meaning in this chapter.
Notice that such a design (P (C ),Bw(C )) may have repeated blocks or may be
simple or trivial.

16.2 The Assmus-Mattson Theorem in the Languge of This Chapter

In the language of Section 16.1, the original Assmus-Mattson theorem becomes
the following.

Theorem 16.1. Let C be a linear code over GF(q) with length ν and minimum
weight d. Let C⊥ with minimum weight d⊥ denote the dual code of C . Let t (1≤
t < min{d,d⊥}) be an integer such that there are at most d⊥− t weights of C in
{1,2, . . . ,ν− t}. Then (P (C ),Bk(C )) and (P (C⊥),Bk(C

⊥)) are t-designs for all
k ∈ {0,1, . . . ,ν}.
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Notice that some of the designs in Theorem 16.1 may have repeated blocks
or may be trivial in the senses defined in Section 16.1. The following lemma
provides a criterion for obtaining a simple block set Bk(C ), and is a special case
of Lemma 4.25.

Lemma 16.2. Let C be a linear code over GF(q) with length ν and minimum
weight d. Let w be the largest integer with w≤ ν satisfying

w−
⌊

w+q−2
q−1

⌋
< d.

Then there are no repeated blocks in Bk(C ) for any d ≤ k≤ w. Such a block set is
said to be simple.

Combining Theorem 16.1 and Lemma 16.2, we obtain the following Assmus-
Mattson theorem for constructing simple t-designs [Assmus and Mattson (1969)].

Theorem 16.3. Let C be a linear code over GF(q) with length ν and minimum
weight d. Let C⊥ with minimum weight d⊥ denote the dual code of C . Let t (1≤
t < min{d,d⊥}) be an integer such that there are at most d⊥− t weights of C in
the range {1,2, . . . ,ν− t}. Then the following holds:

• (P (C ),Bk(C )) is a simple t-design provided that Ak 6= 0 and d ≤ k≤w, where
w is defined to be the largest integer satisfying w≤ ν and

w−
⌊

w+q−2
q−1

⌋
< d. (16.2)

• (P (C⊥),Bk(C
⊥)) is a simple t-design provided that A⊥k 6= 0 and d⊥≤ k≤w⊥,

where w⊥ is defined to be the largest integer satisfying w⊥ ≤ ν and

w⊥−
⌊

w⊥+q−2
q−1

⌋
< d⊥. (16.3)

Note that Theorem 16.3 is the same as Theorem 4.24, as Bk(C ) and Bk(C
⊥) do

not have repeated blocks under the conditions of (16.2) and (16.3), respectively.

16.3 New Notation of Intersection Numbers of Designs

The intersection numbers of designs were introduced in Section 4.1.5. For the
convenience of this chapter, we introduce intersection sets and new symbols of
intersection numbers of designs.

Let D = (P ,B) be a t-(ν,k,λ) design. Let T0 and T1 be two disjoint subsets
of P with |T0| = t0 and |T1| = t1. Denote by λT0

T1
the number of blocks in B that
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contain T1 and are disjoint with T0. These numbers λT0
T1

are called intersection

numbers. For convenience, λ /0
T1

and λT0
/0 are also written as λT1 and λT0 respectively.

With the new notation above, Theorem 4.11 becomes the following.

Theorem 16.4. Let (P ,B) be a t-(ν,k,λ) design. Let T0,T1 ⊆ P , where T0∩T1 =

/0, |T0| = t0, |T1| = t1, and t0 + t1 ≤ t. Then the intersection numbers λT0
T1

are
independent of the specific choice of the elements in T0 and T1, and depend only
on t0 and t1. Specifically,

λT0
T1
= λ(t0, t1),

where λ(t0, t1) =
(ν−t0−t1

k−t1
)

(ν−t
k−t)

λ.

16.4 Shortened and Punctured Codes of Linear Codes Supporting t-
Designs

In general, linear codes that support t-designs should have a certain kind of reg-
ularity. Hence, we would expect that some of the punctured and shortened codes
of such linear codes would also be attractive. By puncturing or shortening such
a code, we might obtain linear codes with new and interesting parameters, and
other possibly interesting properties as well. This is one of the motivations behind
studying the punctured and shortened codes of linear codes that support t-designs.
Another more important motivation is to develop a characterization for t-designs
supported by linear codes, which will be done in Section 16.5.

In this section, we will first develop some general theory for some short-
ened and punctured codes of linear codes supporting t-designs, and will then use
the general theory to determine the parameters and weight distributions of some
shortened and punctured codes of two families of binary linear codes supporting
2-designs.

16.4.1 General Results for Shortened and Punctured Codes of Linear
Codes Supporting t-Designs

In this subsection, we establish general results about shortened and punctured
codes of linear codes supporting t-designs.

Recall that the binomial coefficient
(a

b

)
equals 0 when a < b or b < 0. Let

Wi(C ) denote the set of codewords of weight i in a code C and Ai(C ) be the
number of elements of Wi(C ). We first give some results on the parameters and
the weight distributions of shortened codes and punctured codes of linear codes
supporting t-designs.
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Lemma 16.5. Let C be a linear code of length ν and minimum distance d over
GF(q) and d⊥ the minimum distance of C⊥. Let t and k be two positive integers
with 0 < t <min{d,d⊥} and 1≤ k≤ ν−t. Let T be a set of t coordinate positions
in P (C ). Suppose that (P (C ),Bi(C )) is a t-design for all i with k≤ i≤ k+t. Then

Ak(C
T ) =

t

∑
i=0

(ν−t
k

)(k+i
t

)(t
i

)( ν−t
k−t+i

)(ν
t

) Ak+i(C ).

Proof. Let πT be the map from C to C T defined as
πT : C −→ C T ,

(ci)i∈P (C ) 7−→ (ci)i∈P (C )\T .

By Theorem 2.8, πT is a one-to-one linear transformation. Then

Ak(C
T ) =

t

∑
t1=0

∑
T1⊆T,|T1|=t1

µT1(Wk+t1(C )),

where µT1(Wk+t1(C )) is equal to the number of codewords in Wk+t1(C ) that
satisfy the conditions ci = 0 if i ∈ T \ T1 and ci 6= 0 if i ∈ T1. Note that
(P (C ),Bk+t1(C )) is a t-(ν,k + t1,λ) design with 1

q−1 Ak+t1(C ) blocks, where

λ =
(k+t1

t )
(ν

t)
1

q−1 Ak+t1(C ). Let λT\T1
T1

be the intersection number of the t-design

(P (C ),Bk+t1(C )). By Theorem 16.4, we have

µT1(Wk+t1(C )) = (q−1)λT\T1
T1

= (q−1)

( ν−t
k+t1−t1

)( ν−t
k+t1−t

) λ

=

(ν−t
k

)(k+t1
t

)( ν−t
k−t+t1

)(ν
t

)Ak+t1(C ).

It then follows that

Ak(C
T ) =

t

∑
t1=0

(
t
t1

)(ν−t
k

)(k+t1
t

)( ν−t
k−t+t1

)(ν
t

)Ak+t1(C ).

Theorem 16.6. Let C be a [ν,m,d] linear code over GF(q) and d⊥ the minimum
distance of C⊥. Let t be a positive integer with 0 < t < min{d,d⊥}. Let T be a set
of t coordinate positions in P (C ). Suppose that (P (C ),Bi(C )) is a t-design for
any i with d ≤ i≤ ν−t. Then the shortened code CT is a linear code of length ν−t
and dimension m− t. The weight distribution (Ak(CT ))

ν−t
k=0 of CT is independent

of the specific choice of the elements in T . Specifically,

Ak(CT ) =

(k
t

)(ν−t
k

)(ν
t

)(ν−t
k−t

)Ak(C ).
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Proof. Let C (T ) = {(ci)i∈P (C ) ∈ C : ci = 0 for each i ∈ T}. Let πT be the map
from C (T ) to CT defined as

πT : C (T )−→ CT ,

(ci)i∈P (C ) 7−→ (ci)i∈P (C )\T .

By the definition of C (T ) and CT , the map πT is a one-to-one linear transforma-
tion. Then

Ak(CT ) = µT (Wk(C )),

where µT (Wk(C )) is equal to the number of codewords in Wk(C ) that satisfy the
conditions ci = 0 if i ∈ T . Note that (P (C ),Bk(C )) is a t-(ν,k,λ) design with

1
q−1 Ak(C ) blocks, where λ =

(k
t)
(ν

t)
1

q−1 Ak(C ). Let λT be the intersection number of

the t-design (P (C ),Bk(C )). By Theorem 16.4, we have

µT (Wk(C )) = (q−1)λT

= (q−1)

(ν−t
k

)(ν−t
k−t

)λ

=

(k
t

)(ν−t
k

)(ν
t

)(ν−t
k−t

)Ak(C ).

The desired conclusion then follows from Ak(CT ) = µT (Wk(C )) and Theorem
2.8.

Let (P (C ),Bk(C )) be a t-(ν,k,λk) design for some integer λk. From the proof
of Theorem 16.6, we have the following

Ak(CT ) =

(ν−t
k

)(ν−t
k−t

) (q−1)λk, (16.4)

where T is a set of t coordinate positions in P (C ).

Theorem 16.7. Let C be a [ν,m,d] linear code over GF(q) and d⊥ the minimum
distance of C⊥. Let t be a positive integer with 0 < t < d⊥. Let T be a set of t
coordinate positions in P (C ). Suppose that (P (C ),Bi(C )) is a t-design for any i
with d ≤ i ≤ ν. Then the punctured code C T is a linear code of length ν− t and
dimension m. The weight distribution

(
Ak(C

T )
)ν−t

k=0 of C T is independent of the
specific choice of the elements in T . Specifically,

Ak(C
T ) =

t

∑
i=0

(ν−t
k

)(k+i
t

)(t
i

)( ν−t
k−t+i

)(ν
t

) Ak+i(C ).

Proof. The desired results follow from Theorem 2.8 and Lemma 16.5.
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Theorems 16.6 and 16.7 above settle the parameters and weight distribution of
the shortened code CT and punctured code C T of a code C supporting t-designs,
respectively. In general it could be very hard to determine the weight distribution
of a shortened or punctured code of a linear code.

16.4.2 Punctured and Shortened Codes of a Family of Binary Codes

In this subsection, we determine the parameters and weight distributions of some
punctured and shortened codes of a family of binary linear codes constructed from
bent Boolean functions. As will be demonstrated shortly, the shortened and punc-
tured codes are quite interesting.

Let n be even, f be a bent function from GF(2n) to GF(2), and let D f =

{d0,d1, . . . ,dν f−1} ⊆ GF(2n) be the support of f . Define a binary code of length
ν f by

C (D f ) = {(Tr2n/2(xd0)+ y, . . . ,Tr2n/2(xdν f−1)+ y) : x ∈ GF(2n),y ∈ GF(2)}.

It is well-known that for a bent function f over GF(2n) we have

ν f = |D f |= 2n−1±2
n−2

2 .

Let α ∈ GF(2n) be a non-cube. Then it is known in Mesnager (2016) that f (x) =
Tr2n/2(αx3) is a bent function with ν f given by

ν f = 2n−1 +(−2)
n−2

2 . (16.5)

The following theorem was proved in Sections 14.8 and 14.9.

Theorem 16.8. Let f be a bent function from GF(2n) to GF(2), where n≥ 6 and is
even. Then C (D f ) is a [ν f ,n+1,(ν f −2

n−2
2 )/2] three-weight binary code with the

weight distribution in Table 16.1 and it holds 2-designs. The dual code C (D f )
⊥

has minimum distance 4.

Table 16.1 Weight distribu-
tion of C (D f ) of Theorem 16.8

Weight Multiplicity
0 1

ν f
2 −2

n−4
2 2n−1

ν f
2 +2

n−4
2 2n−1

ν f 1

Taking T = {t1}, we have the parameters and the weight distribution of the
shortened code C (D f ){t1} of C (D f ) in the following theorem.
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Theorem 16.9. Let t1 be an integer with 0≤ t1 < ν f . Let f be a bent function from
GF(2n) to GF(2), where n ≥ 6 and is even. Then, the shortened code C (D f ){t1}
is a two-weight binary linear code of length ν f −1 and dimension n, and has the
weight distribution in Table 16.2.

Table 16.2 Weight distribution of
C (D f ){t1} of Theorem 16.9

Weight Multiplicity
0 1

ν f
2 −2

n−4
2

ν f +2
n−2

2

2ν f
(2n−1)

ν f
2 +2

n−4
2

ν f−2
n−2

2

2ν f
(2n−1)

Proof. By Theorem 16.6 and the weight distribution of C (D f ),

Ak(C (D f ){t1}) =
ν f − k

ν f
Ak (C (D f )) .

The desired results follow from Theorem 16.8.

Taking T = {t1, t2}, we have the parameters and the weight distribution of the
shortened code C (D f ){t1,t2} of C (D f ) in the following theorem.

Theorem 16.10. Let t1 and t2 be integers with 0 ≤ t1 < t2 < ν f . Let f be a bent
function from GF(2n) to GF(2), where n≥ 6 and is even. Then, the shortened code
C (D f ){t1,t2} is a two-weight binary linear code of length ν f − 2 and dimension
n−1, and has the weight distribution in Table 16.3.

Table 16.3 Weight distribution of C (D f ){t1 ,t2} of
Theorem 16.10

Weight Multiplicity
0 1

ν f
2 −2

n−4
2

(
ν f +2

n−2
2

)(
ν f +2

n−2
2 −2

)
4ν f (ν f−1) (2n−1)

ν f
2 +2

n−4
2

(
ν f−2

n−2
2

)(
ν f−2

n−2
2 −2

)
4ν f (ν f−1) (2n−1)

Proof. By Theorem 16.6 and the weight distribution of C (D f ),

Ak(C (D f ){t1,t2}) =
(ν f − k)(ν f − k−1)

ν f (ν f −1)
Ak (C (D f )) .

The desired results follow from Theorem 16.8.
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Taking T = {t1}, we have the parameters and the weight distribution of the
punctured code C (D f )

{t1} of C (D f ) in the following theorem.

Theorem 16.11. Let t1 be an integer with 0 ≤ t1 < ν f . Let f be a bent func-
tion from GF(2n) to GF(2), where n ≥ 6 and is even. Then, the punctured code
C (D f )

{t1} is a five-weight binary linear code of length ν f −1 and dimension n+1,
and has the weight distribution in Table 16.4.

Table 16.4 Weight distribution of
C (D f )

{t1} of Theorem 16.11
Weight Multiplicity

0 1
ν f
2 −2

n−4
2 −1 ν f−2

n−2
2

2ν f
(2n−1)

ν f
2 −2

n−4
2

ν f +2
n−2

2

2ν f
(2n−1)

ν f
2 +2

n−4
2 −1 ν f +2

n−2
2

2ν f
(2n−1)

ν f
2 +2

n−4
2

ν f−2
n−2

2

2ν f
(2n−1)

ν f −1 1

Proof. By Theorem 16.7 and the weight distribution of C f , for k = ν f
2 ±2

n−4
2 , we

have

Ak(C (D f )
{t1}) =

ν f − k
ν f

Ak (C (D f )) ,

and

Ak−1(C (D f )
{t1}) =

k
ν f

Ak (C (D f )) .

The desired results follow from Theorem 16.8.

Taking T = {t1, t2}, we have the parameters and the weight distribution of the
punctured code C (D f )

{t1,t2} of C (D f ) in the following theorem.

Theorem 16.12. Let t1, t2 be integers with 0 ≤ t1 < t2 < ν f . Let f be a bent
function from GF(2n) to GF(2), where n≥ 6 and is even. Then, the punctured code
C (D f )

{t1,t2} is a seven-weight binary linear code of length ν f −2 and dimension
n+1, and has the weight distribution in Table 16.5.

Proof. By Theorem 16.7 and the weight distribution of C (D f ), for k = ν f
2 ±2

n−4
2 ,

we have

Ak(C (D f )
{t1,t2}) = Ak

(
C (D f ){t1,t2}

)
,
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Table 16.5 The weight distribution of C (D f )
{t1,t2} of

Theorem 16.12
Weight Multiplicity

0 1

ν f
2 −2

n−4
2 −2

(
ν f−2

n−2
2

)(
ν f−2

n−2
2 −2

)
4ν f (ν f−1) (2n−1)

ν f
2 −2

n−4
2 −1

ν2
f−2n−2

2ν f (ν f−1) (2
n−1)

ν f
2 −2

n−4
2

(
ν f +2

n−2
2

)(
ν f +2

n−2
2 −2

)
4ν f (ν f−1) (2n−1)

ν f
2 +2

n−4
2 −2

(
ν f +2

n−2
2

)(
ν f +2

n−2
2 −2

)
4ν f (ν f−1) (2n−1)

ν f
2 +2

n−4
2 −1

ν2
f−2n−2

2ν f (ν f−1) (2
n−1)

ν f
2 +2

n−4
2

(
ν f−2

n−2
2

)(
ν f−2

n−2
2 −2

)
4ν f (ν f−1) (2n−1)

ν f −2 1

Ak−1(C (D f )
{t1,t2}) =

2k(ν f − k)
ν f (ν f −1)

Ak (C (D f ))

and

Ak−2(C (D f )
{t1,t2}) =

k(k−1)
ν f (ν f −1)

Ak (C (D f )) .

The desired results follow from Theorem 16.8 and Theorem 16.10.

Example 16.13. Let GF(26) = GF(2)[u]/
(
u6 +u4 +u3 +u+1

)
and α ∈ GF(26)

such that α6 +α4 +α3 +α+1 = 0. Then α is a primitive element of GF(26) and
f (x) = Tr26/2(αx3) is a bent function on GF(26) with ν f = |D f | = 36, which is
consistent with Equation (16.5). C (D f ) is a [36,7,16] linear code with weight
enumerator 1+63z16 +63z20 + z36.

Let t1 be an integer with 0 ≤ t1 ≤ 35. Then the shortened code C (D f ){t1}
has parameters [35,6,16] and weight enumerator 1+ 35z16 + 28z20. The punc-
tured code C (D f )

{t1} has parameters [35,7,15] and weight enumerator 1+28z15+

35z16+35z19+28z20+z35. The code C (D f ){t1} is optimal and the code C (D f )
{t1}

is almost optimal with respect to the Griesmer bound.
Let t1 and t2 be two integers with 0 ≤ t1 < t2 ≤ 35. Then the shortened code

C (D f ){t1,t2} has parameters [34,5,16] and weight enumerator 1+ 19z16 + 12z20.
The punctured code C (D f )

{t1,t2} has parameters [34,7,14] and weight enumerator
1+12z14 +32z15 +19z16 +19z18 +32z19 +12z20 + z34. The code C (D f ){t1,t2} is
optimal and the code C (D f )

{t1,t2} is almost optimal with respect to the Griesmer
bound.
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16.4.3 Punctured and Shortened Codes of Another Family of Binary
Codes

In this subsection, we document the parameters and weight distributions of some
punctured and shortened codes of another family of binary linear codes con-
structed from bent vectorial Boolean functions. It will be shown that the shortened
and punctured codes are interesting.

Let ℓ be a positive integer, and let f1(x), · · · , fℓ(x) be Boolean functions from
GF(22m) to GF(2). The function F(x) = ( f1(x), · · · , fℓ(x)) from GF(22m) to
GF(2)ℓ is called a (2m, ℓ) vectorial Boolean function.

A (2m, ℓ) vectorial Boolean function F(x) = ( f1(x), · · · , fℓ(x)) is called a bent
vectorial function if ∑ℓ

j=1 a j f j(x) is a bent function for each nonzero (a1, · · · ,aℓ)∈
GF(2)ℓ. For another equivalent definition of bent vectorial functions, the reader is
referred to Mesnager (2016)[Chapter 12].

Example 16.14. Let m≥ 1 be an odd integer, β1,β2, · · · ,βm be a basis of GF(2m)

over GF(2), and let u ∈ GF(22m) \GF(2m). Let i be a positive integer with
gcd(2m, i) = 1. Then(

Tr2m/1(β1ux2i+1),Tr2m/1(β2ux2i+1), · · · ,Tr2m/1(βmux2i+1)
)

is a (2m,m) bent vectorial function.

Let F(x) be a vectorial function from GF(22m) to GF(2ℓ). Let C (F) be the
binary code of length 22m defined by

C (F) =
{
(ca,b,c(x))x∈GF(22m) : (a,b,c) ∈ GF(2l)×GF(22m)×GF(2)

}
, (16.6)

where ca,b,c(x) = Tr2ℓ/2(aF(x))+Tr22m/2(bx)+ c.
The following was proved by Ding, Munemasa and Tonchev (2019).

Theorem 16.15. Let F be a bent vectorial function from GF(22m) to GF(2ℓ),
where m ≥ 3. Then the set C (F) is a [22m,2m+ ℓ+1,22m−1−2m−1] four-weight
binary code with the weight distribution in Table 16.6. The dual code C (F)⊥ has
minimum distance 4.

Taking T = {t1}, we have the parameters and the weight distribution of the
shortened code C (F){t1} of C (F) in the following theorem.

Theorem 16.16. Let t1, m be integers with 0≤ t1 < 22m and m≥ 3. Let F be a bent
vectorial function from GF(22m) to GF(2ℓ). Then, the shortened code C (F){t1} is
a binary linear code of length 22m−1 and dimension 2m+ ℓ, and has the weight
distribution in Table 16.7.
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Table 16.6 The weight distribu-
tion of the code C (F) of Theorem
16.15

Weight Multiplicity
0 1

22m−1−2m−1 (2l −1)22m

22m−1 2(22m−1)
22m−1 +2m−1 (2l −1)22m

22m 1

Table 16.7 The weight distribution of the
code C (F){t1} of Theorem 16.16

Weight Multiplicity
0 1

22m−1−2m−1 (2l −1)
(
22m−1 +2m−1)

22m−1 22m−1
22m−1 +2m−1 (2l −1)

(
22m−1−2m−1)

Proof. By Theorem 16.6 and the weight distribution of C (F),

Ak(C (F){t1}) =
22m− k

22m Ak (C (F)) .

The desired results follow from Theorem 16.15.

Taking T = {t1, t2}, we have the parameters and the weight distribution of the
shortened code C (F){t1,t2} of C (F) in the following theorem.

Theorem 16.17. Let t1, t2 and m be integers with 0≤ t1 < t2 < 22m and m≥ 3. Let
F be a bent vectorial function from GF(22m) to GF(2ℓ). Then, the shortened code
C (F){t1,t2} is a binary linear code of length 22m− 2 and dimension 2m+ ℓ− 1,
and has the weight distribution in Table 16.8.

Table 16.8 The weight distribution of the
code C (F){t1 ,t2} of Theorem 16.17

Weight Multiplicity
0 1

22m−1−2m−1 (2l −1)2m−2 (2m +2)
22m−1 22m−1−1

22m−1 +2m−1 (2l −1)2m−2 (2m−2)

Proof. By Theorem 16.6 and the weight distribution of C (F),

Ak(C (F){t1,t2}) =
(22m− k)(22m− k−1)

22m(22m−1)
Ak (C (F)) .

The desired results follow from Theorem 16.15.
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Taking T = {t1}, we have the parameters and the weight distribution of the
punctured code C (F){t1} of C (F) in the following theorem.

Theorem 16.18. Let t1 and m be integers with 0 ≤ t1 < 22m and m ≥ 3. Let F
be a bent vectorial function from GF(22m) to GF(2ℓ). Then, the punctured code
C (F){t1} is a binary linear code of length 22m−1 and dimension 2m+ ℓ+1, and
has the weight distribution in Table 16.9.

Table 16.9 The weight distribution of the code
C (F){t1} of Theorem 16.18

Weight Multiplicity
0 1

22m−1−2m−1−1 (2l −1)
(
22m−1−2m−1)

22m−1−2m−1 (2l −1)
(
22m−1 +2m−1)

22m−1−1 22m−1
22m−1 22m−1

22m−1 +2m−1−1 (2l −1)
(
22m−1 +2m−1)

22m−1 +2m−1 (2l −1)
(
22m−1−2m−1)

2m−1 1

Proof. By Theorem 16.7 and the weight distribution of C (F), for k ∈ {22m−1−
2m−1,22m−1,22m−1 +2m−1}, we have

Ak(C (F){t1}) =
22m− k

22m Ak (C (F)) ,

and

Ak−1(C (F){t1}) =
k

22m Ak (C (F)) .

The desired results follow from Theorem 16.15.

Taking T = {t1, t2}, we have the parameters and the weight distribution of the
punctured code C (F){t1,t2} of C (F) in the following theorem.

Theorem 16.19. Let t1, t2 and m be integers with 0≤ t1 < t2 < 22m and m≥ 3. Let
F be a bent vectorial function from GF(22m) to GF(2ℓ). Then, the punctured code
C (F){t1,t2} is a binary linear code of length 22m− 2 and dimension 2m+ ℓ+ 1,
and has the weight distribution in Table 16.10.

Proof. By Theorem 16.7 and the weight distribution of C (F), for k ∈ {22m−1−
2m−1,22m−1,22m−1 +2m−1}, we have

Ak(C (F){t1,t2}) = Ak
(
C (F){t1,t2}

)
,
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Table 16.10 The weight distribution of the
code C (F){t1,t2} of Theorem 16.19

Weight Multiplicity
0 1

22m−1−2m−1−2 2m−2(2l −1)(2m−2)
22m−1−2m−1−1 22m−1(2l −1)

22m−1−2m−1 (2l −1)2m−2 (2m +2)
22m−1−2 22m−1−1
22m−1−1 22m

22m−1 22m−1−1
22m−1 +2m−1−2 2m−2(2l −1)(2m +2)
22m−1 +2m−1−1 22m−1(2l −1)

22m−1 +2m−1 (2l −1)2m−2 (2m−2)
2m−2 1

Ak−1(C (F){t1,t2}) =
2k(22m− k)

22m(22m−1)
Ak (C (F))

and

Ak−2(C (F){t1,t2}) =
k(k−1)

22m(22m−1)
Ak (C (F)) .

The desired results follow from Theorem 16.15 and Theorem 16.17.

Example 16.20. Let GF(26) = GF(2)[u]/
(
u6 +u4 +u3 +u+1

)
and α ∈ GF(26)

such that α6 +α4 +α3 +α+1 = 0. Then F(x) = Tr26/23(αx3) is a bent vectorial
function from GF(26) to GF(23). The code C (F) is a [64,10,28] linear code with
weight enumerator 1+448z28 +126z32 +448z36 + z64.

Let t1 be an integer with 0 ≤ t1 ≤ 63. Then the shortened code C (F){t1} has
parameters [63,9,28] and weight enumerator 1+ 252z28 + 63z32 + 196z36. The
punctured code C (F){t1} has parameters [63,10,27] and weight enumerator 1+
196z27 + 252z28 + 63z31 + 63z32 + 252z35 + 196z36 + z63. The code C (F){t1} is
optimal with respect to a one-step Griesmer bound, and C (F){t1} has the same
parameters as the best binary linear code known in the database maintained by
Markus Grassl.

Let t1 and t2 be two integers with 0 ≤ t1 < t2 ≤ 63. Then the shortened code
C (F){t1,t2} has parameters [62,8,28] and weight enumerator 1+140z28 +31z32 +

84z36. The punctured code C (F){t1,t2} has parameters [62,10,26] and weight enu-
merator 1+84z26 +224z27 +140z28 +31z30 +64z31 +31z32 +140z34 +224z35 +

84z36 + z62. The code C (F){t1,t2} is optimal with respect to a one-step Griesmer
bound, and C (F){t1,t2} has the same parameters as the best binary linear code
known in the database maintained by Markus Grassl.
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16.5 Characterizations of Linear Codes Supporting t-Designs via
Shortened and Punctured Codes

In this section, we shall give a characterization of codes supporting t-designs in
terms of their shortened and punctured codes. Let P be a set of ν elements and B

a multiset of k-subsets of P , where 1≤ k ≤ ν. Let B = {{P \B : B ∈ B}}.

Lemma 16.21. Let (P ,B) be a (ν− k)-(ν,k,λ) design and t an integer with 1 ≤
ν− k ≤ t ≤ k. Then (P ,B) is also a t-

(
ν,k,

(ν−t
ν−k

)
λ/
(ν−t

k−t

))
design.

Proof. Let T be any t-subset of P . It is observed that

{{B ∈ B : T ⊆ B}}= ∪T ′⊆P\T,|T ′|=ν−k{{B ∈ B : B∪T ′ = P}}.

Then

λT = ∑
T ′⊆P\T,|T ′|=ν−k

λT ′ ,

where λT and λT ′ are the intersection numbers of the design (P ,B). By Theorem
16.4, we get

λT =

(
ν− t
ν− k

)
λT ′

=

(
ν− t
ν− k

)(ν−(ν−k)
k

)(ν−t
k−t

) λ

=

(ν−t
ν−k

)(ν−t
k−t

) λ.

This completes the proof.

In the case of simple designs, Lemma 16.21 is known in the literature. The
conclusion of Lemma 16.21 implies that a (ν−k)-(ν,k,λ) design must be a trivial
design, as every k-subset of the point set is a block of the design.

Lemma 16.22. Let D = (P ,B) be a t-(ν,k,λ) design with t ≤ k ≤ ν− t. Then

D= (P ,B) is a t-(ν,ν− k,λ) design, where λ =
(ν−t

k )
(ν−t

k−t)
λ.

Proof. The desired results follow from Theorem 16.4.

Lemma 16.23. Let C be a [ν,m,d] linear code over GF(q). Let k and t be two pos-
itive integers with t ≤ k≤ ν−t. Suppose that Ak(CT ) is independent of the specific
choice of the elements in T , where T is any set of t coordinate positions in P (C ).

Let Bk(C ) = 1
q−1{{P (C )\Supp(c) : c ∈ C ,wt(c) = k}}. Then

(
P (C ),Bk(C )

)
is
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a t-(ν,ν− k,λ) design, where λ = Ak(CT )/(q− 1). Further, (P (C ),Bk(C )) is a
t-(ν,k,λ) design, where

λ =

(ν−t
ν−k

)
Ak(CT )( ν−t

ν−t−k

)
(q−1)

.

Proof. Let T = {i1, . . . , it} be a subset of P (C ). Note that

T ⊆ P (C )\Supp(c) and wt(c) = k

if and only if

T ∩Supp(c) = /0 and wt(c) = k

if and only if

c ∈ CT and wt(c) = k.

By assumption, T is contained in Ak(CT )/(q− 1) blocks of Bk(C ), which is in-
dependent of the choices of the elements in T . This completes the proof of the
first conclusion. The conclusion of the second part then follows from Lemma
16.22.

The following theorem gives a characterization of codes supporting t-designs
via the weight distributions of their shortened and punctured codes.

Theorem 16.24 (Tang, Ding and Xiong (2019)). Let C be a [ν,m,d] linear code
over GF(q) and d⊥ the minimum distance of C⊥. Let t be a positive integer with
0 < t < min{d,d⊥}. Then the following statements are equivalent.

(1) (P (C ),Bk(C )) is a t-design for any 0≤ k ≤ ν.
(2)
(
P (C⊥),Bk(C

⊥)
)

is a t-design for any 0≤ k ≤ ν.

(3) For any 1 ≤ t ′ ≤ t, the weight distribution (Ak(CT ))
ν−t ′
k=0 of the shortened

code CT is independent of the specific choice of the elements in T , where T is any
set of t ′ coordinate positions in P (C ).

(4) For any 1 ≤ t ′ ≤ t, the weight distribution
(
Ak(C

T )
)ν−t ′

k=0 of the punctured
code C T is independent of the specific choice of the elements in T , where T is any
set of t ′ coordinate positions in P (C ).

Proof. (3) =⇒ (1): Suppose that the weight distribution (Ak(CT ))
ν−t ′
k=0 of the

shortened code CT is independent of the specific choice of the elements in T ,
where 1 ≤ t ′ ≤ t. By Lemmas 16.22 and 16.23, the pair (P (C ),Bk(C )) is a
t ′-design for any 0 ≤ k ≤ ν− t ′. In particular, the pair (P (C ),Bk(C )) is a t-
design for any 0 ≤ k ≤ ν− t and (P (C ),Bk(C )) is a (ν− k)-design for any
ν− t +1≤ k≤ ν−1. By Lemma 16.21, the pair (P (C ),Bk(C )) is also a t-design
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for any ν− t +1≤ k ≤ ν−1. Since (P (C ),Bν(C )) is always a t-design, the pair
(P (C ),Bk(C )) is a t-design for any 0≤ k ≤ ν.

(1) =⇒ (4): Recall that if (P (C ),Bν(C )) is a t-design, the pair (P (C ),Bν(C ))

is also a t ′-design for 1≤ t ′ ≤ t. The desired results follow from Theorem 16.7.
(4) =⇒ (2): By the condition in (4), Lemma 2.8 and the Pless power moments

in (2.6), the weight distribution
(
Ak((C

⊥)T )
)ν−t ′

k=0 of the shortened code (C⊥)T

is independent of the specific choice of the elements in T . Since Statement (3)
implies Statement (1), the desired conclusion then follows.

(2) =⇒ (3): By the condition in (2) and Theorem 16.7, the weight distribu-

tion
(
Ak((C

⊥)T )
)ν−t ′

k=0 of the punctured code (C⊥)T is independent of the specific
choice of the elements in T , where T is any set of t ′ coordinate positions in C⊥.
The desired conclusion follows from Theorem 2.8 and the Pless power moments
in (2.6).

Notice that some of the t-designs (P (C ),Bk(C )) mentioned in Theorem 16.24
are trivial and some may not be simple.

Theorem 16.24 gives necessary and sufficient conditions for a code to support
t-designs with 0 < t < min{d,d⊥}. It demonstrates the importance of the weight
distribution of linear codes in the theory of t-designs, and will be used to develop
a generalization of the original Assmus-Mattson theorem in the next section.

The following well-known result is clearly a corollary of Theorem 16.24, and
was also documented in Theorem 4.27. This demonstrates another usefulness of
Theorem 16.24.

Corollary 16.25. Let C be a [ν,m,d] binary linear code with m > 1, such that
for each w > 0 the supports of the codewords of weight w form a t-design, where
t < d. Then the supports of the codewords of each nonzero weight in C⊥ also form
a t-design.

16.6 A Generalization of the Assmus-Mattson Theorem

The Assmus-Mattson theorem for matroids developed by Britz, Royle and Shiro-
moto (2009) does contain the original Assmus-Mattson theorem as a special case.
But no one has shown that it can outperform the original Assmus-Mattson theo-
rem when it is applied to linear codes. The objective of this section is to present
a different generalization of the Assmus-Mattson theorem (Theorem 4.24) and
demonstrate its advantages over the original version.
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16.6.1 The Generalization of the Assmus-Mattson Theorem

To develop the generalization of the Assmus-Mattson theorem, we will need the
following lemmas.

Lemma 16.26. Let C be a linear code of length ν over GF(q) and d⊥ the minimum
distance of C⊥. Let s and t be two positive integers with 0 < t < min{d,d⊥}. Let
T be a set of t coordinate positions in P (C ). Suppose that

(
P (C⊥),Bi(C⊥)

)
are

t-(ν, i,λ⊥i ) designs for all i with 0≤ i≤ s+ t−1. Then

Ak

(
(C⊥)T

)
= (q−1)

t

∑
i=0

(
t
i

)
λ⊥k+i(t− i, i),

where 0≤ k ≤ s−1 and λ⊥k+i(t− i, i) = (ν−t
k )

( ν−t
k−t+i)

λ⊥k+i.

Proof. The desired results follow from Lemma 16.5 and the fact that Ak+i(C
⊥) =

(q−1) (ν
t)

(k+i
t )

λ⊥k+i.

Lemma 16.27. Let C be a [ν,m,d] code over GF(q) and d⊥ the minimum distance
of C⊥. Let i1, . . . , is be s positive integers and T a set of t coordinate positions
of C , where 0 ≤ i1 < · · · < is ≤ ν− t and 1 ≤ t < min{d,d⊥}. Suppose that
Ai(CT ) (i 6∈ {i1, . . . , is}) and A1(

(
C⊥
)T

), . . . , As−1(
(
C⊥
)T

) are independent of the
elements of T . Then, the weight distribution of CT is independent of the elements
of T and can be determined from the first s equations in (2.6).

Proof. By Theorem 2.8, CT has dimension m− t, and (CT )
⊥ =

(
C⊥
)T . Then the

desired conclusions of this lemma follow from Theorem 2.6.

The next theorem documents the newly generalized Assmus-Mattson theorem.

Theorem 16.28 (Tang, Ding and Xiong (2019)). Let C be a linear code over
GF(q) with length ν and minimum weight d. Let C⊥ denote the dual code of C

with minimum weight d⊥. Let s and t be two positive integers with t <min{d,d⊥}.
Let S be an s-subset of {d,d + 1, . . . ,ν− t}. Suppose that (P (C ),Bℓ(C )) and(
P (C⊥),Bℓ⊥(C

⊥)
)

are t-designs for ℓ ∈ {d,d+1, . . . ,ν− t}\S and 0≤ ℓ⊥ ≤ s+
t−1. Then (P (C ),Bk(C )) and

(
P (C⊥),Bk(C

⊥)
)

are t-designs for any t ≤ k≤ ν,
and in particular,

• (P (C ),Bk(C )) is a simple t-design for all k with d≤ k≤w, where w is defined
to be the largest integer satisfying w≤ ν and

w−
⌊

w+q−2
q−1

⌋
< d;
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• and
(
P (C⊥),Bk(C

⊥)
)

is a simple t-design for all k with d ≤ k ≤ w⊥, where
w⊥ is defined to be the largest integer satisfying w⊥ ≤ ν and

w⊥−
⌊

w⊥+q−2
q−1

⌋
< d⊥.

Proof. For any 1 ≤ t ′ ≤ t, let St ′ = S ∪ {i : ν− t + 1 ≤ i ≤ ν− t ′} and s′ =
|St ′ |. Then, s′ = s + t − t ′. Then, the pair (P (C ),Bℓ(C )) is t ′-design for any
ℓ ∈ {0,1, . . . ,ν− t ′} \ St ′ . By Equation (16.4), Ai(CT ) (i ∈ {0,1, . . . ,ν− t ′} \ St ′)

are independent of the elements of T , where T is any set of t ′ coordinate positions
of C .

By the assumption of this theorem, the pair
(
P (C⊥),Bℓ⊥(C

⊥)
)

is a t ′-
design for 0 ≤ ℓ⊥ ≤ s′+ t ′− 1 = s+ t − 1. By Lemma 16.26, A1

(
(C⊥)T

)
, . . . ,

As′−1
(
(C⊥)T

)
are independent of the elements of T , where T is any set of t ′ co-

ordinate positions of C .
By Lemma 16.27, the weight distribution of CT is independent of the choice

of the elements of T . It then follows from Theorem 16.24 that (P (C ),Bk(C ))

and
(
P (C⊥),Bk(C

⊥)
)

are t-designs for any t ≤ k ≤ ν. The last conclusions on
the simplicity of the designs (P (C ),Bk(C )) and

(
P (C⊥),Bk(C

⊥)
)

follow from
Lemma 16.2.

Notice that some of the t-designs from Theorem 16.28 are trivial, and some
may not be simple. However, many of them are simple and nontrivial, and thus
interesting.

We are now ready to show that Theorem 4.24 (i.e., the original Assmus-
Mattson theorem) is a corollary of Theorem 16.28. To this end, we use Theorem
16.28 to derive Theorem 4.24.

Proof of Theorem 4.24 using Theorem 16.28. Let w1,w2, . . . ,ws be the nonzero
weights of C in {d,d +1, . . . ,ν− t}, where s≤ d⊥− t. Put S = {w1,w2, . . . ,ws}.
Then (P (C ),Bℓ(C )) is the trivial t-design (P (C ), /0) for all ℓ ∈ {d,d +1, . . . ,ν−
t}\S. Note that s+ t−1 ≤ d⊥−1. Clearly,

(
P (C⊥),Bℓ⊥(C

⊥)
)

are the trivial t-
design

(
P (C⊥), /0

)
for all 0≤ ℓ⊥ ≤ s+ t−1. It then follows from Theorem 16.28

that (P (C ),Bk(C )) and
(
P (C⊥),Bk(C

⊥)
)

are t-designs for any t ≤ k ≤ ν. Both
(P (C ),Bk(C )) and

(
P (C⊥),Bk(C

⊥)
)

are clearly the trivial design (P (C ), /0) for
0 ≤ k ≤ t − 1, as we assumed that t < min{d,d⊥}. The desired conclusions of
Theorem 4.24 then follow.

One would naturally ask if Theorem 16.28 is more powerful than Theorems
4.24 and 16.3. The answer is yes, and this will be justified in the next subsection.
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16.6.2 The Generalized Assmus-Mattson Theorem versus the Original

The objective of this section is to show that Theorem 16.28 is more powerful than
Theorems 4.24 and 16.3, and is indeed useful. To this end, we consider the linear
codes investigated in Ding, Munemasa and Tonchev (2019) and Tang, Ding and
Xiong (2019) in the two examples below.

Example 16.29. Let F be a bent vectorial function from GF(22m) to GF(2ℓ),
where m≥ 3. Let C (F) be the code given in (16.6). By the weight distribution of
C (F) in Table 16.6, for k 6∈ {22m−1,22m−1±2m−1}, the pair (P (C (F)),Bk(C (F)))

is a trivial 2-design. By the definition of C (F), we have B22m−1(C (F)) =

B2m−1(RM2(1,2m)), where RM2(1,2m) is the first order Reed-Muller code given
by

RM2(1,2m) =
{
(Tr(bx)+ c)x∈GF(22m) : b ∈ GF(22m),c ∈ GF(2)

}
.

It is well known that B2m−1(RM2(1,2m)) holds 2-design. Let S = {22m−1 +

2m−1,22m−1 − 2m−1}. Then, the pair (P (C (F)),Bk(C (F))) is a 2-design
for any k ∈ {0,1, . . . ,22m − 2} \ S. Since d((C (F))⊥) = 4, the pair
(P (C (F)⊥),Bk(C (F)⊥)) is a trivial 2-design for 0≤ k ≤ 3 = |S|+2−1. Hence,
by Theorem 16.28, the codes C (F) and C (F)⊥ support 2-designs [Ding, Mune-
masa and Tonchev (2019)]. The weight distribution of the code C (F) and Lemma
16.2 tell us that the 2-designs supported by C (F) are simple.

Example 16.30. Let m be an odd positive integer. Let C be the linear code defined
by

C =

{(
Tr3m/3

(
aα4i +bα2i)) 3m−1

2 −1
i=0 : a,b ∈ GF(3m)

}
,

where Tr3m/3(·) is the trace function from GF(3m) to GF(3) and α is a gen-

erator of GF(3m)∗. Then the code C has parameters [ 3m−1
2 ,2m,3m−1 − 3

m−1
2 ].

Let S =
{

3m−1,3m−1±3
m−1

2

}
. Then, Ak(C ) = 0 if k 6∈ S∪{0}. Thus, the pair

(P (C ),Bk(C )) is a trivial 2-design for any k ∈ {0,1, . . . , 3m−1
2 −2}\S. According

to Theorem 8.53, (P (C⊥),B4(C⊥)) is a Steiner system S(2,4, 3m−1
2 ) and is sim-

ple. It was known that d(C⊥) = 4 [Tang, Ding and Xiong (2019)]. Thus the pair
(P (C⊥),Bk(C

⊥)) is a 2-design for 0 ≤ k ≤ 4 = |S|+ 2− 1. Hence, by Theorem
16.28, the codes C and C⊥ support 2-designs [Tang, Ding and Xiong (2019)]. The
weight distribution of the code C and Lemma 16.2 tell us that the 2-designs sup-
ported by C (F) are simple. Recall that it was proved in Section 8.5 with a direct
approach that the code C supports 2-designs.
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The weight distributions of the codes in Examples 16.29 and 16.30 and the
minimum distances of their duals are known. They tell us that the original
Assumus-Mattson theorems (i.e, Theorems 4.24 and 16.3) cannot be used to prove
that the codes in Examples 16.29 and 16.30 support 2-designs. It is also known
that the automorphism groups of these codes are not 2-transitive in general [Ding,
Munemasa and Tonchev (2019); Tang, Ding and Xiong (2019)]. However, Theo-
rem 16.28 can do it. Therefore, Theorem 16.28 is more powerful than Theorems
4.24 and 16.3. The reader is informed that Theorem 15.24 can also be proved with
Theorem 16.28, but cannot be settled with the original Assmus-Mattson theorem.
Another application of Theorem 16.28 will be given in the next section.

In order for Theorem 16.28 to outperform the Assmus-Mattson theorem, we
have to choose two positive integers s and t with t < min{d,d⊥} and an s-subset S
of {d,d+1, . . . ,ν−t}, and then prove that (P (C ),Bℓ(C )) and

(
P (C⊥),Bℓ⊥(C

⊥)
)

are t-designs for ℓ ∈ {d,d + 1, . . . ,ν− t} \ S and 0 ≤ ℓ⊥ ≤ s+ t − 1 with some
other approach. Hence, extra work is needed when applying Theorem 16.28.
This intuitively explains why Theorem 16.28 can outperform the original Assmus-
Mattson theorem. For example, in Example 16.29 the extra work beyond
the original Assmus-Mattson theorem is to prove that the incidence structure
(P (C (F)),B2m−1(C (F))) is a 2-design, and in Example 16.30 the extra work is
to prove that the pair (P (C⊥),B4(C⊥)) is a 2-design.

16.7 Some 2-Designs and Differentially δ-Uniform Functions

Let F be a vectorial Boolean function from GF(2n) to GF(2m). If such F is used
in an S-box of some cryptosystem, the efficiency of differential cryptanalysis is
measured by the maximum of the cardinality of the set of elements x in GF(2n)

such that

F(x+a)+F(x) = b,

where a ∈ GF(2n)∗ and b ∈ GF(2m). The function F is called a differentially
δ-uniform function if

max
a∈GF(2n)∗,b∈GF(2m)

δ(a,b) = δ,

where δ(a,b) = |{x ∈ GF(2n) : F(x+ a) +F(x) = b}|. The function F is said
to be differentially two-valued if |{δ(a,b) : a ∈ GF(2n)∗,b ∈ GF(2m)}| = 2. The
following result can be found in Blondeau, Canteaut and Charpin (2010).

Proposition 16.31. Let F be a differentially δ-uniform function from GF(2n) to
itself. Assume that F is differentially two-valued. Then δ = 2s for some s, where
1≤ s≤ n.
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Due to Proposition 16.31, we say that F is differentially two-valued with
{0,2s} if

{δ(a,b) : a ∈ GF(2n)∗,b ∈ GF(2m)}= {0,2s}.

Results about differentially two-valued functions can be found in Charpin and
Peng (2019a) and Charpin and Peng (2019b). When n = m, differentially 2-
uniform functions are also called almost perfect nonlinear (APN) functions.

For any function F from GF(2n) to itself, the extended Walsh transform of F
at (λ,µ) ∈ GF(2n)∗×GF(2n) is defined as

WF(λ,µ) = ∑
x∈GF(2n)

(−1)Tr2n/2(λF(x)+µx),

where Tr2n/2(·) is the absolute trace function from GF(2n) to GF(2). WF(λ,µ) are
also called the extended Walsh coefficients of F . The component functions of F
are the Boolean functions Tr(λF(x)), where λ ∈ GF(2n)∗. A component function
Tr(λF(x)) is said to be bent if WF(λ,µ) =±2

n
2 , for all µ ∈ GF(2n). In this case,

Tr(λF(x)) is also called a bent component of F . A component function Tr(λF(x))
of F(x) is called s-plateaued if WF(λ,µ) = 0,or ±2

n+s
2 , for all µ∈GF(2n), where

s and n always have the same parity. F(x) is referred to as a s-plateaued vectorial
function if Tr(λF(x)) is s-plateaued for all λ ∈ GF(2n)∗.

After the preparations above, we are ready to give a connection between dif-
ferentially δ-uniform functions and 2-designs, and present some new 2-designs
from some special differentially two-valued functions.

Let F be a differentially δ-uniform function over GF(2n). Define the following
linear code

C (F) =
{
(Tr(aF(x)+bx)+ c)x∈GF(2n) : a,b ∈ GF(2n),c ∈ GF(2)

}
.

It follows from Delsarte’s theorem that the dual code C (F)⊥ of C (F) can be given
by

C (F)⊥ =

{
(cx)x∈GF(2n) ∈ GF(2)n : ∑

x∈GF(2n)

cxux = 0

}
,

where ux = (F(x),x,1). For any x1,x2 ∈ GF(2n) with x1 6= x2, denote by λ{x1,x2}
the cardinality of the set

W{x1,x2} =
{

c = (cx)x∈GF(2n) ∈ C (F)⊥ : wt(c) = 4,cx1 = cx2 = 1
}
.

Let a = x1 + x2 and b = F(x1)+F(x2). Denote

E{x1,x2} = {x ∈ GF(2n) : F(x+a)+F(x) = b}.
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Then, δ(a,b) = |E{x1,x2}| and

E{x1,x2} = {x1,x2}∪
(
∪δ(a,b)/2−1

i=1 {x′i,x′i +a}
)
,

where x′i ∈ GF(2n). Moreover, it is easily observed that

W{x1,x2} = {ci : 1≤ i≤ δ(a,b)/2−1},

where ci = (cx)x∈GF(2n) with

cx =

{
1, x ∈ {x′i,x′i +a,x1,x2};
0, otherwise.

Consequently, we have

λ{x1,x2} =
δ(x1 + x2,F(x1)+F(x2))−2

2
.

So, we have proved the following theorem, which establishes a link between
some 2-designs and differentially two-valued functions.

Theorem 16.32. Let F(x) be a function over GF(2n). Then the incidence struc-
ture

(
P (C (F)⊥),B4(C (F)⊥)

)
is a 2-design if and only if F is differentially

two-valued. Furthermore, if F is differentially two-valued with {0,2s}, then(
P (C (F)⊥),B4(C (F)⊥)

)
is a 2-(2n,4,2s−1−1) design.

Corollary 16.33. Let F(x) be a function over GF(2n). Then the incidence struc-
ture

(
P (C (F)⊥),B4(C (F)⊥)

)
is a Steiner system S(2,4,2n) if and only if F is

differentially two-valued with {0,4}.

Magma test shows that the Steiner system S(2,4,2n) from the differentially
two-valued {0,4} function F(x) = x22i−2i+1 [Blondeau, Canteaut and Charpin
(2010); Hertel and Pott (2008)] or F(x) = αx2i+1 +α2m

x22m+2m+i
[Bracken, Tan

and Tan (2012)] is equivalent to the incidence structure from points and lines of
the affine geometry AG(2

n
2 ,GF(4)). It is still open whether there is a differen-

tially two-valued {0,4} function F(x) such that (P (C (F)⊥),B4(C (F)⊥)) is not
equivalent to the Steiner system from affine geometry.

With Theorem 16.32, we can directly use results of the differentially two-
valued functions to study the incidence structure

(
P (C (F)⊥),B4(C (F)⊥)

)
. By

Lemma 1 in Charpin and Peng (2019b) and Theorem 16.32, we have the follow-
ing.

Corollary 16.34. Let F(x) be a differentially δ-uniform function over GF(2n).
Then

(
P (C (F)⊥),B4(C (F)⊥)

)
forms a 2-design if and only if

∑
(a,b)∈GF(2n)∗×GF(2n)

WF(a,b)4 = 22n(2n−1)δ.
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Theorem 16.35. Let F(x) over GF(2n) be a differentially two-valued s-plateaued
vectorial function. Then, the code C (F) and its dual C (F)⊥ support 2-designs.

Proof. Let S =
{

2n−1,2n−1±2
n+s−2

2

}
. Since WF(λ,µ) ∈ {0,2

n+s
2 ,−2

n+s
2 }, the

incidence structure (P (C (F)),Bk(C (F))) forms a trivial 2-design for any k 6∈ S.
It follows from Theorem 16.32 and d(C (E)⊥)≥ 4 ([Carlet, Charpin and Zinoviev
(1998)][Theorem 9]) that the incidence structure

(
P (C (F)⊥),Bk(C (F)⊥)

)
forms

a 2-design for 0≤ k ≤ 4 = |S|+2−1. The desired conclusions then follow from
Theorem 16.28.

Corollary 16.36. Let q be a power of 2 and m be a positive integer. Let F(x) be a
quadratic permutation over GF(qm) of the form

F(x) = ∑
0≤i≤ j≤m−1

ci jxqi+q j
, ∀ci j ∈ GF(qm).

Suppose that F(x) is differentially q-uniform. Then, the code C (F) and its dual
C (F)⊥ support 2-designs.

Proof. By Theorems 5 and 6 in Mesnager, Tang and Xiong (2020), the function
F(x) is differentially two-valued with {0,q} and has extended Walsh coefficients
in {0,±q

m+1
2 }. The desired conclusion then follows from Theorem 16.35.

To determine the parameters of the 2-designs from the code C (F) and its dual
C (F)⊥, we need the following lemma.

Lemma 16.37. Let F(x) be a s-plateaued vectorial function over GF(2n), where
1≤ s≤ n−1. Then the code C (F) has parameters [2n,2n+1,2n−1−2

n+s−2
2 ] and

its dual code C (F)⊥ has minimum distance

d⊥ =

{
4, s≥ 2,

6, s = 1.

Furthermore, the weight distribution of C (F) is given by

A
2n−1−2

n+s−2
2

= 2n−s(2n−1),

A2n−1 = (2n−1)(2n+1−2n−s+1 +2),

A
2n−1+2

n+s−2
2

= 2n−s(2n−1),

A2n = 1,

and Ai = 0 for all other i. The number A⊥4 of the codewords of weight 4 in C (F)⊥

is given by 2n−2(2n−1)(2s−1−1)
3 .
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Proof. Let c(a,b,c) = (Tr(aF(x)+bx)+ c)x∈GF(2n), where a,b∈GF(2n) and c∈
GF(2). Then

wt(c(a,b,c)) =
1
2 ∑

x∈GF(2n)

(
1− (−1)Tr(aF(x)+bx)+c

)
= 2n−1− (−1)c

2 ∑
x∈GF(2n)

(−1)Tr(aF(x)+bx)

=


2n−1− 1

2 WF(a,b), a 6= 0,

2n−1, a = 0,b 6= 0,

2n, a = b = 0,c = 1,

0, a = b = 0.

Then, wt(c(a,b,c)) ∈ {0,2n,2n−1,2n−1 ± 2
n+s−2

2 }, and wt(c(a,b,c)) = 0 if and
only if a= b= c= 0. Thus, the dimension of C (F) is equal to 2n+1. By Theorem
9 in Carlet, Charpin and Zinoviev (1998), the minimal distance d⊥ = 4 or 6. Let
i1 = 2n−1−2

n+s−2
2 , i2 = 2n−1, and i3 = 2n−1 +2

n+s−2
2 . Note that A2n = 1. The first

three Pless power moments in (2.6) give
Ai1 +Ai2 +Ai3 = 22n+1−2,
i1Ai1 + i2Ai2 + i3Ai3 = 22n+1−1 ·2n−2n,

i21Ai1 + i22Ai2 + i23Ai3 = 22n+1−2 ·2n(2n +1)−22n.

Solving this system of equations, we obtain
A

2n−1−2
n+s−2

2
= 2n−s(2n−1),

A2n−1 = (2n−1)(2n+1−2n−s+1 +2),

A
2n−1+2

n+s−2
2

= 2n−s(2n−1).

Using the fourth Pless power moment in (2.6), we have

A⊥4 =
2n−2(2n−1)(2s−1−1)

3
.

Since d⊥ = 4 or 6, we obtain

d⊥ =

{
4, s≥ 2,

6, s = 1.
This completes the proof.

Combining Equation (16.1), Theorem 16.35 and Lemma 16.37, we deduce the
following.

Theorem 16.38. Let F(x) over GF(2n) be a differentially two-valued s-plateaued
vectorial function. Then, C (F) holds a 2-(2n,k,λ) design for the following pair
(k,λ):
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• (k,λ) =
(

2n−1±2
n+s−2

2 ,
(

2n−s−1±2
n−s−2

2

)(
2n−1±2

n+s−2
2 −1

))
, and

• (k,λ) =
(
2n−1,(2n−1−1)(2n−2n−s +1)

)
.

To show the existence of the 2-designs in Theorem 16.35, we describe some
functions over GF(2n) which are differentially two-valued and have extended
Walsh coefficients in {0,±2

n+s
2 }.

(1) The first family of differentially two-valued monomials with Kasami expo-
nents: F(x) = x22i−2i+1, where n and i are positive integers, n 6= 3i, s =

gcd(n, i), and n
s is odd. Then F(x) over GF(2n) is differentially two-valued

with {0,2s}, and has extended Walsh coefficients in {0,±2
n+s

2 } [Blondeau,
Canteaut and Charpin (2010); Hertel and Pott (2008)].

(2) The second family of differentially two-valued functions was discovered by
Bracken, Tan and Tan (2012): F(x) = αx2i+1 +α2m

x22m+2m+i
, where n = 3m,

m and i are two positive integers, 3 - m, 3|(m+ i), s = gcd(m, i), 2 - m
s , and α

is a primitive element of GF(2n). Then F(x) is over GF(2n) and differentially
two-valued with {0,2s}, and has extended Walsh coefficients in {0,±2

3m+s
2 }.

When s ≥ 2, the original Assmus-Mattson theorem says that the codes C (F)

and C (F)⊥ for F(x) = x22i−2i+1 and F(x) =αx2i+1+α2m
x22m+2m+i

support only 1-
designs. Magma computation shows that, in general, the codes C (F) and C (F)⊥

are not 2-transitive or 2-homogeneous. However, with the generalized Assmus-
Mattson theorem, we have proved that these codes support 2-designs. This is the
third example showing that Theorem 16.28 is more powerful than the original
Assmus-Mattson theorems (i.e., Theorems 4.24 and 16.3).

16.8 Notes

Recall that the block set Bk(C ) may have repeated blocks or may be simple by
definition. Even for a fixed linear code C , the block set Bk(C ) may have repeated
blocks or may be simple or empty, depending on the specific value of k. Thus, in
this chapter we dealt with trivial designs and non-simple designs. However, our
real objective of this chapter was to obtain simple designs. Theorem 16.28 does
give simple t-designs.

The conditions in the original Assmus-Mattson theorem do use the parameters
and limited information about the weight distributions of a linear code and its
dual. Comparatively, Theorem 16.24 makes use of the information of the weight
distributions of many punctured and shortened codes of a linear code and its dual.



November 17, 2021 14:14 ws-book9x6 Designs from Linear Codes designscodes page 459

Beyond the Assmus-Mattson Theorem 459

It gives us a better understanding of the importance of the weight distributions of
codes supporting t-designs.

So far, the generalized Assmus-Mattson theorem (Theorem 16.28) has been
used to obtain t-designs from only several families of linear codes documented
in this chapter and Theorem 9.29 [Xiang (2021)]. It should give more infinite
families of t-designs. This would be a promising research direction.

Finally, the reader is encouraged to compare the work of Section 8.5 and the
work of this chapter. This would be useful for understanding the technical details
of this chapter.
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Appendix A

Sporadic Designs from Linear Codes

In some preceding chapters, we introduced some sporadic designs held in some
linear codes over finite fields. In this appendix, we document more sporadic t-
designs from certain linear codes for t ≥ 3. We are mainly interested in t-designs
with t ≥ 4. Some interesting 3-(v,k,1) designs are also included here. All the
computation in this appendix was done with Magma.

A.1 Designs from Cyclic Codes of Length 17 over GF(4)

Let w be a generator of GF(4)∗ with w2 +w+1 = 0. The canonical factorisation
of x17−1 over GF(4) is given by

x17−1 = f1(x) f2(x) f3(x) f4(x) f5(x),
where

f1(x) = x+1,

f2(x) = x4 + x3 +wx2 + x+1,

f3(x) = x4 + x3 +w2x2 + x+1,

f4(x) = x4 +wx3 + x2 +wx+1,

f5(x) = x4 +w2x3 + x2 +w2x+1.
Below we introduce some 4-designs and 5-designs from some cyclic codes of

length 17 over GF(4) and their extended codes.

Proposition A.1. Let g(x) = fi(x) f j(x) and let Cg denote the cyclic code of length
17 over GF(4) with generator polynomial g(x). When

{i, j} ∈ {{2,4},{2,5},{3,4},{3,5}},
the code Cg has parameters [17,9,7] and weight enumerator

A(z) = 1+1224z7 +1530z8 +10200z9 +8160z10 +51408z11 +25704z12 +

85680z13 +24480z14 +45288z15 +5661z16 +2808z17.
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The dual code C⊥g has parameters [17,8,8] and weight enumerator

A⊥(z) = 1+1530z8 +8160z10 +25704z12 +24480z14 +5661z16.

The minimum weight codewords of Cg support a 4-(17,7,6) design, and those of
C⊥g support a 4-(17,8,15) design.

Further, the extended code Cg has parameters [18,9,8] and weight enumerator

A(z) = 1+2754z8 +18360z10 +77112z12 +110160z14 +50949z16 +2808z18.

The code Cg is formally self-dual, but not self-dual. The codewords of weight 8 in

Cg or Cg
⊥

support a 5-(18,8,6) design.

Proof. The weight distributions of the four codes were obtained by Magma. The
design property of the incidence structures in Proposition A.1 then follows from
the Assmus-Mattson theorem and the weight distributions of the codes and their
duals.

A.2 Steiner Systems from Cyclic Codes of Length 17 over GF(16)

Let w be a generator of GF(16)∗ with w4 +w+ 1 = 0. Below we describe some
3-(17,5,1) designs supported by some cyclic codes of length 17 over GF(16).

Proposition A.2. Let g(x) be one of the following polynomials:

x6 +w6x5 +w12x3 +w6x+1,

x6 +w5x5 +w4x4 +w10x3 +w4x2 +w5x+1,

x6 +w3x5 +w6x3 +w3x+1,

x6 +w12x5 +w9x3 +w12x+1,

x6 +w10x5 +w8x4 +w5x3 +w8x2 +w10x+1,

x6 +w10x5 +w2x4 +w5x3 +w2x2 +w10x+1,

x6 +w9x5 +w3x3 +w9x+1,

x6 +w5x5 +wx4 +w10x3 +wx2 +w5x+1.

Let Cg denote the cyclic code of length 17 over GF(16) with generator polynomial
g(x). Then Cg has parameters [17,11,5] and weight enumerator

A(z) = 1+1020z5 +224400z7 +3730650z8 +55370700z9 +669519840z10 +

6378704640z11 +47857084200z12 +276083558100z13 +

1183224112800z14 +3549668972400z15 +6655630071165z16 +

5872614694500z17.
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The dual code C⊥g has parameters [17,6,11] and weight enumerator

A⊥(z) = 1+12240z11 +35700z12 +244800z13 +1203600z14 +

3292560z15 +6398715z16 +5589600z17.

The codewords of weight 5 in Cg support a 3-(17,5,1) design.

The Steiner systems in Proposition A.2 are likely isomorphic to the spherical
geometry design or one of the known inversive planes.

The correctness of the conclusions of Proposition A.2 was verified by Magma.
But the design property of the incidence structures in Proposition A.2 cannot be
proved by the Assmus-Mattson theorem or the transitivity of the automorphism
groups of the codes. However, with computational assistance the design property
can be explained by the generalised AM theorem documented in Theorem 16.28.

A.3 Designs from Cyclic Codes of Length 23 over GF(3)

The binary quadratic code QRC(23,2)
0 is perfect. The code and its dual support 4-

designs, which were documented in Section 10.5.2. The extended code QRC(23,2)
0

is self-dual, and supports 5-designs, which were introduced in Section 11.2.2.
In this section, we present 4-designs and 5-designs supported by cyclic codes of
length 23 over GF(3).

The canonical factorization of x23−1 over GF(3) is

x23−1 = (x11 +2x8 +2x6 + x4 + x3 +2x2 +2x+2)×
(x11 + x10 + x9 +2x8 +2x7 + x5 + x3 +2)× (x−1).

Let f (x) = x11 + 2x8 + 2x6 + x4 + x3 + 2x2 + 2x+ 2, and let C f denote the cyclic
code of length 23 over GF(3) with generator polynomial f (x). Since 3 is a
quadratic residue modulo 23, the code C f and its dual C⊥f are actually quadratic
residue codes.

Proposition A.3. The code C f has parameters [23,12,8] and weight enumerator

A(z) = 1+1518z8 +2530z9 +30912z11 +30912z12 +151800z14 +

91080z15 +148764z17 +49588z18 +21252z20 +3036z21 +48z23.

The dual code C⊥f has parameters [23,11,9] and weight enumerator

A⊥(z) = 1+2530z9 +30912z12 +91080z15 +49588z18 +3036z21.

The code C f supports designs with the following parameters

4–(23,8,6), 4–(23,9,18), 4–(23,11,576),

4–(23,12,864), 4–(23,14,8580), 4–(23,15,7020).
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The code C⊥f supports designs with the following parameters

4–(23,9,18), 4–(23,12,864), 4–(23,15,7020).

Proof. The parameters and the weight distributions of C f and C⊥f are computed
by Magma. The design property of the incidence structures follows from the
Assmus-Mattson theorem.

Proposition A.4. The extended code C f has parameters [24,12,9] and weight
enumerator

A(z) = 1+4048z9 +61824z12 +242880z15 +198352z18 +24288z21 +48z24.

The code C f is self-dual, and supports designs with the following parameters

5–(24,9,6), 5–(24,12,576), 5–(24,15,8580).

Proof. The parameters and the weight distributions of C f and C⊥f are computed
by Magma. The design property of the incidence structures follows from the
Assmus-Mattson theorem.

We remark that all the conclusions regarding the code C f are true for the
ternary code of length 23 with generator polynomial x11 + x10 + x9 +2x8 +2x7 +

x5 + x3 +2.

A.4 Designs from Cyclic Codes of Length 29 over GF(4)

We consider the cyclic codes of length 29 over GF(4). The canonical factorization
of x29−1 over GF(4) is

x29−1 = (x14 +wx13 +wx11 +w2x10 + x9 +w2x8 +

wx7 +w2x6 + x5 +w2x4 +wx3 +wx+1)×
(x14 +w2x13 +w2x11 +wx10 + x9 +wx8 +

w2x7 +wx6 + x5 +wx4 +w2x3 +w2x+1)×
(x−1),

where w is a generator of GF(4)∗ with w2 +w+1 = 0.
Let f (x) = x14+wx13+wx11+w2x10+x9+w2x8+wx7+w2x6+x5+w2x4+

wx3 +wx+ 1, and let C f denote the cyclic code of length 29 over GF(4) with
generator polynomial f (x). Since 4 is a quadratic residue modulo 29, the code C f

and its dual C⊥f are actually quadratic residue codes.
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Proposition A.5. The code C f has parameters [29,15,11] and weight enumerator

A(z) = 1+47502z11 +71253z12 +537138z13 +613872z14 +6420600z15 +

5618025z16 +37051560z17 +24701040z18 +130630500z19 +

65315250z20 +250362684z21 +91040976z22 +250240536z23 +

62560134z24 +112294728z25 +17276112z26 +17343102z27 +

1238793z28 +378018z29.

The dual code C⊥f has parameters [29,14,12] and weight enumerator

A⊥(z) = 1+71253z12 +613872z14 +5618025z16 +

24701040z18 +65315250z20 +91040976z22 +

62560134z24 +17276112z26 +1238793z28.

The code C f supports designs with the following parameters

4–(29,11,220), 4–(29,12,495), 4–(29,13,5390), 4–(29,14,8624).

The code C⊥f supports designs with the following parameters

4–(29,12,495), 4–(29,14,8624).

Proof. The parameters and the weight distributions of C f and C⊥f are computed
by Magma. The design property of the incidence structures follows from the
Assmus-Mattson theorem.

Proposition A.6. The extended code C f has parameters [30,15,12] and weight
enumerator

A(z) = 1+118755z12 +1151010z14 +12038625z16 +

61752600z18 +195945750z20 +341403660z22 +

312800670z24 +129570840z26 +18581895z28 +378018z30.

The code C f is formally self-dual, but not self-dual. It supports designs with the
following parameters

5–(30,12,220), 5–(30,14,5390).

Proof. The parameters and the weight distributions of C f and C⊥f are computed
by Magma. The design property of the incidence structures follows from the
Assmus-Mattson theorem.

We remark that all the conclusions regarding the code C f are true for the cyclic
code of length 29 over GF(4) with generator polynomial

x14+w2x13+w2x11+wx10+x9+wx8+w2x7+wx6+x5+wx4+w2x3+w2x+1.
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Appendix B

Designs from Binary Codes with
Regularities

In some preceding chapters, we considered designs held in linear codes over finite
fields. In this appendix, we consider support designs held in codes which may be
linear or nonlinear. Most of the results presented in this appendix were developed
in Delsarte (1973a), and results for binary codes were extended and strengthened
in MacWilliams and Sloane (1977)[Chapter 6, Section 3]. We will summarize the
major results without giving a proof. The reader is referred to Delsarte (1973a)
and MacWilliams and Sloane (1977)[Chapter 6, Section 3] for a detailed proof.
All codes mentioned in this appendix are binary.

B.1 Four Fundamental Parameters of Codes

An (n,M,d) code C over GF(2) is a subset of GF(2)n with cardinality M and
minimum Hamming distance d. The code C may be linear or nonlinear. Our
objective in this section is introduce basic terminologies and four fundamental
parameters of codes studied by Delsarte.

Let C be an (n,M,d) code. The distance distribution of C is a sequence
(B0,B1, . . . ,Bn), where

Bi =
1
M ∑

c∈C

|{c′ ∈ C : dist(c,c′) = i}|, (B.1)

where dist(c,c′) denotes the Hamming distance between c and c′. By definition,
B0 = 1 and

n

∑
i=0

Bi = |C |= M. (B.2)

A code C is called distance invariant if the weight distribution of the translate
c+C is the same when c runs over all codewords in C . By definition, a linear
code is always distance invariant. It is possible that a nonlinear code is distance
invariant.

467
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Example B.1. The following nonlinear code is distance invariant:

C = {(1000),(0100),(0010),(0001)}.

Its distance distribution is (B0,B1,B2,B3,B4) = (1,0,2,0,0) and its weight distri-
bution is (A0,A1,A2,A3,A4) = (0,4,0,0,0).

If C is distance invariant and contains the zero codeword, then its distance
distribution (Bi)

n
i=0 is identical with its Hamming weight distribution (Ai)

n
i=0. Let

τ0,τ1, . . . ,τs be the indices i such that Bi 6= 0, where

0 = τ0 < τ1 < · · ·< τs ≤ n. (B.3)

Then τ1 is the minimum distance d of the code C . Both the minimum distance
d (i.e., τ1) and s here will play an important role in deciding whether C can hold
t-designs or not, and are two of the four parameters of a code investigated in
Delsarte (1973a) for the construction of t-design with codes.

We now introduce the other two parameters, which are defined by the
MacWilliams transform of the distance distribution (Bi)

n
i=0 of a code C , which

contains the zero vector. Define

B′k =
1
|C |

n

∑
i=0

BiPk(2,n; i), k = 0,1, . . . ,n, (B.4)

where

Pk(2,n;x) =
k

∑
j=0

(−1) j
(

x
j

)(
n− x
k− j

)
, k = 0,1, . . . ,n (B.5)

which are the Krawtchouk polynomials treated in Section 1.4.3.
Note that P0(2,n;x) = 1 for any x and B0 = 1 for any code C . It then follows

from (B.2) that B′0 = 1. Let σ0,σ1, . . . ,σs be the indices i such that B′i 6= 0, where

0 = σ0 < σ1 < · · ·< σs′ ≤ n. (B.6)

The parameter σ1 is called the dual distance of C and is denoted by d′. If C is
linear, then its dual distance d′ is indeed equal to the minimum distance of the
dual code C⊥ (see Section 2.2 for explanations). The parameter s′ is referred to as
the external distance of C .

We summarize the four fundamental parameters below:

• d: the minimum distance of C .
• s: the number of distances in C .
• d′: the dual distance.
• s′: the external distance.
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To facilitate understanding the situation, we draw the following diagram:

(Ai) the weight distribution ←→
l l l

(Bi) the distance distribution ←→ (B′i) the MacWilliams transform of (Bi)

0 = τ0 < τ1 < · · ·< τs ≤ n ←→ 0 = σ0 < σ1 < · · ·< σs′ ≤ n
d = τ1, the minimal distance ←→ d′ = σ1, the dual distance
s, the number of distances ←→ s′, the external distance

B.2 Designs from Codes with Regularity

By now we have introduced the four parameters d,s,d′ and s′, and are ready to
present the main results of this section. Throughout this section, let C be an
(n,M,d) binary code containing the zero codeword, let (Ai) denote the weight
distribution of C , and let (A′i) be MacWilliams transform of (Ai).

Proposition B.2. The number of nonzero Ai is at most s, and the number of
nonzero A′i is at most s′.

In Example B.1, the number of nonzero Ai is 1, while the number of nonzero
Bi is 2. If C is linear, Proposition B.2 is straightforward, as the weight distribution
and distance distribution are the same.

Proposition B.3. If s ≤ d′, then an explicit formula for the distance distribution
(Bi) is

Bτi =−
s

∏
j=1
j 6=i

τ j

τ j− τi
+

M
2n

n

∑
t=0

(
n
t

) s

∏
j=1
j 6=i

τ j− t
τ j− τi

, 1≤ i≤ s,

where an empty product is equal to 1 by convention.

Proposition B.3 says that the distance distribution of C is totally determined
by its distances, provided that the number of distances s in C is no more than the
dual distance d′. In the case that C is linear, this proposition says that the weight
distribution of C is determined by its nonzero weights, provided that the number
of nonzero weights is no more than the dual distance. This is a kind of regularity
in such binary codes.

Proposition B.4. If s≤ d′ or s′ ≤ d, then Ai = Bi for all i.

In the linear case, the weight distribution and distance distribution are always
the same. Hence, neither of the two conditions in Proposition B.4 is necessary.
Proposition B.4 describes a kind of regularity in certain nonlinear binary codes.
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Proposition B.5. Suppose s′ ≤ d. Then A′i = B′i for all i, and

A′σi
= B′σi

=−
s′

∏
j=1
j 6=i

σ j

σ j−σi
+

1
M

n

∑
t=0

(
n
t

) s′

∏
j=1
j 6=i

σ j− t
σ j−σi

, 1≤ i≤ s′.

In the linear case, the condition s′ ≤ d in Proposition B.5 is unnecessary for
the conclusion in the first part. However, it is still needed to prove the conclusion
of the second part. In the linear case, if the external distance s′ of C is no more
than the minimum distance d, then the frequencies of first s′ nonzero weights in
the dual code C⊥ are determined by the first s′ weights in C⊥. This is also a kind
of regularity.

Proposition B.6. If s≤ d′ or s′ ≤ d, then C is distance invariant.

Although the condition s ≤ d′ or s′ ≤ d is sufficient for Ai = Bi. They are
not necessary. Proposition B.6 documents a kind of regularity in certain nonlinear
binary codes. All linear codes have naturally this kind of regularity.

B.2.1 Designs from Codes When s≤ d′

We assume that s ≤ d′. Then (Ai) = (Bi) and An = Bn = 0 or 1. We also assume
that An is known, so the unknowns are Aτ1 ,Aτ2 , . . . ,Aτs . Define

s̄ =
{

s if An = 0,
s−1 if An = 1.

(B.7)

Note that s̄ is just a modification of the number of distances in C . Define a poly-
nomial

S(x) =
s̄

∏
j=1

(τ j− x). (B.8)

Proposition B.7. If s̄≤ d′, then for 1≤ i≤ s̄,

Aτi =−
s̄

∏
j=1
j 6=i

τ j

τ j− τi
+

M
2n

n

∑
t=0

(
n
t

) s̄

∏
j=1
j 6=i

τ j− t
τ j− τi

−An

s̄

∏
j=1
j 6=i

τ j−n
τ j− τi

.

Proposition B.7 says that the frequencies of the first s̄ nonzero weights in C

can be computed from the first s̄ nonzero dsiatnces. This is of course a kind of
regularity. We are now ready to state the following theorem, which applies to both
linear and nonlinear codes.
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Theorem B.8. If s̄ < d′, then the supports of the codewords of weight τi in C form
a t-(n,τi,λτi) design, provided that τi ≥ d′− s̄, where t = d′− s̄ and λτi is given
by

λτi ×
s̄

∏
j=1
j 6=i

(τ j− τi) =
AnS(n)
n− τi

+
M
2n

n

∑
r=t

(
n− t
r− t

)
S(r)
τi− r

. (B.9)

In the linear case, this theorem is a slightly strengthened version of the
Assmus-Mattson theorem in the binary case (i.e., Corollary 4.26). Theorem B.8
gives a formula for computing the λ value in the deign, but it may not be easy to
use it.

Theorem B.9. Let C be a linear code with parameters d,s,d′,s′. Let s̄ be as above
and

s̄′ =
{

s′ if A′n = 0,
s′−1 if A′n = 1.

(B.10)

If either s̄ < d′ or s̄′ < d, then the codewords of weight w in C form a t-design,
where

t = max{d′− s̄,d− s̄′},
provided that t < d.

B.2.2 Designs from Nonlinear Codes When s′ ≤ d

In Section B.2.1, we described the designs held in C in the case s ≤ d′. In this
section, we document designs held in C in the case s′ ≤ d. Due to symmetry, we
will not explain the results below.

The annihilator polynomial of C is defined to be

Θ(x) =
2n

M

s′

∏
j=1

(
1− x

σ j

)
, (B.11)

where 0,σ1, . . . ,σs′ are the subscripts i for which B′i 6= 0. Note that for 0 ≤ i ≤ n
either Θ(i) = 0 or B′i = 0. The expansion of Θ(x) in terms of Krawchouk polyno-
mials,

Θ(x) =
s′

∑
i=0

ΘiPi(2,n;x), (B.12)

is called the Krawtchouk expansion of Θ(x), and the Θi are called the Krawtchouk
coefficients.

Theorem B.10. If d− s′ ≤ s′ < d, then the codewords of weight d in C form a
(d− s′)-(n,d,(1−Θd−s′)/Θs′) design.
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Theorem B.11. If d− s′ ≤ s′ < d, then the codewords of any fixed weight w in C

form a (d− s′)-design.

Although the λ values of the designs documented in Theorems B.10 and B.11
are given, it may be very difficult to compute them using these formulas.
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Appendix C

Exercises on Mathematical Foundations

A number of mathematical foundations were briefly introduced in Chapter 1. The
purpose of this appendix is to help advanced undergraduates and postgraduates
master some of the mathematical foundations intuitively and quickly. This is
achieved by providing further information and exercises on elementary number
theory, finite fields, groups, rings and polynomials.

C.1 Modular Arithmetic

This section introduces the modulo-n arithmetic, where n > 1 is a positive integer.
We start with the introduction of two special functions.

The floor function bxc is defined to be the largest integer no more than a real
number x. By definition, b3.99c= 3, b5/2c= 2, and b3c= 3. The ceiling function
dxe is defined to be the smallest integer no less than a real number x. By definition,
d3.99e= 4, d5/2e= 3, and d3e= 3.

The first exercise is to prove the following theorem.

Theorem C.1 (Division Algorithm). Let b 6= 0 be an integer and let a be any
integer. Then there are two unique integers q and 0≤ r < |b| such that a = qb+ r.

You are advised to give a constructive proof by giving a formula for q and r in
terms of a and b, respectively. To this end, you may use the floor function defined
above.

The q and r in Theorem C.1 are called the quotient and remainder when a is
divided by b. We write r = a mod b. If a mod b = 0, b is called a divisor or factor
of a. In this case, we say that a is divisible by b or b divides a.

Example C.2. 73 mod 7 = 3 and −11 mod 7 = 3.

A prime is a positive integer n > 1 with only two positive divisors 1 and n. A

473
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common divisor of two integers a and b is a divisor of both a and b. The greatest
common divisor (GCD) of two integers a and b, denoted by gcd(a,b), is the largest
among all the common divisors of a and b.

Example C.3. 60 and 24 have the positive common divisors 1,2,3,4,6,12. In
addition, gcd(60,24) = 12.

The next exercise is to prove the following proposition.

Proposition C.4. Let a and b be two integers such that (a,b) 6= (0,0). Then

• gcd(b,a) must exist; and
• gcd(b,a) = gcd(−b,a) = gcd(b,−a) = gcd(−b,−a) = gcd(a,b).

Because of this proposition, we will consider only the case that a ≥ 0 and
b ≥ 0 in the sequel when we deal with gcd(a,b). Proposition C.4 shows that
gcd(a,b) must exist. Our concern now is whether there is an efficient algorithm
for computing gcd(a,b). To answer this question, we need the following lemma
whose proof is left as an easy exercise.

Lemma C.5. Let b 6= 0. Then gcd(a,b) = gcd(b,a mod b).

A recursive application of Lemma C.5 and the division algorithm in Theorem
C.1 gives an efficient algorithm for computing the gcd(a,b), which is called the
Euclidean algorithm. The following example clearly demonstrates the procedure
of the algorithm.

Example C.6. The problem is to computer gcd(66,35). The Euclidean algorithm
stops when the remainder becomes 0:

66 = 1×35+31 gcd(35,31),
35 = 1×31+4 gcd(31,4),
31 = 7×4+3 gcd(4,3),
4 = 1×3+1 gcd(3,1),
3 = 3×1+0 gcd(1,0).

Hence by Lemma C.5 ,

gcd(66,35) = gcd(35,31) = gcd(31,4) = gcd(4,3) = gcd(3,1) = gcd(1,0) = 1.

We are now ready to introduce some modulo-n operations on integers. Let
n > 1 be an integer. We define

x⊕n y = (x+ y) mod n, e.g., [12⊕5 7 = (12+7) mod 5 = 4],
x	n y = (x− y) mod n, e.g., [12	5 7 = (12−7) mod 5 = 0],
x⊗n y = (x× y) mod n, e.g., [12⊗5 7 = (12×7) mod 5 = 4],
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where +, − and × are the school integer operations. The operations ⊕n, 	n

and ⊗n are called the modulo-n addition, modulo-n subtraction, and modulo-n
multiplication. The integer n is called the modulus.

Proposition C.7. Let n > 1 be the modulus, and Zn = {0,1, · · · ,(n− 1)}. Then
the following hold.

• Commutative laws:

x⊕n y = y⊕n x, x⊗n y = y⊗n x.

• Associative laws:

(x⊕n y)⊕n z = x⊕n (y⊕n z),

(x⊗n y)⊗n z = x⊗n (y⊗n z).

• Distribution law:

z⊗n (x⊕n y) = (z⊗n x)⊕n (z⊗n y).

Proposition C.7 summarises basic properties of the modulo-n operations,
which are derived from the same properties of the school operations on integers.

Let x ∈ Zn = {0,1, · · · ,n−1}. If there is an integer y ∈ Zn such that

x⊗n y =: (x× y) mod n = 1,

x is said to be invertible, and the integer y is called the multiplicative inverse of x,
usually denoted x−1 (it is unique if it exists, as we require that y ∈ Zn).

Example C.8. Let n = 15. Then 2 has the multiplicative inverse 8. But 3 is not
invertible.

We have then the following questions:

• Which elements of Zn have a multiplicative inverse?
• If x has a multiplicative inverse, is there any efficient algorithm for computing

the inverse?

To answer these questions, we need a few lemmas below.

Lemma C.9. For any two integers a and b with (a,b) 6= (0,0), there are two
integers u and v such that gcd(a,b) = ua+ vb.
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Proof. Assume that b 6= 0. Set a0 = a and a1 = b. Carrying out the Euclidean
algorithm, we have

a0 = q1 × a1 + a2,

a1 = q2 × a2 + a3,
...

at−2 = qt−1 × at−1 + at ,

at−1 = qt × at + 0,

where ai 6= 0 for i≤ t. Hence gcd(a,b) = at . Reversing back step by step, we can
express at as a linear combination of a0 and a1. This process is called the extended
Euclidean algorithm.

To clearly demonstrate the extended Euclidean algorithm above, we present
the following example.

Example C.10. To find integers u and v such that gcd(66,35) = u66+ v35, the
extended Euclidean algorithm works as follows:

Euclidean part ↓ Backtracking part ↑
Step 1 66 = 1×35+31. 1 =−9×66+17×35. Step 9
Step 2 35 = 1×31+4. 1 = 8×35−9×31. Step 8
Step 3 31 = 7×4+3. 1 =−1×31+8×4. Step 7
Step 4 4 = 1×3+1. 1 = 4−1×3. Step 6
Step 5 3 = 3×1+0.

Hence u =−9 and v = 17. Note that the left-hand part downwards (Steps 1–5) is
the Euclidean algorithm part, and the right-hand part upwards (Steps 6–9) is the
backtracking part and called the extended part.

The answer to one of the earlier questions is the following.

Theorem C.11. Let n > 1 be an integer. Then any a ∈ Zn has the multiplicative
inverse modulo n if and only if gcd(a,n) = 1.

Proof. The proof is left as an exercise. One may use Lemma C.9 to prove the
sufficiency.

Assume that gcd(a,n) = 1. Applying the extended Euclidean algorithm to a
and n, one can compute integers u and v such that 1 = ua+ bn. Then the mul-
tiplicative inverse of a modulo n is u mod n. Hence, the extended Euclidean
algorithm is an efficient algorithm for computing the multiplicative inverse of an
integer modulo n. The answer to the other question raised earlier is now clear.
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Problem C.12. Use Example C.10 to compute 35−1 mod 66, i.e., the multiplica-
tive inverse of 35 modulo 66.

The following is a corollary of Theorem C.11.

Corollary C.13. Let p be a prime. Then every nonzero element in Zp has the
multiplicative inverse modulo p.

Let p be a prime. Then the triple (Zp,⊕p,⊗p) is called a finite field with
p elements. It is also denoted by GF(p). General finite fields was abstractly
introduced in Section 1.2. An intuitive introduction of general finite fields will be
done in Section C.5.

C.2 Elementary Number Theory

To objective of this section is to introduce some basic elementary number theory.
The proofs of most results in this section are left as an exercise.

Theorem C.14 (Fundamental Theorem of Arithmetic). Every natural number
n > 1 can be written as a product of primes uniquely up to order.

Proof. We prove this theorem by strong mathematical induction. Suppose that
the conclusion is true for all natural numbers m with 2 ≤ m < n. If n is a prime,
the conclusion is obviously true. If n is composite, Then n = n1n2 for some n1

and n2, where 1 < n1 < n and 1 < n2 < n. By the induction hypothesis, n1 and n2

both are the product of prime numbers, so is n = n1n2.

The following follows from Theorem C.14.

Theorem C.15 (Canonical Form). Every natural number n≥ 2 can be factorized
into

n = pe1
1 pe2

2 · · · p
et
t ,

where p1, p2, . . . , pt are pairwise distinct primes, e1,e2, . . . ,et are natural num-
bers, and t is also a natural number.

Example C.16. n = 120 = 23×3×5.

Theorem C.17 (Euclid). There are infinitely many primes.

Proof. It is left as an exercise. There is a very simple proof.
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The following result is only for information. Its proof can be found in many
textbooks about number theory.

Theorem C.18 (Dirichlet). Let a and b be integers with a 6= 0 and gcd(a,b) = 1.
Then there are infinitely many primes of the form ax+b.

Let a,b∈Z and n be a positive integer. We say that a is congruent to b modulo
n if n | (a− b) (i.e., n divides (a− b)), and write a ≡ b (mod n). By definition,
30≡−2 (mod 2) and 16≡ 6 (mod 5).

For any positive integer n, the Euler totient function ϕ(n) is defined by

ϕ(n) = |{1≤ i < n | gcd(i,n) = 1}|.

Let n = 15. Then

{1≤ i < 15 | gcd(i,15) = 1}= {1,2,4,7,8,11,13,14}.

Hence, ϕ(15) = 8.

Theorem C.19. Let n = ∏t
i=1 pei

i be the canonical factorization of n. Then

ϕ(n) =
t

∏
i=1

(pi−1)pei−1
i .

Sketch of proof. The first step is to prove that ϕ(nm) = ϕ(n)ϕ(m) if gcd(m,n) =
1. The second step is to prove the conclusion of the theorem is true for t = 1. The
detailed proof is left as an exercise.

The following theorem is due to Euler, and has different proofs. When n is a
prime, Euler’s Theorem is called Fermat’s Theorem.

Theorem C.20. Let n be a positive integer and a ∈ Z. If gcd(a,n) = 1, then
aϕ(n) ≡ 1 (mod n).

Proof. It is left as an exercise.

Let a ∈ Z and let n be a positive integer. If gcd(a,n) = 1, the least ℓ ∈ N such
that aℓ ≡ 1 (mod n) is called the order of a modulo n, and is denoted by ordn(a).
The following result says that ordn(a) exists if gcd(a,n) = 1.

Proposition C.21. Let a ∈ Z and n > 1 be a positive integer with gcd(a,n) = 1.
Then ordn(a) exists and divides ϕ(n).

Proof. It is left as an exercise.
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The following two propositions are quite useful.

Proposition C.22. Let a ∈ Z and n > 1 be a positive integer. Let gcd(a,n) = 1. If
ak ≡ 1 (mod n) for some integer k > 1, then ordn(a) | k.

Proof. It is left as an exercise.

Proposition C.23. Let a ∈ Z and let n be a positive integer with gcd(a,n) = 1.
Then ordn(ak) = ordn(a)

gcd(k,ordn(a))
, where k > 1 is an integer.

Proof. It is left as an exercise.

Let n > 1 be an integer. If there is an integer a > 1 such that gcd(a,n) = 1 and
ordn(a) = ϕ(n), then a is called a primitive root of n or modulo n. By definition,
3 is a primitive root modulo 7. A proof of the following theorem can be found in
most books on number theory. It is presented here for information only.

Theorem C.24. There is a primitive root modulo n if and only if n = 1,2,4, pe, or
2pe, where p is an odd prime.

The reader is encouraged to work out a proof of the next theorem.

Theorem C.25. If there is a primitive root modulo n, then the total number of
primitive roots modulo n is ϕ(ϕ(n)).

Most primes p have a small primitive root. For example, for the primes less
than 100000, approximately 37.5% have 2 as a primitive root, and approximately
87.4% have a primitive root of value 7 or less.

In the rest of this section, we will introduce the Chinese remainder problem
and the Chinese remainder theorem. To this end, we need to deal with linear
congruence equations.

Proposition C.26. If gcd(a,n) = 1, then the equation ax ≡ b (mod n) has a so-
lution, and the solution is unique modulo n.

Proof. It is left as an exercise. A solution of this equation can be expressed in
terms of b and the multiplicative inverse of a modulo n. It is straightforward to
prove the uniqueness of the solution modulo n.

Proposition C.27. The equation ax ≡ b (mod n) has a solution if and only if
gcd(a,n) divides b.

Proof. It is left as an exercise.
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Let m1,m2, · · · ,mn be n positive integers that are pairwise relatively prime.
The Chinese remainder problem is to find an integer x such that

x≡ ri (mod mi), i = 1,2, · · · ,n, (C.1)

where r1,r2, · · · ,rn are any set of integers with 0≤ ri < mi.
The following questions then appear:

• Does the set of congruences in (C.1) have a solution?
• Is the solution unique?
• How does one find a specific solution x efficiently?

These questions are addressed by the following Chinese remainder theorem.

Theorem C.28. Let m1, · · · ,mn be n positive integers that are pairwise relatively
prime. For any set of integers r1, · · · , rn with 0≤ ri <mi, there is an unique integer
0≤ x < M such that

x≡ ri (mod mi), i = 1,2, · · · ,n. (C.2)

Furthermore,

x =

(
n

∑
i=1

riuiMi

)
mod M, M =

n

∏
i=1

mi, Mi =
M
mi

and ui is the multiplicative inverse of Mi mod mi, i.e., uiMi ≡ 1 (mod mi).

Proof. It is left as an exercise.

This is the Chinese remainder theorem in the original form. The Chinese
remainder theorem has more general forms and applications in computing, coding
theory and cryptography. The reader is referred to Ding, Pei and Salomaa (1996)
for details.

C.3 Groups, Rings and Fields

A group is a set G together with a binary operation ∗ on G such that the following
three properties hold:

(1) a∗b ∈ G for all a ∈ G and b ∈ G (i.e., G is closed under “∗”).
(2) ∗ is associative; that is, for any a,b,c ∈ G, a∗ (b∗ c) = (a∗b)∗ c.
(3) There is an identity (or unity) element e in G such that for all a ∈ G, a ∗ e =

e∗a = a.
(4) For each a ∈ G, there exists an inverse element a−1 ∈ G such that a ∗ a−1 =

a−1 ∗a = e.



November 17, 2021 14:14 ws-book9x6 Designs from Linear Codes designscodes page 481

Exercises on Mathematical Foundations 481

If a ∗ b = b ∗ a for all a,b ∈ G, then G is called abelian (or commutative). For
simplicity, we frequently use the notation of ordinary multiplication to designate
the operation in the group, writing simply ab instead of a∗b. But by doing so we
do not assume that the operation actually is the ordinary multiplication.

Let (G,∗) be a group with identity e. Due to the associativity of ∗, we define

an = a∗a∗ · · · ∗a︸ ︷︷ ︸
n copies of a

for any positive integer n. The least positive integer n such that an = e, if it exits,
is called the order of a ∈ G, and denoted by ord(a).

If every element a of G can be expressed as gk for some integer k ≥ 0, then
g ∈ G is called a generator of G. In this case, (G,∗) is called a cyclic group.
A group is called a finite group if it has finitely many elements. The number of
elements in a finite group G is called its order, denoted by |G|.

A subset H of a group G is called a subgroup of G if H is itself a group with
respect to the operation of G. Subgroups of G other than the trivial subgroups {e}
and G itself are called nontrivial subgroups of G.

Example C.29. Let (G,∗) be any group. Define 〈a〉= {ai | i = 0,1,2, · · · ,}. Then
it is easy to verify that 〈a〉 is a subgroup of G and |〈a〉|= ord(a).

Proof. It is left as an exercise.

Example C.30. Let n > 1 be an integer. Then (Zn,⊕n) is an abelian group with n
elements.

• The identity element of this group is 0.
• The inverse of any a ∈ Zn is n−a.
• ord(1) = n.
• (Zn,⊕n) is cyclic and 1 is a generator.
• If n = n1n2, then 〈n1〉= {0,n1,2n1, · · · ,(n2−1)n1} is a subgroup of (Zn,⊕n).

Proof. It is left as an exercise.

Example C.31. Let p be a prime. Then (Z∗p,⊗p) is an abelian group with p− 1
elements, where Z∗p = {1,2,3, . . . , p−1}.

• The identity element of this group is 1.
• The inverse of any a ∈ Z∗p is the multiplicative inverse of a modulo p.
• The group is cyclic, and has ϕ(p− 1) generators. Each generator is called a

primitive root of p or modulo p, where ϕ(n) is the Euler totient function.
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Proof. It is left as an exercise.

Theorem C.32 (Lagrange). The order of every subgroup H of a finite group G
divides the order of G.

Proof. Define a binary relation RH on G by (a,b) ∈ RH if and only if a = bh for
some h ∈ H. Since H is a subgroup, it is easily verified that RH is an equivalence
relation. Hence, the equivalence classes, {aH | a ∈ G}, called left cosets of H,
form a partition of G.

Now we define a map f : aH → bH by f (x) = ba−1x. Then f is bijective as
its inverse is given by f−1(y) = ab−1y. Hence, all the left cosets have the same
number of elements, i.e., |H|. If we use [G : H] to denote the number of distinct left
cosets, we have then |G|= [G : H]|H|. The desired conclusion then follows.

The following is a corollary of Theorem C.32.

Corollary C.33. Let G be a finite group. Then ord(a) divides |G| for every a ∈G.

Problem C.34. In the group (Z∗19,⊗19), determine ord(3).

A ring (R,+, ·) is a set R, together with two binary operations, denoted by +

and · , such that:

(1) (R,+) is an abelian group.
(2) · is associative, i.e., (a ·b) · c = a · (b · c) for all a,b,c ∈ R.
(3) The distributive laws hold; that is, for all a,b,c ∈ R we have

a · (b+ c) = a ·b+a · c and (b+ c) ·a = b ·a+ c ·a.

For a given ring (R,+, ·), we do the following:

• We use 0 (called the zero element) to denote the identity of the group (R,+).
• −a denotes the inverse of a with respect to +.
• By a−b we mean a+(−b).
• Instead of a ·b, we write ab.
• a0 = 0a = 0.

– Note a(0+ 0) = a0+ a0 by the distribution law. But 0+ 0 = 0. Hence
a0 = a0+a0 and a0 = 0.

• We shall use R as a designation for the ring (R,+, ·), and stress that the oper-
ations + and · are not necessarily the ordinary operations with numbers.

We have the following definitions:
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(1) A ring is called a ring with identity if the ring has a multiplicative identity,
i.e., if there is an element e such that ae = ea = a for all a ∈ R.

(2) A ring is commutative if · is commutative.
(3) A ring is called an integral domain if it is a commutative ring with identity

e 6= 0 in which ab = 0 implies a = 0 or b = 0.
(4) A ring is called a division ring (or skew field) if the nonzero elements of R

form a group under “·”.
(5) A commutative division ring is called a field.

Example C.35. (Z,+,×) is a commutative ring with identify 1 and an integral
domain, but not a division ring, not a field.

Proof. It is left as an exercise.

Example C.36. Let n > 1 be an integer. Then (Zn,⊕n,⊗n) is a commutative ring
with identity 1. In particular, (Zn,⊕n,⊗n) is a field if and only if n is a prime.

Proof. It is left as an exercise.

Let p be any prime. We use GF(p) to denote the field (Zp,⊕p,⊗p), which is
called a prime field and was treated at the end of Section C.1. GF(p) is called a
finite field, as it has finitely many elements.

Example C.37. Let Q denote the set of all rational numbers. Then (Q,+,×) is a
field.

Proof. It is left as an exercise.

Example C.38. Let R denote the set of all real numbers. Then (R,+,×) is a field.

Proof. It is left as an exercise.

Example C.39. Let C denote the set of all complex numbers. Then (C,+,×) is
a field.

Proof. It is left as an exercise.

A Euclidean domain is an integral domain (R,+, ·) associated with a function
g from R to the set of nonnegative integers such that

C1: g(a)≤ g(ab) if b 6= 0; and
C2: for all a,b 6= 0, there exist q and r (“quotient” and “remainder”) such that

a = qb+ r, with r = 0 or g(r)< g(b).
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Proposition C.40. (Z,+, ·,g) is a Euclidean domain, where g(a) = |a| and Z is
the set of all integers.

Proof. It is left as an exercise.

Example C.41. Let R =
{

a+b
√
−1 | a,b integers

}
. Define g(a + b

√
−1) =

a2 +b2. Then (R,+, ·,g) is an Euclidean domain.

Proof. It is left as an exercise.

C.4 Polynomials over a Field F

In the preceding sections of this appendix, we have learnt the following fields:

• The prime fields (Zp,⊕p,⊗p), denoted by GF(p), where p is any prime.
• The field (Q,+, ·) of rational numbers.
• The field (R,+, ·) of real numbers.
• The field (C,+, ·) of complex numbers.

Throughout this section, let F denote any field. We then define and study polyno-
mials over F.

A polynomial over F is an expression of the form

f (x) =
n

∑
i=0

aixi = a0 +a1x+ · · ·+anxn,

where n is a nonnegative integer, the coefficients ai, 0≤ i≤ n, are elements of the
field F, and x is a symbol not belonging to F, called an indeterminate over F.

For any positive integer h, the polynomial f (x) above may be given in the
equivalent form

f (x) =
n

∑
i=0

aixi = a0 +a1x+ · · ·+anxn +0xn+1 + · · ·+0xn+h.

By convention, we usually do not write terms with 0 coefficients. Let F[x] denote
the set of all polynomials in indeterminate x over F.

Let f (x) = ∑n
i=0 aixi ∈ F[x] and g(x) = ∑n

i=0 bixi ∈ F[x]. The two polynomials
f (x) and g(x) are considered equal if and only if their coefficients are equal, i.e.,
ai = bi for all 0≤ i≤ n. The sum (or addition) of f (x) and g(x) is defined by

f (x)+g(x) =
n

∑
i=0

(ai +bi)xi ∈ F[x].

Proposition C.42. (F[x],+) is an abelian group with identity 0, called the zero
polynomial, whose all coefficients are zero.
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Proof. It is left as an exercise.

Let f (x) = ∑n
i=0 aixi ∈ F[x] and g(x) = ∑m

i=0 bixi ∈ F[x]. The product (or mul-
tiplication) of f (x) and g(x) is defined by

f (x) ·g(x) =
n+m

∑
i=0

ckxk ∈ F[x],

where

ck = ∑
i+ j=k

0≤i≤n,0≤ j≤m

aib j.

This is the polynomial multiplication we learnt in school, except that the compu-
tation of each ck is over F.

Proposition C.43. (F[x],+, ·) is a commutative ring with identity 1.

Proof. We have the following:

• The binary operation · is associative, as the multiplication · in F is so.
• The distribution laws hold as F is a field.
• The binary operation · for polynomials is commutative, as F is commutative.
• 1 · f = f ·1 = f for all f ∈ F[x]. Hence, 1 is the identity.

The desired conclusion then follows from Proposition C.42.

Let f (x) = ∑n
i=0 aixi ∈ F[x] and f 6= 0. Suppose that an 6= 0. Then an is called

the leading coefficient of f (x) and a0 the constant term, while n is called the
degree of f (x), and denoted by deg( f ). We define deg(0) =−∞. Polynomials of
degree ≤ 0 are called constant polynomials. A polynomial over F is called monic
if its leading coefficient is 1.

Proposition C.44. Let f ,g ∈ F[x]. Then

deg( f +g)≤max(deg( f ),deg(g)),

deg( f g) = deg( f )+deg(g).

Proof. The proof is trivial and left as an exercise.

Proposition C.45. (F[x],+, ·) is an integral domain.

Proof. Let f ∈ F[x] and g ∈ F[x] be any two nonzero polynomials. Then

f (x) =
m

∑
i=0

aixi and g(x) =
n

∑
j=0

b jx j
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where m and n are nonnegative integers such that am 6= 0 and bn 6= 0. Then

f (x) ·g(x) 6= 0

as the leading coefficient of f (x) ·g(x) is equal to ambn 6= 0. The desired conclu-
sion then follows from Proposition C.43.

Proposition C.46 (Division Algorithm for Polynomials). Let g 6= 0 be a poly-
nomial in F[x]. Then for any f ∈ F[x] there exist unique polynomials q,r ∈ F[x]
such that

f = qg+ r,

where either r = 0 or deg(r)< deg(g).

Proof. One can give a proof by induction. This is left as an exercise.

In the Division Algorithm above, the polynomial q is called the quotient and r
the remainder, in symbol we write r = f mod g.

Problem C.47. Let f = x3 + x2 − 1 ∈ R[x] and g(x) = x− 1 ∈ R[x]. Find the
quotient q(x) and remainder r(x) such that

f = qg+ r,

where either r = 0 or deg(r)< deg(g).

Theorem C.48. (F[x],+, ·,deg) is a Euclidean domain.

Proof. It follows from Propositions C.45 and C.46.

Let f ,g 6= 0 be two polynomials in F[x]. In the Division Algorithm, if the
remainder r = 0, then g is called a divisor or factor of f . In this case, we say that
g divides f and f is divisible by g.

Example C.49. x+2 ∈ GF(3)[x] is a divisor of x2−1 ∈ GF(3)[x].

Proof. It is left as an exercise.

A common divisor h(x) ∈ F[x] of f ∈ F[x] and g ∈ F[x] is a divisor of both
f and g. The greatest common divisor, denoted by gcd( f ,g), of f ∈ F[x] and
g ∈ F[x] is the common divisor of f and g with leading coefficient 1 and the
largest degree. By definition, gcd( f ,g) is unique, and can be computed with the
Euclidean Algorithm for polynomials, which is similar to that for integers. The
least common multiple, denoted by LCM( f ,g), of f and g is the monic polynomial
with the least degree that is a multiple of both f and g.

Problem C.50. Let f (x) = 2x6+x3+x2+2∈GF(3)[x] and g(x) = x4+x2+2x∈
GF(3)[x]. Use the Euclidean algorithm to prove that gcd( f ,g) = 1.
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Two polynomials f ,g ∈ F[x] are said to be coprime or relatively prime, if
gcd( f ,g) = 1.

Example C.51. Let f (x) = x2 + 1 ∈ GF(2)[x] and g(x) = x2 + x+ 1 ∈ GF(2)[x].
Then gcd(x2 +1,x2 + x+1) = 1. Hence, they are coprime.

Theorem C.52. Let f ∈ F[x] and g ∈ F[x], which are not zero at the same time.
Then there exist two polynomials u ∈ F[x] and v ∈ F[x] such that

gcd( f ,g) = u f + vg.

Proof. The Extended Euclidean Algorithm for polynomials, which is similar to
that for integers, gives a constructive proof of this conclusion.

Problem C.53. Let f (x) = 2x6+x3+x2+2∈GF(3)[x] and g(x) = x4+x2+2x∈
GF(3)[x]. Use the Extended Euclidean Algorithm to find two polynomials u and
v such that gcd( f ,g) = u f + vg.

Let f ∈ F[x]. An element a ∈ F is called a zero or root of f if f (a) = 0.

Example C.54. The polynomial f (x) = x2 + x + 2 ∈ GF(3)[x] has no zero in
GF(3), while g = x2 + x+1 has the zero 1.

An important connection between roots and divisibility is given by the follow-
ing theorem.

Theorem C.55. An element b ∈ F is a root of f ∈ F[x] if and only if x−b divides
f (x), i.e., x−b is a divisor of f (x).

Proof. By the Division Algorithm, we find q ∈ F[x] and c ∈ F such that f (x) =
q(x)(x− b) + c. Substituting b for x, we obtain that c = f (b). Hence, f (x) =
q(x)(x−b)+ f (b). The desired conclusion then follows.

A polynomial f ∈ F[x] is called irreducible over F (or in F[x]) if f has pos-
itive degree and only divisors a ∈ F and a f , where a is a nonzero element of F.
Irreducible polynomials in F[x] are similar as primes in Z.

Example C.56. f (x) = x2 + x+2 ∈ GF(3)[x] is irreducible over GF(3).

Proof. Since f (a) 6= 0 for all a∈GF(3), f (x) cannot have a divisor of degree one
in GF(3)[x].

Theorem C.57 (Canonical factorization). Any polynomials f ∈ F[x] with posi-
tive degree can be written in the form

f = ape1
1 pe2

2 · · · p
ek
k ,
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where a ∈ F, p1, p2, . . . , pk are distinct monic irreducible polynomials in F[x],
e1,e2, . . . ,ek are positive integers. Moreover, this factorization is unique apart
from the order in which the factors occur.

Proof. An inductive proof on the degree of f is easily worked out and left as an
exercise.

Example C.58. The canonical factorization of f (x) = x9 + x8 +2x7 + x5 +2x4 +

x3 +2x2 + x+1 ∈ GF(3)[x] is

f (x) = (x2 + x+2)3(x+2)(x+1)2.

Proof. The equality is easily verified. It is left as an exercise to prove that x2 +

x+2 is irreducible over GF(3).

Let f (x),g(x), and m(x) be polynomials in F[x]. We say that f (x) is congru-
ent to g(x) modulo m(x), written as f (x) ≡ g(x) (mod m(x)), if f (x)− g(x) is
divisible by m(x).

Example C.59. Let f (x) = x4 + x2 + x ∈ GF(2)[x], g(x) = x2 + x+1 ∈ GF(2)[x]
and m(x) = x2 +1 ∈ GF(2)[x]. Then f (x)≡ g(x) (mod m(x)).

Solving polynomial congruence equations is similar to solving integer congru-
ence equations. The reader is encouraged to solve the following problem.

Problem C.60. Work out the Chinese remainder problem and Chinese remainder
theorem for polynomials in F[x].

C.5 A Constructive Introduction to Finite Fields

The prime fields GF(p) := (Zp,⊕p,⊗p) were treated in Sections C.1 and C.3 in
detail. In this section, we will use + and · to mean ⊕p and ⊗p, respectively,
and define GF(p)∗ = GF(p) \ {0}. Our objective in this section is to treat finite
fields GF(pm) with pm elements. Our approach will be constructive, so that it will
be easy to understand finite fields. To this end, we need to employ irreducible
polynomials over GF(p). Recall that polynomials over general fields were treated
in detail in Section C.4.

Recall that a polynomial f ∈GF(p)[x] with positive degree is irreducible over
GF(p) if f has only constant divisors a and divisors of the form a f , where a ∈
GF(p)∗. We have then the following questions:

• Is there any irreducible polynomial over GF(p) of degree d for any given
positive integer m and prime p?
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• What is the total number of irreducible polynomials over GF(p) of degree m?
• How to find out an irreducible polynomial over GF(p) of degree m, if it exists?

Below we will answer these questions.
The Möbius function µ is the function on N (i.e., the set of natural numbers)

defined by

µ(n) =


1 if n = 1,
(−1)k if n is the product of k distinct primes,
0 if n is divisible by the square of a prime.

Example C.61. Some initial terms of the Möbius sequence (µ(i))∞
i=1 is given by

(1,−1,−1,0,−1,1,−1,0,0,1, . . . ,).

Theorem C.62. The number Np(m) of monic irreducible polynomials in GF(p)[x]
of degree m is given by

Np(m) =
1
m ∑

d|m
µ(m/d)pd =

1
m ∑

d|m
µ(d)pm/d .

The reader is informed of the following.

• For a proof of Theorem C.62, see Lidl and Niederreiter (1997)[Chapter 3].
• Np(m)≥ 1

m (pm− pm−1− pm−2−·· ·− p) = 1
m

(
pm− pm−p

p−1

)
> 0.

• For the construction of irreducible polynomials in GF(p)[x] of any degree, see
Lidl and Niederreiter (1997)[Section 3.3].
• Tables of monic irreducible polynomials of certain degrees in GF(p)[x] are

given in the Appendix in Lidl and Niederreiter (1997).

Example C.63. All monic irreducible polynomials of degree 4 in GF(2)[x] are
given by

x4 + x3 +1, x4 + x3 + x2 + x+1, x4 + x+1.

Example C.64. All monic irreducible polynomials of degree 3 in GF(3)[x] are
given by

x3 +2x+1, x3 +2x2 +2x+2, x3 + x2 + x+2, x3 +2x+2,

x3 + x2 +2, x3 +2x2 + x+1, x3 + x2 +2x+1, x3 +2x2 +1

For any prime p and positive integer m, we are now ready to construct the
finite field GF(pm) with pm elements. To do so, we need a monic irreducible
polynomial π(x) of degree m over GF(p). By Theorem C.62, the number Np(m)

of irreducible polynomials of degree m over GF(p) is at least one.
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Let GF(pm) be the set of all polynomials of degree at most m−1 over GF(p).
By definition, |GF(pm)|= pm.

Example C.65. Let p = 2 and m = 3. Then the set GF(23) is composed of the
following 8 polynomials:

f0 = 0, f1 = 1, f2 = x, f3 = 1+ x,
f4 = x2, f5 = 1+ x2, f6 = x+ x2, f7 = 1+ x+ x2.

Let

f (x) =
m−1

∑
i=0

aixi ∈ GF(p)[x] and g(x) =
m−1

∑
i=0

bixi ∈ GF(p)[x].

Then the addition of f and g is defined by

f (x)+g(x) =
m−1

∑
i=0

(ai +bi)xi ∈ GF(p)[x].

Theorem C.66. (GF(pm),+) is a finite abelian group with the identity 0, i.e., the
zero polynomial.

Proof. It is straightforward and left as an exercise.

Let π(x) ∈ GF(p)[x] be a monic irreducible polynomial of degree m over
GF(p), and let

f (x) =
m−1

∑
i=0

aixi ∈ GF(p)[x] and g(x) =
m−1

∑
i=0

bixi ∈ GF(p)[x].

Then the multiplication of f and g is defined by

f (x) ·g(x) = f (x)g(x) mod π(x),

where f (x)g(x) is the ordinary multiplication of two polynomials.

Example C.67. Let p = 2 and m = 3, and let the monic irreducible polynomial
π(x) = x3 + x+1 ∈ GF(2)[x]. Then the set GF(23) is composed of the following
8 polynomials:

f0 = 0, f1 = 1, f2 = x, f3 = 1+ x,
f4 = x2, f5 = 1+ x2, f6 = x+ x2, f7 = 1+ x+ x2.

By definition

f6 · f7 = f6 f7 mod π(x) = (x4 + x) mod (x3 + x+1) = x2,

f7 · f7 = f7 f7 mod π(x) = (x4 + x+1) mod (x3 + x+1) = 1+ x.
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Proposition C.68. Let π(x) be a monic irreducible polynomial over GF(p) of
degree m. Let f ∈ GF(pm) and f 6= 0. Then there is an element g ∈ GF(pm) such
that f · g = 1. This polynomial g is called the multiplicative inverse of f modulo
π.

Proof. Since π(x) is irreducible and f 6= 0 with degree at most m−1, gcd( f ,π) =
1. By Theorem C.52 and with the Extended Eulidean Algorithm, one can find two
polynomials u(x) ∈ GF(p)[x] and v(x) ∈ GF(p)[x] such that

1 = gcd( f ,π) = u f + vπ.

It then follows that u f mod π = 1. Hence, g = u mod π is the desired polynomial.

Theorem C.69. Let GF(pm)∗ = GF(pm) \ {0}. Then (GF(pm)∗, ·) is a finite
abelian group with identity 1.

Proof. Since π(x) is irreducible, GF(pm)∗ is closed under the binary operation
“·”. It is obvious that 1 is the identity. By Proposition C.68, every element f ∈
GF(pm)∗ has its inverse. The binary operation “·” is commutative, as the ordinary
multiplication for polynomials over GF(p) is so. The desired conclusion then
follows.

Theorem C.70. Let π(x) ∈ GF(p)[x] be any irreducible polynomial over GF(p)
with degree m. Then (GF(pm),+, ·) is a finite field with pm elements.

Proof. By the definitions of the binary operations “+” and “·”, the distribution
laws hold. It then follows from Theorems C.66 and C.69 that (GF(pm),+, ·) is a
finite field with pm elements.

Let F be a field. If there exists a positive integer n such that na = 0 for all
a ∈ F, such least n is called the characteristic of F. If there is no such n, we say
that F has characteristic 0.

Example C.71.

• The field (Q,+, ·) of rational numbers has characteristic 0.
• The field (R,+, ·) of real numbers has characteristic 0.
• The field (C,+, ·) of complex numbers has characteristic 0.

Theorem C.72. The finite field GF(pm) has characteristic p.

Proof. It is left as an exercise.
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Theorem C.73. Let F be any field with characteristic p. Then (a+b)pn
= apn

+

bpn
for all a,b ∈ F and n ∈ N.

Proof. For all integers i with 1≤ i≤ p−1, we have(
p
i

)
=

p(p−1) · · ·(p− i+1)
1 ·2 · · · · · i

≡ 0 (mod p).

Then by the binomial theorem,

(a+b)p = ap +

(
p
1

)
ap−1b+ · · ·+

(
p

p−1

)
abp−1 +bp = ap +bp.

The desired conclusion follows the induction on n.

We now study the group (GF(pm)∗, ·) of the finite field GF(pm). Our task now
is to prove that the group (GF(q)∗, ·) is cyclic. To this end, we need to prove a
number of auxiliary results.

Proposition C.74. For any a ∈ GF(q)∗, there exists a positive integer ℓ such that
aℓ = 1.

Proof. Consider the following sequence of elements in GF(q)∗:

a0,a1,a2, · · · .

Since the group GF(q)∗ has order q− 1, there exist two distinct 0 ≤ h < k such
that ah = ak. Hence, ah(ak−h−1) = 0 and ak−h = 1. The desired conclusion then
follows.

The order of a∈GF(q)∗, denoted by ord(a), is the least positive integer ℓ such
that aℓ = 1. The following is a corollary of Theorem C.32.

Proposition C.75 (Lagrange’s Theorem). For any a ∈ GF(q)∗, ord(a) divides
q−1.

The following conclusion follows from Proposition C.75.

Proposition C.76. Every a ∈ GF(q) satisfies aq = a.

The proof of the following proposition is left as an exercise.

Proposition C.77. For any a∈GF(q)∗, we have ord(ai) = ord(a)/gcd(ord(a), i).

Proposition C.78. For any a ∈ GF(q)∗ and b ∈ GF(q)∗, we have ord(ab) =
ord(a)ord(b) if gcd(ord(a),ord(b)) = 1.
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Proof. Let ℓ be a positive integer such that (ab)ℓ = 1. Then aℓ = b−ℓ.
Hence, aℓord(b) = (bord(b))−ℓ = 1. It then follows that ord(a) | ℓord(b). Since
gcd(ord(a),ord(b)) = 1, ord(a) divides ℓ. By symmetry, ord(b) divides ℓ.
Consequently, LCM(ord(a),ord(b)) must divide ℓ. But LCM(ord(a),ord(b)) =
ord(a)ord(b), as gcd(ord(a),ord(b)) = 1.

On the other hand, it is obvious that (ab)ord(a)ord(b) = 1. The desired conclu-
sion then follows.

Proposition C.79. If g(x) ∈ F[x] has degree n, then the equation g(x) = 0 has at
most n solutions in F, where F is any field.

Proof. The proof is by induction on n. If n = 1, the equation is of the form
ax+b = 0, which obviously has only the solution x =−b/a. If n≥ 2 and g(x) = 0
has no solution, then we are done. Otherwise, g(α) = 0 for some α∈ F, and apply
the Division Algorithm to divide g(x) by x−α. Then we have

g(x) = q(x)(x−α)+g(α) = q(x)(x−α).

Now deg(q(x)) = n− 1. By induction, q(x) = 0 has at most n− 1 solutions.
Whence, g(x) = 0 has at most n solutions.

Theorem C.80. The multiplicative group GF(q)∗ is cyclic.

Proof. We assume that q≥ 3. Let h := q−1 = pr1
1 pr2

2 · · · prn
n be the canonical fac-

torization of q−1. For every i with 1≤ i≤ n, by Proposition C.79, the polynomial
xh/pi−1 has at most h/pi roots in GF(q). Since h/pi < h, it follows that there are
nonzero elements in GF(q) that are not roots of this polynomial. Let ai be such an

element, and set bi = a
h/p

ri
i

i .

By Proposition C.75, b
p

ri
i

i = ah
i = aq−1

i = 1. Hence, ord(bi) = psi
i , where 0 ≤

si ≤ ri. On the other hand, b
p

ri−1
i

i = ah/pi
i 6= 1. It follows that ord(bi) = pri

i .
By Proposition C.78, we have

ord(b1b2 · · ·bn) = ord(b1)ord(b2) · · ·ord(bn) = h = q−1.

Any element in GF(q)∗ with order q−1 is called a generator of GF(q)∗ and a
primitive element of GF(q).

Theorem C.81. GF(q) has ϕ(q−1) primitive elements.



November 17, 2021 14:14 ws-book9x6 Designs from Linear Codes designscodes page 494

494 Designs from Linear Codes

Proof. By Theorem C.80, GF(q) has a primitive element α. Hence, every element
β ∈ GF(q)∗ can be expressed as β = αk for some k. By Proposition C.77, β is a
primitive element if and only if gcd(k,q− 1) = 1. The desired conclusion then
follows.

Two fields F1 and F2 are said to be isomorphic if there is a bijection σ from
F1 to F2 satisfying the following:

(1) σ(a+b) = σ(a)+σ(b) for all a,b ∈ F1.
(2) σ(ab) = σ(a)σ(b) for all a,b ∈ F1.
(3) σ(1F1) = 1F2 , where 1F1 and 1F2 are the identities of F1 and F2, respectively.

Two isomorphic fields have the same properties, and thus can be viewed as iden-
tical. The following theorem is proved in Lidl and Niederreiter (1997)[Chapter
2].

Theorem C.82. Any finite field with pm elements is isomorphic to GF(pm), which
is constructed with a fixed monic irreducible polynomial π(x) ∈ GF(p)[x] with
degree m.

Due to this theorem, we do not need to specify the monic irreducible polyno-
mial π(x) over GF(p) with degree m when we mention GF(pm).

Let F be a field. A subset K of F that is itself a field under the operations of
F will be called a subfield of F. In this context, F is called an extension field of
K. If K 6= F, we say that K is a proper subfield of F. A field containing no proper
subfields is called a prime field. Examples of prime fields are GF(p), where p is
any prime.

Example C.83. GF(pm) is an extension field of GF(p), and GF(p) is a subfield
of GF(pm).

Theorem C.84. If GF(pk) is a subfield of GF(pm), then k | m.

Proof. Every b ∈ GF(pm) must be a root of xpm
= x. Every a ∈ GF(pk) must be

a root of xpk
= x. Since GF(pk) ⊆ GF(pm), every a ∈ GF(pk) is also a root of

xpm
= x. Thus, (xpk − x) | (xpm − x), and (xpk−1−1) | (xpm−1−1). It then follows

that

xpk−1−1 = gcd(xpk−1−1,xpm−1−1).

But, we have

gcd(xpk−1−1,xpm−1−1) = xgcd(pk−1, pm−1)−1 = xpgcd(k,m)−1−1. (C.3)

Hence, k | m.
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Theorem C.85. Let k | m. Then GF(pm) has a subfield with pk elements.

Proof. Since k | m, it follows from (C.3) that (xpk − x) | (xpm − x). Note that all
the elements of GF(pm) are the roots of xpm − x = 0. It then follows that the set

K= {a ∈ GF(pm) | apk
= a}

has cardinality pk. Let a,b ∈K. Then

(a+b)pk
= apk

+bpk
= a+b, (ab)pk

= apk
bpk

= ab, (a−1)pk
= (apk

)−1 = a−1.

Hence, K is a subfield with pk elements.

Theorem C.86. Let k | m and let GF(pk) denote the subfield of GF(pm). Let α
be a generator of GF(pm)∗, and let β = α(pm−1)/(pk−1). Then β is a generator of
GF(pk)∗.

Proof. By definition, βpk
= β. It then follows from the proof of heorem C.85 that

β ∈ GF(pk). By Proposition C.77,

ord(β) =
ord(α)

gcd
(

ord(α), pm−1
pk−1

) =
pm−1

gcd
(

pm−1, pm−1
pk−1

) = pk−1.

The desired conclusion then follows.

Let r be a power of p below. Let ℓ≥ 1 be an integer. For any a ∈GF(rℓ)∗, the
monic polynomial Pa(x) ∈ GF(r)[x] with the least degree such that Pa(a) = 0 is
called the minimal polynomial over GF(r) of a. We have the following remarks.

• The existence of the minimal polynomial is guaranteed by Proposition C.76
(i.e., arℓ−1−1 = 0).
• By definition, Pa(x) is irreducible over GF(r).
• It follows from Proposition C.76 that Pa(x) divides xrℓ−1−1.

Proposition C.87. Let a ∈GF(rℓ)∗. Then the minimal polynomial Pa(x) of a over
GF(r) has degree at most ℓ.

Proof. Note that arℓ = a for any a ∈ GF(rℓ)∗. The set {ari
: i = 0,1,2, ℓ−1} has

at most ℓ elements. Let e be the smallest positive integer such that are
= a. Then

e≤ ℓ. Define

g(x) =
e−1

∏
i=0

(x−ari
).

Since g(x)r = g(xr), g is a polynomial over GF(r). On the other hand, g(a) = 0
and deg(g) = e. The desired conclusion then follows.
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Proposition C.88. If α is a generator of GF(rℓ)∗, the minimal polynomial Pα(x)
has degree ℓ.

Proof. Let α be a generator of GF(rℓ)∗. Suppose that the minimal polynomial
Pα(x) has degree e < ℓ. Let

Pα(x) = xe +ae−1xe−1 +ae−2xe−2 + · · ·+ e1x+ e0.

Then each αi can be expressed as ∑e−1
k=0 bkαk, where all bi ∈GF(r). Then we have

|{0,α0,α1,α2, · · · ,αrℓ−2}| ≤ re < rℓ.

This is contrary to the assumption that α is a generator of GF(rℓ)∗. The desired
conclusion then follows from Proposition C.87.

Example C.89. Let α be a generator of GF(23)∗ with minimal polynomial
Pα(x) = x3 +x+1. Then the minimal polynomials over GF(2) of all the elements
of GF(23) are:

a ∈ GF(23) Minimal polynomial of a
0 x,
α0 x−1,
α1 x3 + x+1,
α2 x3 + x+1,
α3 x3 + x2 +1,
α4 x3 + x+1,
α5 x3 + x2 +1,
α6 x3 + x2 +1.

Note that the canonical factorization of x23−1−1 over GF(2) is given by

x7−1 = (x−1)(x3 + x+1)(x3 + x2 +1).

Proof. It is left as an exercise.

We now show that GF(qn) can be viewed as an n-dimensional vector space
over GF(q). To this end, we first recall vector spaces over a field F.

A vector space V over F has a binary operation “+” on V and a scalar multi-
plication on F×V such that

(1) (V,+) is an abelian group with identity 0;
(2) av ∈V for all a ∈ F and all v ∈V ;
(3) a(bv) = (ab)v for all a,b ∈ F and all v ∈V ;
(4) (a+b)v = av+bv for all a,b ∈ F and all v ∈V ;
(5) a(v1 + v2) = av1 +av2 ∈V for all a ∈ F and all v1,v2 ∈V ; and
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(6) 1v = v for all v ∈V .

Let V be a vector space over a field F. A set {v1,v2, · · · ,vn} of elements in V
is called a basis of V over F if

• v1,v2, · · · ,vn are linearly independent over F, i.e., ∑n
i=1 aivi = 0, where all

ai ∈ F, if and only if all ai = 0; and
• every element v ∈V can be expressed as v = ∑n

i=1 aivi, where all ai ∈ F.

In this case, we say that V has dimension n or V is an n-dimensional vector space
over F.

Example C.90. Qn =Q×Q×·· ·×Q is an n-dimensional vector space over the
field Q of rational numbers.

Theorem C.91. GF(qn) is an n-dimensional vector space over GF(q) with respect
to the addition and multiplication of the finite field GF(qn).

Proof. GF(qn) is a vector space over GF(q) due to the following:

(1) (GF(qn),+) is an abelian group with identity 0;
(2) av ∈ GF(qn) for all a ∈ GF(q) and all v ∈ GF(qn);
(3) a(bv) = (ab)v for all a,b ∈ GF(q) and all v ∈ GF(qn);
(4) (a+b)v = av+bv for all a,b ∈ GF(q) and all v ∈ GF(qn);
(5) a(v1 + v2) = av1 + av2 ∈ GF(qn) for all a ∈ GF(q) and all v1,v2 ∈ GF(qn);

and
(6) 1v = v for all v ∈ GF(qn).

We now prove that the dimension of GF(qn) over GF(q) is n. Let α be a
generator of GF(qn)∗. By Proposition C.87, the minimal polynomial Pα(x) over
GF(q) of α has degree n. We now claim that {1,α,α2, · · · ,αn−1} is a basis of
GF(qn) over GF(q).

First of all, 1,α,α2, · · · ,αn−1 are linearly independent over GF(q), otherwise,
the minimal polynomial of α over GF(q) would have degree less than n.

Secondly, the set {∑n−1
i=0 aiαi | ai ∈ GF(q)} has cardinality qn, as the elements

1,α,α2, · · · ,αn−1 are linearly independent over GF(q).
Hence {1,α,α2, · · · ,αn−1} is a basis of GF(qn) over GF(q), and is referred to

as a polynomial basis.

Let K be a subfield of F. We use [F : K] to denote the dimension of F when
F is viewed as a vector space over K. By Theorem C.91, [GF(qn) : GF(q)] = n.
A basis of GF(qn) over GF(q) of the form {α,αq, · · · ,αqn−1} is called a normal
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basis of GF(qn) over GF(q), where α ∈ GF(qn). Normal bases are sometimes
more convenient to use than polynomial bases.

Example C.92. Let α be a generator of GF(23)∗ with minimal polynomial x3 +

x2 + 1 over GF(2). Then {α,α2,α4} is a normal basis of GF(23) over GF(2).
Note that α4 = 1+α+α2.

Proof. It is left as an exercise.

The existence of a normal basis is guaranteed by the following theorem whose
proof can be found in Lidl and Niederreiter (1997)[p. 60].

Theorem C.93 (Normal Basis Theorem). For any finite field K and any finite
extension F of K, there exists a normal basis of F over K.

We now define and study two special functions from GF(qn) to GF(q). They
play an extremely important role in many applications. The first one is the trace
function defined below.

For a ∈ F= GF(qn) and K= GF(q), the trace TrF/K(a) of a over K is defined
by

TrF/K(a) = a+aq + · · ·+aqn−1
.

If K is the prime subfield of F, then TrF/K(a) is called the absolute trace of a and
simply denoted by TrF(a). The following theorem describes important properties
of the trace function TrF/K(x) from F to K.

Theorem C.94. Let F = GF(qn) and K = GF(q). Then the trace function
TrF/K(x) from F to K has the following properties:

(1) TrF/K(a+b) = TrF/K(a)+TrF/K(b) for all a,b ∈ F.
(2) TrF/K(ca) = cTrF/K(a) for all a ∈ F and c ∈K.
(3) TrF/K(c) = nTrF/K(c) for all c ∈K.
(4) TrF/K(aq) = TrF/K(a).

Proof. It is left as an exercise.

Another important property of the trace function is its transitivity, which is
depicted in the next theorem.

Theorem C.95. Let K be a finite field, let F be a finite extension of K, and E a
finite extension of F. Then

TrE/K(a) = TrF/K(TrE/F(a))

for all a ∈ E.
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Proof. Let K= GF(q), let [F : K] = ℓ and [E : F] = n . Then [E : K] = nℓ and

|F|= qℓ, |E|= qℓn.

Then for any a ∈ E we have

TrF/K(TrE/F(a)) =
ℓ−1

∑
i=0

TrE/F(a)
qi
=

ℓ−1

∑
i=0

(
n−1

∑
j=0

aqℓ j

)qi

=
ℓ−1

∑
i=0

n−1

∑
j=0

aqℓ j+i
=

nℓ−1

∑
k=0

aqk

= TrE/K(a).

The second important function from F to its subfield K is the norm function
defined below. For a ∈ F= GF(qn) and K= GF(q), the norm NF/K(a) of a over
K is defined by

NF/K(a) = a ·aq · · · ·aqn−1
= a

qn−1
q−1 .

Note that NF/K(a)q = NF/K(a) for all a ∈ F. we have NF/K(a) ∈K for all a ∈ F.
The following theorem describes basic properties of the norm function whose

proofs are straightforward and left as exercises.

Theorem C.96. Let K=GF(q) and F=GF(qn). Then the norm function NF/K(x)
has the following properties:

(1) NF/K(ab) = NF/K(a)NF/K(b) for all a,b ∈ F.
(2) NF/K maps F onto K and F∗ onto K∗.
(3) NF/K(a) = an for all a ∈K.
(4) NF/K(aq) = NF/K(a) for all a ∈ F.

The norm function has also the following transitivity.

Theorem C.97. Let K be a finite field, let F be a finite extension of K, and E a
finite extension of F. Then

NE/K(a) = NF/K(NE/F(a))

for all a ∈ E.

Proof. It is straightforward and left as an exercise.

Finite fields have a lot of applications in science and engineering. Below is a
list of some applications.
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• Mathematics (finite geometry, combinatorial designs, algebraic geometry,
number theory).
• Computer science (cryptography and coding theory, computer algorithms,

data storage systems, simulation, software testing).
• Electrical engineering (CDMA communications, error detection and correc-

tion, signal processing, signal designs).
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Notation and Symbols

AG(m,GF(q)) — the affine space or affine geometry of dimension m.
Ai and A⊥i — the number of codewords of Hamming weight i in a code C

and its dual C⊥, respectively.
Ai(C ) — the number of codewords in a code C .

Aut(C ) — the automorphism group of a linear code C .
Aut(D) — the automorphism group of a design D.

Bi(C ) — the set of the supports of all codewords of Hamming weight i
in a code C , which is a multiset in Chapter 16 and a simple set in
other chapters.

C and C⊥ — a linear code C and its dual code C⊥.
C — the extended code of C .
C̃ — the augmented code of C .

C T — the punctured code of a code C at the set T of coordinate
positions.

CT — the shortened code of a code C at the set T of coordinate
positions.

C |GF(q) — the subfield subcode over GF(q) of a code C over an extension
field of GF(q).

CGF(q)(D) — the linear code over GF(q) spanned by the rows of the inci-
dence matrix of an incidence structure D.

C(q,n,δ,b) — a BCH code over GF(q) with length n and designed distance δ.
cT — the transpose of the vector c.

d(C ) — the minimum distance of a linear code C .
dim(C ) — the dimension of a linear code or a linear subspace C .
Dh(x,a) — the Dickson polynomial of the first kind.

e(C ) — the error-correcting capability of a code C , i.e., b(d(C )−1)/2c.
Eh(x,a) — the Dickson polynomial of the second kind.
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GF(q) — the finite field with q elements.
GF(q)n — the set of all n-tuples over GF(q) or a vector space of dimension

n over GF(q).
GAm(GF(q)) — the general affine group.
GLm(GF(q)) — the general linear group.
ΓAm(GF(q)) — the semilinear affine group.
ΓLm(GF(q)) — the general semilinear group.

Hq,m — the Hamming code.
Mλ(x) — the minimal polynomial over GF(q) of λ ∈GF(qm) for some q

and m.
MAut(C ) — the monomial automorphism group of a linear code C .

Nqm/q — the norm function from GF(qm) to GF(q).
P (C ) — the set of all coordinate positions in a code C .

PAut(C ) — the permutation automorphism group of a linear code C .
PG(m,GF(q)) — the projective space or projective geometry of dimension m.
PGLm(GF(q)) — the projective general linear group.

Pk(q,n;x) — the Krawtchouk polynomial.
PSLm(GF(q)) — the projective special linear group.
PΓLm(GF(q)) — the projective semilinear group.

QRC(n,q)
i — a quadratic residue code over GF(q) with length n.

rankp(D) — the p-rank of an incidence structure D.
R2(r,m) — the binary Reed-Muller code of length 2m and order r.
Rq(r,m) — the generalised Reed-Muller code of length qm and order r over

GF(q).
Rq(r,m)∗ — the punctured generalised Reed-Muller code of length qm− 1

and order r over GF(q).
SAm(GF(q)) — the special affine group.
SLm(GF(q)) — the special linear group.

Sn or Symn — the symmetric group on a set of n symbols.
Trqm/q — the trace function from GF(qm) to GF(q).
wt(c) — the Hamming weight of a vector or codeword c.

Zn — the ring of integers modulo n.
Ω(q,m,h) — The Dilix code.

ρ(C ) — the covering radius of a code C .
(P ,B,R ) — an incidence structure with point set P , block set B and inci-

dence relation R .(S
t

)
— the set of all t-subsets of S.

∑n
i=0 Aizi — the weight enumerator of a linear code of length n.

∑n
i=0 Ai(C )zi — the weight enumerator of a linear code C of length n.
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(v,k,λ)-design, 119
k-flat, 22
k-flat of affine spaces, 23
q-cyclotomic coset modulo n, 91
q-rank of incidence structure, 116
t-balanced, 117
t-design, 117
t-homogeneous, 35, 131
t-regular, 297
t-regular codes, 295
t-transitive, 35, 74, 131

absolute trace, 3
additive character, 5
affine function, 50
affine geometry, 144
affine plane, 29
affine space, 23
affine-invariant, 169
algebraic normal form, 142
almost bent, 56
almost MDS code, 393
almost optimal code, 64
almost perfect nonlinear, 55
alternating, 154
annihilator polynomial, 471
arc, 329
Assmus-Mattson theorem, 434
augmented code, 71
autocorrelation function, 58
automorphism, 116

automorphism group, 73, 117
automorphism group of an ovoid, 353
automorphism group of ovals and

hyperovals, 330
automorphism group of the affine space,

23
automorphism group of the projective

space, 22
automorphism of GF(q), 36
automorphism of projective planes, 27
automorphism of the projective space, 22
axis, 27

balanced incomplete block design, 117
basis, 497
BCH code, 100, 205
bent, 373
bilinear, 154
block, 115
Boolean function, 142
Bose distance, 100

canonical character, 5
cap, 329
center, 27
central collineation, 27
centralizer, 34
characteristic, 2
characteristic function of a set D, 62
characteristic number, 292
characteristic polynomial, 57, 292
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characteristic sequence of a set D, 61
check polynomial, 93
circulant matrix, 322
classical plane, 365
classical real Möbius plane, 364
code, 63
codeword, 63
collinear, 26, 29
collineation group, 27
collineation group of the affine space, 23
collineation group of the projective space,

22
collineation of the projective plane, 27
collineation of the projective space, 22
commutative, 52
complement of a code, 97
complement of a difference set, 59
complementary design, 121
complete desin, 117
completely regular, 297
concyclic, 363
conic, 332
conjugate, 3
conjugate character, 5
conjugate class, 34
constacyclic code, 355
constant weight code, 81
coset leader, 91
covering radius, 79, 289
crosscorrelation function, 57
cyclic code, 91, 92
cyclic code of D, 112
cyclic group, 481
cyclotomic class, 18
cyclotomic number, 18

decreasing ordering, 141
defining set of a cyclic code, 97
defining-set construction, 84
degenerate, 9
degree of a permutation group, 35
Delsarte’s theorem, 75
Dembowski-Ostrom polynomial, 51
Denniston arc, 345
derived design, 121, 369
Desarguesian, 27

design, 117
development of difference sets, 59
Dickson semifield, 53
difference function, 59
difference set, 59
Dilix code, 180, 186
dimension-optimal, 64
distance distribution, 467
distance enumerator, 290
distance-invariant, 290, 467
distance-optimal, 64
divisible difference set, 61
division ring, 483
divisor, 314
double circulant code, 323
doubly-even, 315
dual arc, 343
dual bases, 4
dual design, 121
dual distance, 468
dual plane, 24

egglike plane, 365
elation, 27
elementary abelian group, 32
elementary symmetric polynomial, 411
entended code, 70
equidistant code, 83
equivalence class, 29
equivalent, 73
equivalent of o-polynomial, 333
equivalent ovals, 330
equivalent ovoids, 353
equivalent quadratic forms, 9
Euclidean algorithm, 474
Euclidean domain, 483
Euler totient function, 1, 478
even-like codeword, 65
even-like duadic code, 110
extendable, 121
extended Euclidean algorithm, 476
extended primitive cyclic code, 168
extension of a design, 121
exterior line, 333
exterior point, 333
external distance, 80, 293
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external line, 343
extremal NMDS code, 398
extremal self-dual code, 317

faithful, 33
field, 2, 483
field automorphism, 4
finite field, 2, 483
finite group, 481
Fisher inequality, 119
flag, 115
formally self-dual, 313
free, 33
Frobenius automorphism, 36
full automorphism group, 117

Ganley semifield, 54
Ganley-Cohen semifield, 54
Gaussian coefficient, 22
Gaussian period, 18, 19
general affine group, 40, 169
general linear group, 34, 37
general semilinear group, 38
generalised Hamming weight, 89
generalized Assmus-Mattson theorem,

450
generating idempotent, 94
generating polynomial, 57
generator matrix, 64
generator polynomial, 93
global conjugation, 313
group, 480
group action, 33
group algebra, 10, 290
group character, 4

Hadamard design, 343
Hall polynomial, 2
Hamming bound, 79
Hamming code, 82
Hamming distance, 63
Hamming weight, 63
Hermitian inner product, 313
homology, 27
hyperoval, 330
hyperoval design, 339

ideal autocorrelation, 58
idempotent, 94
incidence matrix, 116
incidence relation, 115
incidence structure, 115
incidence vector, 144
inner product, 63
integral domain, 483
interior line, 333
interior point, 333
intersection number, 120
inverse relation, 24
inversive plane, 363
irreducible cyclic code, 95
irreducible polynomial, 487
isomorphic field, 2
isomorphism, 116
isotopic, 53
isotopism, 53

kernel of a group action, 33
Kloosterman sum, 7
knot, 331
Krawtchouk coefficient, 471
Krawtchouk expansion, 471
Krawtchouk polynomial, 13, 468

length-optimal, 64
linear code, 63
linear code of an incidence structure, 122
linear complexity, 56
linear function, 50
linear span, 56

Möbius plane, 363
maximal arc, 343
maximal arc code, 345
maximum designed distance, 100
maximum distance separable, 78
minimal cyclic code, 95
minimal ideal, 95
minimal polynomial, 3, 57, 293
minimum even-like weight, 65
minimum odd-like weight, 65
Miquelian plane, 365
monomial automorphism group, 73
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monomial matrix, 73
monomially equivalent, 73
multiplicative function, 1
multiplier, 60

narrow sense, 100
near MDS code, 394
NMDS code, 394
nondegenerate, 9
nonsingular, 9
norm, 3
norm function, 499
normal basis, 4
nucleus, 331
numerical multiplier, 60

o-polynomial, 333
odd-like codeword, 65
odd-like duadic code, 110
optimal autocorrelation, 58
optimal code, 64
orbit, 34
order, 118
order of a character, 5
order of a permutation group, 35
order of affine planes, 29
order of projective planes, 24
orthogonal, 63
oval, 330
ovoid, 353
ovoid code, 355

packing radius, 289
parallel, 29
parallel class, 29, 134
parallelism, 29
parity-check matrix, 64
perfect code, 79, 298
perfect nonlinear function, 50
perfect sequence, 58
period polynomial, 21
permutation automorphism group of

codes, 72
permutation equivalent for codes, 72
permutation matrix, 72
permutation polynomial, 11

perspective, 26
planar function, 51
Pless power moment, 67
Pless symmetry code, 324
point, 115
polynomial, 484
polynomial basis, 4, 497
presemifield, 52
prime field, 483
primitive BCH, 100
primitive cyclic code, 165
primitive element, 3
primitive idempotent, 95
primitive root, 1
principal, 5
projective code, 86
projective completion of an affine plane,

32
projective general linear group, 42
projective generalised Reed-Muller code,

137
projective geometry, 21
projective plane, 23
projective semilinear group, 45
projective space, 21
projective special linear group, 45, 107
punctured binary Reed-Muller code, 148
punctured Dilix code, 181
punctured generalized Reed-Muller code,

173

quadratic character, 5
quadratic form, 9
quadratic residue code, 103, 104
quadric, 354
quasi perfect code, 307
quasi-symmetric, 370
quasi-symmetric design, 391

rank, 10
rank of quadratic forms, 9
reciprocal, 97
Reed-Solomon code, 102
regular, 33
regular hyperoval, 332
relative difference set, 61
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residual design, 121, 369
resolvable design, 134
ring, 482
ring of integers modulo m, 32

secant, 331, 343
secant plane, 354
self-dual, 64, 313
self-orthogonal, 64, 313
semifield, 52
semilinear affine group, 41
semilinear mapping of GF(q)k, 87
semilinear mapping of GF(q)m, 37
semiregular, 33
sharply t-transitive, 35
sharply transitive, 33
shortened code, 69
simple t-designs, 117
Simplex code, 83
simply transitive, 33
Singleton defect, 393
singly-even, 315
skew field, 483
special affine group, 41
special linear group, 39
sphere packing bound, 79
spherical geometry design, 139, 406
splitting, 110
square, 115
stabilizer, 34
Steiner quadruple system, 153, 287, 403
Steiner system, 117, 132–134, 195, 304,

320, 321, 339, 345, 365, 366
Steiner triple system, 179, 306
Stirling numbers, 67
strongly isotopic, 53
subfield subcode, 74
sum of two codes, 95

supplementary design, 121
support, 125
support design, 125
support of a code, 89
symmetric design, 117
symmetric difference property, 370
symmetric group, 33, 72
symmetric SDP design, 370
symplectic form, 155
symplectic matrix, 155

tactical configuration, 117
tangent, 331
tangent line, 353
tangent plane, 354
Tits ovoid, 354
trace code, 75
trace function, 3
trace of a vector, 75
transitive, 33, 74
transitive permutation group, 72
translate, 59
translation line, 28
translation plane, 28
trivial character, 5
truth table, 142

uniformly packed code, 308

vector space, 496

weight distribution, 64
weight enumerator, 64
weight hierarchy, 89
Weil bound, 7

zeros of a cyclic code, 97
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